
Looking for Matter Enhanced Neutrino

Oscillations Via Day v. Night Asymmetries in the

NCD Phase of the Sudbury Neutrino Observatory

by

Richard Anthony Ott, III

Submitted to the Department of Physics
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Physics

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2011

c© Massachusetts Institute of Technology 2011. All rights reserved.

Author .
Department of Physics

July 20, 2011

Certified by. .
Joseph Formaggio

Associate Professor
Thesis Supervisor

Accepted by .
Krishna Rajagopal

Chairman, Department Education Committee

Looking for Matter Enhanced Neutrino Oscillations Via Day

v. Night Asymmetries in the NCD Phase of the Sudbury

Neutrino Observatory

by

Richard Anthony Ott, III

Submitted to the Department of Physics
on July 20, 2011, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in Physics

Abstract

To measure the regeneration of electron neutrinos during passage through the Earth
via the MSW effect, the difference in electron neutrino flux between day and night
is measured at the Sudbury Neutrino Observatory (SNO). To be able to distinguish
an actual discrepancy from an artifact, the detector properties and backgrounds are
studied in regard to both a diurnal difference and a difference in the detector for
upgoing v. downgoing neutrinos. This thesis focuses on the signal extraction part
of this proccess, by which the neutrino fluxes are determined from the processed
data by means of a Markov Chain Monte Carlo method. Recognizing that this effect
is expected to have an energy dependence, the asymmetry is modeled as an affine
function of energy. This measurement yields an asymmetry in the neutrino flux of
0.044+0.037

−0.031 + (−0.018± 0.028)(Eν − 10), with Eν measured in MeV.

Thesis Supervisor: Joseph Formaggio
Title: Associate Professor

2

Acknowledgments

I have many people to thank for making it through the long path that lead me here.

First, I thank my friends, family and coworkers for supporting me though the years,

whether you realized it or not. I wish to thank the many faculty, staff and students

I have had contact with during my time at MIT. I have learned much from all of

you, and you’ve helped me understand where many of my strengths and weakness lie.

Having an income from TAing so many times was helpful as well. I want to thank

my advisor, Joe Formaggio. You took me in to your group and helped me all along

the way, even though when we met I had no background in particle physics. Finally,

I want to thank the many great scientists involved in SNO. Without your dedication,

hard work and guidance, the analysis presented here wouldn’t exist.

