Beta-Gamma Backgrounds from ²¹²Bi, ²²⁸Ac and ²³⁴Pa in the Heavy Water and Acrylic SNO-STR-92-066

I. Stairs, P. Skensved and B. C. Robertson

September 16, 1992

The isotopes in the ²³²Th and ²³⁸U decay chains which are of the most concern in the SNO detector are ²⁰⁸Tl and ²¹⁴Bi respectively. Both of these elements produce important γ -rays with energies above 2.223 MeV, and in addition the total decay energies are above 3 MeV. Monte Carlo simulations using the EGS4 code, with the decay schemes of these isotopes as input, have previously been performed. Showers were initiated in the D₂O, the acrylic, the H₂O within 2.5 m of the acrylic vessel, and the PMT glass, and the numbers of events which were reconstructed as having taken place in the D₂O were plotted versus energy.

The other isotopes which produce high-energy beta-gamma coincidences are ²¹²Bi and ²²⁸Ac in the ²³²Th chain and ²³⁴Pa in the ²³⁸U chain. Simulations based on the decay schemes for these elements have now been run with the showers initiated in the heavy water and the acrylic. The decay schemes used were simplified versions of the true decay schemes, considering only important γ -rays with energies above 1 MeV, and sometimes combining two or three γ -rays with nearly identical energies and starting levels.

1

The activity of each of the new isotopes is given in Table 1.

	D ₂ O	Acrylic
²³² Th conc. (g/g)	11×10^{-15}	1.9×10^{-12}
²³⁸ U conc. (g/g)	11×10^{-15}	3.6×10^{-12}
²¹² Bi β - γ s/year	904596	4687454
²²⁸ Ac β - γ s/year	1413444	7324212
²³⁴ Pa β - γ s/year	4315465	42370022

Table 1: Activity levels of ²¹²Bi, ²²⁸Ac and ²³⁴Pa in the SNO detector

As some of the elements undergo many decays per year, and computer time considerations made running more than 5,000,000 showers per simulation impractical, fewer than a year's worth of showers were started in some cases. The fractions of one year's decays that were run are shown in Table 2.

Table 2: Fractions of one year's decays simulated

Element	D_2O	Acrylic
²¹² Bi	1.0000	1.0000
²²⁸ Ac	3.5375	0.5000
²³⁴ Pa	1.0000	0.1000

The resulting plots are shown in Figures 1 through 4. Figure 1 is a plot which includes only 208 Tl and 214 Bi in the D₂O and acrylic curves. Figure 2 shows the sums of all five elements in the curves. Figure 3 shows the complete acrylic curve and separate plots of 212 Bi, 228 Ac and 234 Pa in the D₂O. In Figure 4, the D₂O curve includes all elements, while the three new elements are plotted separately for the acrylic.

In both the D₂O and the acrylic, the ²³⁴Pa makes a significant contribution to the total background at 1.5 MeV, increasing the acrylic ²⁰⁸Tl + ²¹⁴Bi total by about 40% and increasing the corresponding D₂O figure by about 30%. The other two isotopes are not as important. At 2.5 MeV and higher energies, none of the three new isotopes adds much to the totals. Because of the large ²³⁴Pa contribution at 1.5 MeV, the acrylic background now dominates that from the D₂O at all energies.

2

Conclusion:

The addition of the backgrounds from ²¹²Bi, ²²⁸Ac and ²³⁴Pa to those from ²⁰⁸Tl and ²¹⁴Bi does not cause a significant change in the totals for energies above 1.5 MeV. At 1.5 MeV, however, there are enough ²³⁴Pa β - γ events reconstructed inside the D₂O to noticeably increase both the D₂O and the acrylic totals. The acrylic background dominates that from the D₂O at all relevant energies.

Unfortunately, time constraints did not allow simulations of 212 Bi, 228 Ac or 234 Pa decays to be run with the light water or the PMT glass as the starting regions. However, judging by the results from the D₂O and the acrylic, there would probably not be much effect on the background at energies above 1.5 MeV.

Figure 1: 208 Tl and 214 Bi $\beta-\gamma$ in D $_2$ O and Acrylic

Energy(MeV)

Figure 3: Contributions from Individual Elements in D₂0

Energy(MeV)