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suaect.  CALCULATED BUCKLING LOADS FOR THE SNO VESSEL

Attached is a short report summarizing buckling calculaticns that | have
performed for the SNO vessel. Several conclusions based on those
calculations and other experience with buckling of thin-walled vesssls
follow.

1. Numerical calculations of buckling of a perfect sphere loaded with
uniform pressure match the classical theory.

2. The calculated buckling load (uniform pressure) of the SNO vesse! is
about 84% of that for the perfect sphere and the buckling is localized
near the discontinuities.

3. Buckling for the SNO vessel under hydrostatic load occurs at about
the same pressure as it does for the uniform load except it is even
more localized and occurs near the chimney.

4. The localization of buckling near the chimney/sphere interface implies
that considerable attention should be paid to details in this area.

5. The support cable configuration does not affect the buckling load for
hydrostatic loading.

6. ASME Code Case N284 recommends a capacity reduction value of
0.15 for this vessel geometry. Perhaps this should be used for
uniform pressure, but would be overly conservative for the actual
loading case. | would recommend a reduction factor of 0.20, which
would result in increasing the thickness of the upper spherical wall to
1.56 inch.

7. A thicker wall in the chimney near its interface with the sphere would
affect the buckling load because of the buckling location.
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8. The lower spherical portion of the vessel could be much thinner than
the upper portion (based only on buckling considerations).

9. Lateral loads at the chimney/sphere interface could significantly lower
the pressure load that causes buckling.

10. The one case considered with built-in imperfections lowered the
buckling load to 62% of the calculated value for "perfect” SNO
geometry and 52% of the perfect sphere geometry with uniform
loading.
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BUCKLING CALCULATIONS FOR SNO SPHERE

by

. Tom Butler
MEE-13

I. Theoretical Buckling Pressure

The theoretical buckling pressure for a perfect sphere is given below.
The eigenvalue, l, is the theoretical buckling pressure divided by the applied
pressure, 1.9 psi in this case.

E := 180000. psi
g = 0.35

t := 1.4 1in.

R := 237.7 1n

p := 2-E
I lr z‘l
3-11. = 4 |
p = 7.697 psi
P .
X 1= — X = 4.051
1.9

II. Finite Element Predictions with Two-Dimensiocnal, Axisymmetric Model

The ABAQUS finite element code was used to predict buckling for the
two-dimensional, axisymmetric case. The first case considered was a perfect
sphere with a uniform pressure of 1.9 psi. Figure 1 shows the results for
this case. the eigenvalue is 4.10, which is essentially equal to the
theoretical eigenvalue given above. The next case considered was a perfect
~~here with a hydrostatic pressure varying from 0.0 psi at the base to 1.9 pr’

. the top. The »redicted eigenvalue for this case is 4.16, which is again
ery close the the theoretical value. For the third case (Fig. 2) the chimney
section was added to the sphere and the pressure varied from 0.0 to 1.9 psi.
The eigenvalue for this case is 4.48, which is considerably above the
theoretical value. There are two reasons for the difference. One is the



stiffness effect of the chimney and the other is the fact that pressure is not
being applied normal to the sphere where the chimney is located.

III. Finite Element Predictions with Three-Dimensional Model

The ABAQUS code was used for the three-dimensional calculations. Only
~ortion of the chimney was included to reduce the model size. The lower
portion of the sphere was modelled with a coarse mesh since buckling was not
expected there for the hydrostatic load case. All of the structure was
represented with the S8R5 shell finite elements in the ABAQUS code. Only
one quarter of the structure was modelled and symmetry boundary conditions
were used on the cut planes. The support cables were included by adding
vertical restraints at the cable locations. The model had 2521 node points
with six degrees of freedom per node.

The first case considered was a uniform pressure load of 1.9 psi (Fig.
3). The predicted eigenvalue was 3.40, somewhat lower that for the
axisymmetric case described above. A lower value would be expected
because we are no longer dealing with a geometrically perfect sphere and
buckling mode shapes that are not axisymmetric are allowed. Next, the effects
of an imperfect mesh were considered. The maximum radial "error" in the shell
was approximately 1% of the radius. This error occurred periodically as can
be seen from the static pressure displacement field shown in Fig. 4. The
result of this imperfect mesh was to lower the eigenvalue to 2.12, which is
62% of the value for the perfect mesh and 52% of the theoretical eigenvalue
for the perfect sphere. The final case considered was the actual hydrostatic
load case where the pressure varied from 0.0 psi at the bottom of the
structure to 1.9 psi at the top of the spherical portion of the structure.
Here, the eigenvalue was predicted to be 3.29, which is slightly lower than
the value for evenly distributed pressure.
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Fig. 1. Buckling mode shape and eigenvalue for
axisymmetric sphere (top - uniform pressure,
bottom - hydrostatic pressure 0.0 - 1.9 psi).
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Fig. 2. Buckling mode shape and eigenvalue for
axisymmetric representation of SNO vessel.
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Fig. 3. Static displacement and buckling mode shape
for SNO vessel with uniform 1.9 psi pressure load.
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Fig. 4. Static displacement and buckling mode shape
for SNO sphere with imperfect geometry and uniform
pressure. ‘
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Fig. 5. Static displacement and buckling mode shape
for SNO vessel with hydrostatic pressure load 0.0 to
1.9 psi. ‘