3

Contents

1 Introduction 13

2 Neutrino History and Theory 17

2.1 Invention and Discovery . 17

2.2 Solar Neutrinos . 19

2.3 Neutrino Oscillations . 22

2.4 MSW Effect in the Sun . 28

2.5 MSW Effect in the Earth . 33

3 Sudbury Neutrino Observatory 36

3.1 Detector . 36

3.1.1 Neutrino Interactions . 41

3.2 Three phases . 45

3.2.1 D2O . 45

3.2.2 Salt . 45

3.2.3 NCD . 45

4 SNO Analysis 49

4.1 Overview . 49

4.2 Previous analyses . 55

4.3 Separation of Fluxes . 57

4.4 Signal Extraction . 60

4.5 Pee . 61

4

4.6 Backgrounds . 63

4.7 Systematics . 66

5 Day/Night 75

5.1 Introduction . 75

5.2 Survival probability . 77

5.3 Systematics and Backgrounds . 78

6 Asymmetry Analysis 82

6.1 Introduction . 82

6.2 Basic Methodology . 83

6.2.1 16N source . 84

6.2.2 Detector binning . 85

6.2.3 Weighting . 88

6.3 Energy . 90

6.4 Angular Resolution . 94

6.5 Position Reconstruction . 98

6.6 Conclusion . 101

7 Markov Chain Monte Carlo 103

7.1 Definitions . 103

7.2 Markov Chain Monte Carlo . 104

7.3 Extended Log Likelihood . 105

7.4 Metropolis Algorithm . 108

7.5 Step Size Finding . 109

7.6 Benefits and drawbacks . 119

8 Signal Extraction 123

8.1 PDF . 124

8.2 LETA Constraint . 127

8.3 PSA . 130

8.4 Implementation . 131

5

8.4.1 Overview . 132

8.4.2 Classes . 134

8.5 Three independent methods . 141

8.6 Fake data tests . 141

8.6.1 Pull and Bias . 142

8.6.2 Signal only, no Day/Night . 144

8.6.3 Signal only, with Day/Night 146

8.6.4 Backgrounds, no Systematics 151

8.6.5 Systematics, no Backgrounds 152

8.7 Comparison between methods . 158

8.7.1 1
3

fake data comparison . 158

8.7.2 Conclusion . 166

9 Results 167

9.1 1/3 Data set . 167

9.2 Full data set . 169

9.3 Physics Interpretation . 174

10 Conclusion 175

A Code Usage for rottSigEx 176

A.1 Introduction . 176

A.2 What’s in the box . 177

A.3 rottSigEx.exe . 178

A.3.1 Objects . 178

A.3.2 Parameters, Names and Keys 179

A.3.3 Program behavior . 180

A.3.4 Basic meta file . 181

A.3.5 new . 185

A.3.6 MCMC Directives . 185

A.3.7 Parameter . 186

6

A.3.8 Pdf . 187

A.3.9 Flux . 188

A.3.10 Sys . 191

A.3.11 AsymmFunc . 195

A.4 metaConfig.exe . 196

A.5 Other Programs . 198

7

List of Figures

1-1 Effect of day/night measurement . 15

2-1 Weak Feynman Diagrams . 19

2-2 Chart of p-p chain branches . 21

2-3 Spectrum of solar neutrinos . 23

2-4 Expectations and results of neutrino experiments 24

2-5 θm v. Eν in solar core . 32

2-6 Density profile of the Earth . 34

3-1 SNO location in Creighton mine . 37

3-2 SNO Detector Diagram . 39

3-3 Feynman diagram for ES . 43

3-4 Angular distribution of ES electron 44

3-5 NCD Array . 46

3-6 NCD Diagram . 47

3-7 NCD Pulse . 48

3-8 NCD Energy Spectrum . 48

4-1 SNO Analysis Chain . 50

4-2 D2O Phase Results . 55

4-3 LETA ν flux comparison . 56

4-4 Fluxes v. variables . 59

5-1 Flux event distribution for cos(θsun) 80

8

6-1 Diagram of φcenter . 87

6-2 Histogram of event energy for randomly selected run 91

6-3 Fit center v. run number for randomly selected bin, data only 91

6-4 Fit µ, averaged over runs v. angle bin 92

6-5 Fit µ, averaged over runs v. angle bin for spatial bin 2, MC only . . 93

6-6 Fit σ v. run number for randomly selected bin, data only 93

6-7 Fit σ, averaged over runs v. angle bin for spatial bin 2, data only . . 94

6-8 Sample fit for cos θ . 95

6-9 Sample
β2,data

β2,mc
− 1 v. run number . 97

6-10 Averaged
β2,data

β2,mc
− 1 for all bins . 97

6-11 Sample fit for (X −Xsource) . 99

6-12 Fit (X −Xsource), data - MC, v. Run Number 100

6-13 Averaged (X −Xsource), data - MC, v. angle bin, for spatial bin 0 . . 100

7-1 Example posterior distribution . 110

7-2 Example Likelihood v. parameter . 111

7-3 Sample log likelihood v. step plot showing burn-in 112

7-4 Sample autocorrelation with exponential fit 114

7-5 Sample autocorrelation τ v. step size 116

7-6 Sample % step v. step size . 116

7-7 Sample autocorrelation plot where exponential fit failed 118

8-1 Sample iterated Gaussian fit . 143

8-2 Sample pull fit . 144

8-3 Sample log likelihood v. step plot showing burn-in 146

8-4 Signal only pulls . 147

8-5 Signal only pull widths . 147

8-6 Signal only biases . 148

8-7 Signal only normalized biases . 148

8-8 Signal only, day/night pulls . 149

8-9 Signal only, day/night pull widths . 150

9

8-10 Signal only, day/night biases . 150

8-11 Signal only, day/night normalized biases 151

8-12 Background Pulls . 152

8-13 Background Pull Widths . 153

8-14 Background Bias Normalized . 153

8-15 Energy Systematics Pull . 154

8-16 Energy Systematics Pull Width . 155

8-17 Energy Systematics Bias . 155

8-18 XY Systematics Pull . 156

8-19 XY Systematics Pull Width . 157

8-20 XY Systematics Bias . 157

8-21 Energy Systematics Pull . 158

8-22 Energy Systematics Pull Width . 159

8-23 Energy Systematics Bias . 159

8-24 Comparison between the three SigEx’s, for BoronFlux 162

8-25 Comparison between the three SigEx’s, for P0 163

8-26 Comparison between the three SigEx’s, for P1 163

8-27 Comparison between the three SigEx’s, for P2 164

8-28 Comparison between the three SigEx’s, for A0 164

8-29 Comparison between the three SigEx’s, for A1 165

9-1 Best fit final results, E . 169

9-2 Best fit final results, E . 169

9-3 Best fit final results, E . 170

9-4 8B Scale comparison between phases 173

9-5 A0 comparison between phases . 173

9-6 Mixing angle and mass . 174

10

List of Tables

2.1 CNO-I and CNO-II cycles . 22

4.1 Efficiency Corrections . 54

4.2 Neutron backgrounds . 66

4.3 Calibration sources . 67

4.4 List of systematics . 74

5.1 Asymmetry table . 81

6.1 Spatial detector bins . 86

6.2 Energy Center Results . 92

6.3 Energy Sigma Results . 94

6.4 Angular Resolution Results . 98

6.5 Reconstruction Results . 101

6.6 Summary of directional asymmetry study 102

6.7 Suggested asymmetries for systematics 102

8.1 Number of MC and expected data events 126

8.2 LETA best fit values and uncertainties 129

8.3 LETA correlation matrix . 129

8.4 Systematics and backgrounds used for 1
3

comparison 161

8.5 Average value of each measured parameter for each SigEx 165

8.6 Average difference between SigEx’s 166

9.1 Results from 1
3

data set . 168

11

9.2 Results from the signal extraction for the full, final data from SNO. . 171

9.3 Final Results comparison between methods 172

9.4 Comparsion of final results between phases 172

12

Chapter 1

Introduction

Neutrinos are the least understood Standard Model particle. They are unique among

particles in that they only interact via the weak force1 - they are electrically neutral

(no electromagnetic force) leptons (no strong force). The weak force is, as the name

implies, weak, so that neutrino interactions with matter are rare. This results in

them being extremely difficult to detect - even with the large neutrino outputs from

various nuclear processes2, neutrino detectors must be extremely large and still have

low count rates. Even so, neutrinos are now regularly detected and we are able to

study their properties with ever increasing precision. The more we are able to learn

about them, the closer we get to clues about what lies beyond the Standard Model.

Our current understanding of the Standard Model has matter composed of twelve

spin 1
2

particles: six quarks, three charged leptons (the familiar electron and its

heavier cousins the muon and the tau) and three neutrinos. These particles interact

via the four fundamental forces of electromagnetism, the strong nuclear force, the

weak nuclear force and gravity. The forces, in turn, are transmitted via the force

carrying bosons: the photon for electromagnetism, the gluon for the strong force and

the W and Z bosons for the weak force. Gravity is supposedly transmitted by the

graviton, but the weakness of gravity prevents us from measuring this, or from gravity

having a measurable effect in particle physics. We will not mention it from now on.

1...and gravity, but it is too weak to measure in particle physics, so we ignore it
21011 neutrinos per cm2 per second on the Earth, just from the sun

13

The classes of particles differ from each other in the forces that they interact with.

The quarks “feel” all the forces: strong, weak and electromagnetic. The leptons do

not feel the strong force, leaving the weak and electromagnetic. Neutrinos, with no

charge, additionally don’t feel the electromagnetic force.

One of the biggest, relatively recent discoveries is that neutrinos have mass. In

the early theory of the weak interaction, and later the Standard Model, they were

assumed to have precisely zero mass - so this discovery required one of the few changes

to the Standard Model since its inception. While the absolute masses of the neutrinos

is still unknown, we now know the differences between the masses of the three types

of neutrinos rather well. For the three neutrinos, we have two mass differences, ∆m21

and ∆m32. These mass differences allow the three different types of neutrinos to mix,

changing from one type to a superposition of the types as they pass through space.

The amount of mixing is characterized by both the mass differences and the mixing

angles θ12, θ23 and θ13.

In this thesis, we seek to refine the measurement of the day/night effect. This is a

measurement of how much these mixing properties of neutrinos generated in the sun

are affected during their passage through the Earth. Since neutrinos detected during

the day do not pass through the Earth and those detected at night do, this appears

as a difference in properties between day and night, hence the name. Current models

predict an approximately 2% to 5% effect, much smaller than any measurement to

date has been able to measure. Here we use the data gathered through the Sudbury

Neutrino Observatory (SNO) experiment, with particular emphasis on data from the

final data collecting period, to improve this measurement.

The primary measurement from SNO was the neutrino flux from the sun, sep-

arately measuring the rate of electron neutrinos (νe) and the total rate of all three

flavors of neutrinos (νx). While this allowed SNO to conclusively show that the neutri-

nos generated in the sun and arriving in the detector were not all νe, it is insufficient to

make a strong statement about the neutrino mixing parameters driving this process.

Figure 1-1 shows an example plot of the mixing parameters, plotting tan2(θ21) versus

∆m2
21 (these are the parameters that dominate the mixing for neutrinos coming from

14

Figure 1-1: An example plot showing the effect of the day/night measurement on
knowledge of the mixing parameters ∆m2

21 and θ12. The dashed lines are constant
amounts of measured νe v. νx (νx is the total flux, counting all flavors of neutrino, i.e.
this is the proportion of detected solar neutrinos that are νe’s when detected), SNO’s
primary measurement. The dotted blue lines are lines of constant day/night effect,
in percent. The grey region is an example confidence region, i.e. any value inside the
grey mass gives predictions in agreement with the measured results, within a specified
confidence interval. Note the importance of the day/night effect in constraining the
measurement. From [1].

the sun). The dashed lines are lines of constant proportion of νe to νx, i.e. a value

of 0.3 indicates that 30% of the measured neutrinos are νe. The dotted blue lines

are are lines of constant day/night measurement, measured in percent. The graph

makes it clear that the day/night measurement provides a complement to the main

measurement, restricting the valid parameter range.

Beyond the mixing parameters, there is still quite a bit we don’t know about

neutrinos. Without the knowledge of the absolute mass of one of the neutrinos, there

is an open question as to whether the neutrino mass splittings are large or small

compared to the mass of the lightest neutrino, which may even be zero. Additionally,

15

there is an ambiguity in the mass splittings. We know ∆m32 � ∆m12, but do not

know if this means that we have two neutrinos close in mass and one much heavier,

or one much lighter. This is the “hierarchy” question - the former is the “normal

hierarchy”, the latter the “inverted hierarcy”. Even some of the very fundamental

properties of neutrinos remain open questions. Are neutrinos and antineutrinos the

same particle? If so, they would be the only known Majorana particles (in fact,

they’re the only known particles that even could be Majorana). Are there other

types of neutrinos we haven’t detected? They would have to either be very massive

or not interact via the weak force (i.e. be “sterile” - only interacting via gravity, they

would be impossible to detect directly). Is the parameter linking ν1 and ν3, known as

θ13, zero? Relatedly, is there CP violation in the neutrinos? All we currently know is

that θ13 is small, but recent results are starting to indicate it is not exactly zero.

There are many experiments beginning to attempt to answer these open ques-

tions, making the upcoming period an exciting one in neutrino physics. While we

cannot address these questions directly with the measurement presented in this the-

sis, improving our knowledge of the mixing parameters is crucial to their success. An

example of particular relevance is NOνA, which will pass a neutrino beam through

roughly 500 km of earth to measure the mass hierarchy. This exploits the fact that

the matter-enhanced oscillations that drive the day/night effect, due to a process

called the MSW effect, are actually sensitive to the hierarchy, unlike simple oscilla-

tions. While SNO is unable to measure this itself, the improved knowledge of the

MSW effect and the mixing parameters gathered in this analysis and others like it

are needed to be able to design and understand this experiment.

It is our hope that our contribution to the measurement of the mixing parameters

will play a role in furthering our understanding of the neutrino.

16

Chapter 2

Neutrino History and Theory

2.1 Invention and Discovery

The neutrino was originally proposed Wolfgang Pauli in 1930 in his famous “Ra-

dioactive Ladies and Gentlemen” letter, reprinted in English in [2], as a solution to

a problem with β decay. At the time, it had been observed by Chadwick [3] that the

electrons emitted in β decay often had a continuous spectrum of energies, rather than

the monoenergetic lines typical of γ decay. There was initial controversy over whether

this was due to a spread in energies of the electron emitted from the nucleus, or due

to the emission of a monoenergetic electron that went through a secondary process

broadening its energy spectrum. This was settled through a calorimetric measure-

ment of the total energy emitted in the β decay of Radium-E, now know as 210Bi, in

favor of the former theory [4, 5]. Knowing that the measured electrons were those

emitted by the nucleus, it became apparent that conservation of energy appeared to

be violated: the nuclear initial and final states had discrete energy, while the emitted

electron had a range of energies. Niels Bohr favored a resolution where conservation

of energy was only true in a statistical manner in nuclear systems, whereas Pauli (cor-

rectly) suggested instead that an additional, unobserved particle was being emitted

as well. In his letter, he also proposed that this particle was part of the nucleus to

resolve the discrepancy between the measured spins of nuclei and the model that the

nucleus consisted solely of spin-1
2

protons. This latter idea was quickly abandoned in

17

favor of what are now known as neutrons. Pauli vastly underestimated the difficulty

of observing this particle, which we now call a neutrino, in his letter, but by 1931 had

realised that the particle must be extremely penetrating [2]. After Pauli’s suggestion,

Fermi created a theory explaining β decay incorporating the neutrino; this theory

was the starting point for the modern theory of the weak force.

The first measurement of the neutrino came in 1956 by Cowan and Reines [6].

Many measurements of neutrino properties followed, establishing the properites we

know today. Certain properties must be true for the neutrino to solve the β decay

problem: they must be spin 1
2
, electrically neutral leptons. Subsequently, it was

determined that neutrinos and anti-neutrinos cannot initiate the same reactions [7]

and that there were more than one type of neutrino: the ones involved in β decay,

associated with electrons, became νe. These were shown to be different from those

associated with muons, νµ [8] and both were different from those associated with τ

particles, ντ [9]. The famous Z-pole experiment at LEP measured that there are only

three neutrino flavors that couple to the Z boson (i.e. interact via the weak force)

with mass mν <
1
2
mZ [10]. The masses of the three neutrinos are all too small to

measure, with current limits at mν < 2 eV [11] and with a Standard Model prediction

of precisely zero mass.

As the properties of the neutrino were being discovered, the weak force was being

explored and the current model of that force developed. Neutrinos were instrumental

in that development, as they are direct probes of the weak force. Two famous exam-

ples are the discovery of parity violation [12] and the discovery of the neutral current

component of the weak force [13].

A brief summary of the leptonic part of the weak force is sufficient for the needs of

this discussion. The weak force is moderated by the exchange of three particles, the

charged W+ and W− and the neutral Z. Figure 2-1 shows the Feynman diagrams for

weak interactions with leptons. The most salient points for this discussion are that

the W interaction, called the charged current, couples νx with x for x = e, µ, τ and

the Z interaction, called the neutral current, couples x to x and νx to νx.

18

Z

ν e

ν e

ν e

W
_

e

Z

e

e

Figure 2-1: Feynman diagrams for weak force interactions of leptons. Note that
diagrams with all arrows reversed are also valid, as are ones with global replacement
of e → µ or e → τ , i.e. electrons were chosen as an example, but νx and x always
go together for any x. As per normal for Feynman diagrams, particles propagating
backward in time are antiparticles.

2.2 Solar Neutrinos

One relatively high-flux source of neutrinos is the sun, and neutrinos from it have

been studied in many experiments. We will return to these experiments shortly, but

first we should look at the sun itself, and how it generates neutrinos.

The sun is a reasonably typical star. It consists mostly of hydrogen and helium,

with a small proportion of heavier elements, of sufficiently high temperature to be

plasma. The sun is sufficiently large, with a radius of 7·108 m and a mass of 2·1030 kg,

that its core density (150 g/cm3) and temperature (1.6 · 107 K) allow protons to

overcome their Coloumb repulsion and fuse into helium nuclei (α particles) [14]. This

liberates energy, creating outward pressure from heat and photon pressure, which

balances the inward pressure from gravity and keeps the sun in a state of hydrostatic

equilibrium. The evolution of stars from pre-stellar clouds of primordial elements to

nuclear-fusion-maintained equilibrium to exhausting their nuclear fuel and perishing

is a very heavily studied area in astrophysics, known as stellar or solar modeling.

A detailed and interesting treatment from the viewpoint of the nuclear processes in

stars is given in [14], and the following discussion draws heavily from that work. The

solar models used by John Bahcall et al in [15, 16] are generally the ones used in the

field.

The idea that stars are powered by nuclear fusion was first proposed by Arthur

Eddington in 1920. This was later expanded upon, most notably by Hans Bethe

in [17], which layed the groundwork for the modern understanding of the fusion

processes in stars and introduced the idea of the CNO cycle. A summary of this

19

history is presented in [14].

In the sun, two processes dominate energy production: the proton-proton (p-

p) chain (98.5%) and the CNO-I cycle (1.5%) [15]. Both of these processes are

hydrogen-burning processes that fuse four hydrogen nuclei (protons) in to a helium

nucleus. This reduces the nuclear charge from 4e to 2e, so for conservation of charge

to hold (and for the sun to remain electrically neutral), two electrons are consumed as

well, either directly through electron capture or through annihilation with an emitted

positron. To then conserve lepton number, two electron neutrinos must be emitted.

This gives a net reaction of

4p+ 2e− → α + 2νe + 26.7 MeV (2.1)

where the liberated energy is in some combination of thermal energy, neutrino energy

and photons.

The simpler of the two processes is the p-p chain, which only requires the presense

of hydrogen and helium. Looking at it in detail, we see the p-p chain actually consists

of many branches of possible reactions, show in Figure 2-2. The branching ratios

shown on the figure are for the sun, given current solar models.

The other dominant process, the CNO-I cycle, is one possible route of catalyzed

fusion in stars. In these cycles, a closed loop of fusion processes take an existing

element and transmute it repeatedly, ultimately ending up with an element that has

an α-producing reaction with a proton, reproducing the original element. There are

four cycles that are commonly known to occur in stars, but the heavy dependence on

temperature and initial isotope abundance results in only the CNO-I cycle and the

CNO-II cycle occuring in the sun. In all four cycles, the two neutrinos come from β+

decay of an isotope. Table 2.1 shows the CNO-I and CNO-II cycles.

The difference between all of the processes, from the viewpoint of solar neu-

trino physics, comes in the origin of the two neutrinos. Most are from processes

resulting in three (or more) bodies, resulting in β-decay like energy spectra. These

are from p+ p→ 2H + e+ + νe (called pp), from 3He + p→ α + e+ + νe (called hep)

20

Figure 2-2: Chart of p-p chain branches, from the SNO image library

from 8B→ 2α + e+ + νe (called 8B) and from β+ decays in the CNO cycles (labelled

by isotope). Two come from electron-capture processes, resulting in line spectra (i.e.

monoenergetic neutrinos). Those are from p+ p+ e− →2 H + νe (called pep) and

from 7Be + e− → 7Li + γ + νe (called 7Be). Three additional, less well known line

sources arise from electron capture in the CNO cycle, one for each CNO isotope at

1.022 MeV (two electron masses) above the maximum β+ energy [18]. The neu-

trino output of the Sun is the sum of all of these spectra, shown component-wise in

Figure 2-3 (which does not include the CNO line spectra).

The first successful attempt to measure neutrinos from the sun was the radio-

chemical experiment by Davis in the Homestake mine. This experiment looked for

neutrino capture on chlorine in C2Cl4, producing an isotope of Ar, which was sep-

21

CNO-I CNO-II
12C + p→13 N + γ 14N + p→15 O + γ

13N →13 C + β+ + νe
15O →15 N + β+ + νe

13C + p→14 N + γ 15N + p→16 O + γ
14N + p→15 O + γ 16O + p→17 F + γ

15O →15 N + β+ + νe
17F →17 O + β+ + νe

15N + p→12 C + α 17O + p→14 N + α

Table 2.1: The CNO-I and CNO-II cycles of catalyzed fusion. Taken from [14], p.
397

arated chemically and counted. The measured flux of neutrinos from the sun was

approximately 1
3

that precited in the solar models [19]. Many other experiments

utilizing either radiochemical methods [20, 21, 22, 23] or measuring Cherenkov light

from neutrino interactions in water [24] were performed, and all detected fewer νe

than models predicted. This was called the “solar neutrino problem”.

Different experiments see different portions of the neutrino spectrum. The ra-

diochemical experiments generally have energy thresholds in the hundreds of keV,

giving contributions from most of the processes in Figure 2-3. Water Cherenkov de-

tectors like SNO and SuperK have much higher energy thresholds, in the few MeV

range. This gives sensitivity only to the 8B and hep neutrinos, with 8B dominant

(roughly 1000 times the flux of hep). This means that the experiments have differ-

ent expectations, with predictions for major experiment groups from Bahcall show in

Figure 2-4.

2.3 Neutrino Oscillations

Why do the theoretical predictions and experimental results in Figure 2-4 disagree

so strongly (with one exception)? This is the “solar neutrino problem” mentioned

earlier. The answer is that the model predicts the neutrino flux from the sun at the

sun. It doesn’t take in to account what might happen to those neutrinos on their way

to a detector on the Earth.

At first glance, it doesn’t seem like anything should happen - neutrinos interact

extremely weakly with matter. The predicted interaction length with normal matter

22

Figure 2-3: Spectrum of solar neutrinos, from the SNO image library, from [16]. This
does not include the line spectra from the CNO cycle

is measured in light-years, and they only need pass through, at most, 109 m of solar

material, 1011 m of space (about 8 light-minutes) and 107 m of rock in the Earth.

It turns out that each of these has an effect, which we will examine in the next few

sections, starting with the vacuum portion.

The possible effects of propagating though vaccuum were suggested in [26] and

expanded upon in [27] and [28]. We will follow a more modern and less technical

derivation.

In passing through vacuum, any particle propagates at a given velocity depen-

dent on its kinetic energy and mass. Though not actually the case, we can to good

approximation treat a propagating particle as if it were in a quantum mechanical

eigenstate of momentum (~p). In a vacuum, this is also an eigenstate of energy (E)

with E =
√
m2c4 + p2c2, where p2 = |~p|2

The Schrödinger equation, ih̄
∂

∂t
ψ = Hψ tells us how quantum mechanical states

evolve. H is the Hamiltonian, which describes how a particle interacts with a system.

23

Figure 2-4: Theoretical expectations and results of neutrino counts for different ex-
periments, from [25]

We are free to pick whatever basis we like to describe the system, and often choose

one of energy eigenstates, i.e. those states where Hψ = Eψ. If we have three

neutrinos, with masses m1, m2 and m3, then we have a general superposition state

(in an eigenstate of ~p) evolving as

ψν = ei
1
h̄
t
√
m2

1c
4+p2c2 |ν1〉+ ei

1
h̄
t
√
m2

2c
4+p2c2 |ν2〉+ ei

1
h̄
t
√
m2

3c
4+p2c2 |ν3〉 (2.2)

Now we run in to a difficulty: we need to know what the masses of the neutrinos

are. These have been measured to be extremely small; the current limit is mν < 2 eV

[11]. Additionally, we need to ask which states we are talking about when we talk

about the mass of a neutrino. These will not necessarily be the same as the flavor

states - neutrinos are unusual particles that only interact weakly. We know from quark

measurements that weak decays can change quark flavor, i.e. the weak interaction

doesn’t couple to the strong force eigenstates (the flavor states for quarks: up, down,

charm, strange, top, bottom) but to linear combinations of them (see any text on

24

elementary particle physics for more details, for example [29] and [30]). If the same

is occuring for neutrinos, those neutrinos that we call νe, νµ and ντ may be linear

combinations of the states that freely propagate since we only observe them as a

consequence of weak interactions.

To see the effects of neutrinos having a small but non-zero mass, we start by

looking at the simplified case of a world with only two neutrinos. We do this for

two reasons: it is easier to follow and understand, and turns out to be a good ap-

proximation to what actually occurs in many cases. Since neutrinos have energies

much larger than their masses, they are ultra-relativistic and propagate at a velocity

so close to c we can’t measure the difference. Thus we won’t have the mass states

separating spatially and we can ignore that concern. In addition, this means that we

are justified in a Taylor expansion of the phase factor above for small masses

E =
√
m2
i c

4 + p2c2 ≈ pc+
m2
i c

4

2pc
≈ E +

m2
i c

4

2E
(2.3)

where we have also used the approximation E ≈ pc for an ultrarelativistic particle.

In general, if we have n particles mixing, we will have

|να〉 =
∑
i

U∗αi |νi〉 (2.4)

where α indicates a flavor state, i indicates a mass state and the complex conjugate

is a convention. This U must be unitary to conserve probability, so that particles are

neither created nor destroyed by the mixing. In the case of two neutrinos, U is 2× 2

and all complex phases are unobservable, allowing us to write this as|νe〉
|νµ〉

 =

 cos(θ) sin(θ)

− sin(θ) cos(θ)

|ν1〉

|ν2〉

 (2.5)

θ is called the mixing angle, and is a constant of nature measuring how the weak

25

interaction mixes states. If a neutrino starts as a νe, it will propagate as

|ψ〉 = ei
E
h̄

(
cos(θ)ei

1
h̄

m2
1c

4

2E
t |ν1〉+ sin(θ)ei

1
h̄

m2
2c

4

2E
t |ν2〉

)
(2.6)

Any neutrino interaction (and thus detection) will be via the weak force and hence

in the flavor basis, so we transform back to that basis (by inverting equation 2.5 and

substituting for | νi〉 above). In addition, we note that if a particle is travelling at c

(a very fixed velocity), we can choose to parameterize in distance instead of time, i.e.

we can substitute t =
L

c
. Then a particle starting in νe at t = L = 0 will, at some

distance L away, be in the state

|ψ〉 = ei
E
h̄

(
cos2(θ)ei

im2
1c

3L

2h̄E + sin2(θ)ei
im2

2c
3L

2h̄E

)
|νe〉+

cos(θ) sin(θ)

(
ei
im2

2c
3L

2h̄E − ei
im2

1c
3L

2h̄E

)
|νµ〉 (2.7)

Then the probability of detecting a νe given that it started as a νe, called the survival

probability Pee is

Pee = |〈νe |ψ〉|2 = cos4(θ) + sin4(θ) + 2 cos2(θ) sin2(θ) cos

(
c3

h̄
∆m2 L

2E

)
(2.8)

where ∆m2 = m2
2 −m2

1. We simplify this using double angle and half angle formulas

to get

Pee = 1− sin2(2θ) sin2

(
c3

h̄
∆m2 L

4E

)
= 1− sin2(2θ) sin2

(
1.27∆m2 L

E

)
(2.9)

where in the final formula we have evaluated the constants and forced units on the

variables: E in GeV, ∆m2 in eV2, and L in km.

This tells us something very interesting happens - if neutrinos have different

masses, then they will oscillate. A neutrino produced in one flavor state will have a

probability of being measured as a different flavor state that varies sinusoidally with

the distance traveled. This amplitude depends on two properties inherent to the neu-

trinos, their mixing angle θ and their mass-squared difference ∆m2. It is worth noting

26

that since these show up as sin2(x) terms, these neutrino oscillations are insensitive to

the sign of ∆m2 and θ. In addition, since sin(π−x) = sin(x) an additional ambiguity

exists for θ versus π
2
− θ.

This is a possible solution to the “solar neutrino problem” - neutrinos are created

in the sun as νe at the rates that solar model predict, but are changing to other flavors

on their way to the Earth. More precisely, they are emitted in flavor eigenstates, but

these are not propagation eigenstates. As the neutrinos propagate, the relative phases

between the mass eigenstates vary, so when they are projected back in to the flavor

basis by a measurement, interference between the mass states has occurred and they

are now in a mixture of flavor states.

Since we know there are three (light, active) flavors of neutrinos in nature, we

should look at what occurs in the full three neutrino case. We start again by looking

at the mixing matrix. It is now a 3 × 3 unitary matrix, which is significantly more

complicated. We will be following [31] for this case. We write this mixing matrix as

the product of three effective 2ν mixing matricies

U =


1 0 0

0 c23 s23

0 −s23 c23




c13 0 s13e
−iδ

0 1 0

−s13e
iδ 0 c13




c12 s12 0

−s12 c12 0

0 0 1

 (2.10)

Where cij = cos(θij), sij = sin(θij), θij is the mixing angle between mass states i and

j, and δ is a CP-violating phase. All complex phases other than δ are unobservable

and removed.

This 3ν case has much richer structure, but we know from observations that

∆m2
12 � ∆m2

23 ≈ ∆m2
13. This simplifies the resulting expressions for oscillations,

and lets different types of experiments probe the individual parts of the matrix more

readily. Solar neutrino experiments are in looking at a regime where ∆m2
32L/E � 1

(and ∆m2
31L/E � 1). Since there is an initial spread in both neutrino energy and

position (since the Sun is large), the faster oscillations associated with ∆m2
31 and

∆m2
32 “average out” over the many oscillations between ν creation and detection.

27

This simplifies the survival probability to

Pee = cos4(θ13)

(
1− sin2(2θ12) sin2

(
c3

h̄
∆m2 L

4E

))
+ sin4(θ13) (2.11)

This is just the 2ν case with a multiplicative and an additive constant. An addi-

tional piece of information simplifies this further: measurements have shown that

sin2(2θ13) < 0.19 (at 90% confidence) [11], so we make a very small error by ignoring

these additional terms.

This all assumes that we are detecting a monoenergetic beam of neutrinos from a

well-localized source. Since neutrinos are generated over a range of positions in the

Sun and a range of energies, these need to be averaged over [32]. The net effect is

that the vaccuum oscillations above, which depend on the coherence of the neutrinos,

will average out. This leaves an expectation of an incoherent sum, giving

Pee = k1|Ue1|2 + k2|Ue2|2 + k3|Ue3|2 (2.12)

where ki is the fraction of neutrinos in the ith mass state reaching the detector, and

Uei is the element in the mixing matrix linking νe and νi. Note that this is simply a

sum of the probabilities of each νi being measured as a νe.

2.4 MSW Effect in the Sun

The previous section gave us one possible solution to the solar neutrino problem:

vacuum oscillations. This, unfortunately, is not sufficient. We now look at the effect

on neutrinos of passing through solar material on their way to our detector, the second

on our list of things that happen to the neutrino between creation and detection.

It was first proposed by Wolfenstein [33] and later expanded upon by Mikheyev

and Smirnov [34] that passing through matter can affect the oscillations of neutrinos.

Conceptually, as neutrinos pass through matter, they undergo coherent forward scat-

tering, i.e. scattering where their direction of propagation and state do not change

appreciably. This is analogous to the index of refraction for light in a transparent

28

medium. Neutral current, Z mediated processes affect all of the states equally, so

they have no affect on oscillations. Charged current, W moderated interactions, on

the other hand, do not. Since they couple neutrinos to their charged lepton partners,

the fact that matter contains many electrons and no muons or taus means that νe’s

will experience a charged current effect while νµ’s and ντ ’s will not. This creates an

effective potential that only νe’s will feel, which we will call Ve.

Since neutrino interactions are so weak, we can safely assume that the interaction

strength will vary proportionally to the number of scatterers (electrons) available, so

our effective potential will have the form Ve ∝ Ne. The expression usually used is

Ve =
√

2GFNe, where GF is the Fermi constant, a measure of the strength of the

weak interaction at low energies. Note that this ignores absorption effects, which are

negligible.

We will again start by adopting a 2ν model for clarity. We write down our vacuum

propagation matrix explicitly this time, and we switch to units where h̄ = c = 1 for

simpicity

Hmass =

E +
m2

1

2E
0

0 E +
m2

2

2E

 (2.13)

in the mass state basis. Recalling from before that the E term contributes an irrelevant

overall phase, we drop it. Going a step further, this tells us that any Hamiltonian of

the form H − k I, where I is the identity matrix, will change the solution only by an

overall phase. We then can rewrite our Hamiltonian as

H ′mass = H − (E +
m2

1 +m2
2

4E
) I =

−∆m2

4E
0

0 ∆m2

4E

 (2.14)

To convert to the flavor basis, basic quantum mechanics tells us

Hαβ = 〈να | H |νβ〉 =
∑
i,j

〈να |νi〉〈νi | H |νj〉〈νj |νβ〉 = (UHU †)αβ (2.15)

29

where U is our mixing matrix from before.

Hflavor = UHmassU
† =

−∆m2

4E
cos(2θ) ∆m2

4E
sin(2θ)

∆m2

4E
sin(2θ) ∆m2

4E
cos(2θ)

 (2.16)

Since our effective potential only affects νe’s, it adds to the Hamiltonian only in the

first entry, giving (after trig substitution)

H =

−∆m2

4E
cos(2θ) + Ve

∆m2

4E
sin(2θ)

∆m2

4E
sin(2θ) ∆m2

4E
cos(2θ)

 (2.17)

This Hamiltonian governs the propagation of neutrinos in matter. To find out the

eigenstates of propagation, i.e. the new “effective mass” states, we look at the eigen-

system of this matrix. The eigenvectors tell us the flavor composition of the new

propagating states. This will give us the unitary transformation between flavor and

propagating state, which we can write as|ν1m〉

|ν2m〉

 =

cos(θm) − sin(θm)

sin(θm) cos(θm)

|νe〉
|νµ〉

 (2.18)

where θm is the mixing angle for the states in matter. The relationship between θm and

other parameters was derived by Wolfenstein in [33], but we use an expression that

makes relations we are interested in more obvious (following most modern treatments,

in this case [35] and [36]). This gives us

tan(2θm) =
∆m2

2E
sin(2θ)

∆m2

2E
cos(2θ)−

√
2GFNe

(2.19)

Two interesting and relevant special cases exist. The most obvious is the resonant

condition
∆m2

2E
cos(2θ) =

√
2GFNe, which results in θm = π

4
. This is maximal mix-

ing, where νe and νµ are equal mixtures of ν1 and ν2, and was first discussed in [34].

This can occur even for very small vacuum mixing, and was proposed as a possible

explanation for the solar neutrino problem: resonant oscillations almost certainly oc-

30

cur somewhere in the sun, given the large range of densities from the solar core to

the solar surface, and would thoroughly mix νe’s with νµ’s, even nearly completely

converting νe’s to νµ’s under certain conditions. However, experimental results indi-

cate a large mixing angle sin2(2θ12) = 0.86+0.03
−0.04 [11], θ12 ≈ 34◦, making the latter not

possible.

The second interesting special case is for very large Ne. In that case, the matter

mixing angle limits to θm = π
2
. That is to say, νe ≈ ν2. If the solar core is dense

enough for this to happen, then the emitted νe’s will be ν2’s. If the change in the

density of the sun is slow, we can make an adiabatic approximation which says that

a particle in an eigenstate of propagation will remain in that eigenstate, even though

the eigenstates themselves are changing. Then all νe’s in the sun will leave the solar

surface as ν2’s and will not experience vacuum oscillations.

From [35] we find that the numerical value of Ve is

Ve =
√

2GFNe ≈ (0.76 · 10−7)
ρe

NA/cm3

eV2

MeV
(2.20)

where ρe is the electron density and NA is Avagadro’s number. Assuming a solar

core density of ρe ≈ 100 NA/cm3 from solar models [15], and ∆m2
21 = 8 · 10−5 eV2

and sin2(2θ12) = 0.86 from [11], the θm as a function of neutrino energy is shown

in Figure 2-5. Resonance occurs at ≈ 2 MeV. SNO is sensitive to higher energy

neutrinos, mostly in the range 6− 20 MeV and with a most likely energy of 10 MeV.

This gives θm in the range 65◦ to 80◦, corresponding to |〈ν2 |νe〉|2 ≈ 0.82 to 0.98. At

higher energies, then, the νe ≈ ν2 is a good approximation, and becomes less so at

lower energies. This is particularly important in comparing the results of different

types of experiments, many of which are sensitive to lower energies than SNO and

cannot make the νe ≈ ν2 approximation at all. This also suggests that SNO should

see an energy dependence in oscillations from this effect, independent of those from

vacuum oscillations.

It is worthwhile to take a moment to look at the adiabaticity issue. In general, if

we have a set of eigenstates that are changing with time (or distance, for a propagating

31

Figure 2-5: θm v. Eν at solar core densities. The dotted vertical line is SNO’s lower
energy threshold (a few lower energy neutrinos) and the two horizontal dashed lines
are θm = 45◦ and θm = 90◦, maximal mixing and νe ≈ ν2 respectively.

object), there is some probability Pjump of crossing or jumping from one eigenstate

to the other. The size of Pjump depends on how quickly the eigenstates are changing,

relative to the system’s evolution if the eigenstates weren’t changing. In the case of

neutrinos in the sun, this is comparing the rate of change of θm versus the oscillation

length. This is worked out in [35], which characterizes the needed condition as

γ̃ =
π∆m2/Eν
|d(lnVe)/dx|res

� 1 (2.21)

where the res subscript indicates the constant should be evaluated at the MSW

resonance density, where jumping is most likely. This constant is of order 106 for the

sun, so it is safe to assume that the mass composition of neutrinos exiting the sun

will be the same as those generated in the sun. The flavor compositions, of course,

will be different.

The three neutrino case is, again, much more complicated. However, in [37] we find

that the measured values of ∆m2
21 � ∆m2

23 and sin2(θ13) simplify things substantially.

We find |ν3m〉 =|ν3〉, so the ν3 effectively decouples from the matter mixing. We get

an effective two flavor case, with Ve,eff = cos2(θ13)Ve, with the two flavors now being

νe and νx, where x is some combination of µ and τ . An additional concern arises: if

θm is changing across the Sun, then the mass composition of the created νe’s will not

32

be uniform and will need to be averaged over. This averaging results in

Pee = sin4(θ13) +
1

2
cos4(θ13)(1 +D3ν cos(2θ12)) (2.22)

where

D3ν =

∫ Rsun

0

f(r) cos(2θ12m(r))(1− 2Pjump)dr (2.23)

where f(r) is the probability distribution for a νe being generated at a radius r in the

sun, Rsun is the radius of the Sun, θ12m is the two neutrino matter mixing angle for

the effective potiential cos2(θ13)Ve and Pjump is negligibly small in the Sun. D3ν must

be calculated numerically, but can be approximated reasonably well by assuming an

exponentially decaying matter density in the Sun.

2.5 MSW Effect in the Earth

Finally, we arrive at the third thing that can happen on neutrinos that reach our

detector from the Sun: they can pass through the Earth. The MSW effect described

in the previous section affects neutrinos in the Earth as well. Since the Earth is much

less dense, so we would expect the effect to be much smaller. However, the density of

the Earth is not changing adiabatically. There are very sharp transitions in density

from air to ground, then from mantle to core, then back again. The Earth’s density

profile is shown in Figure 2-6. This will give a non-zero Pjump, which will change the

relative proportions of the mass eigenstates and hence the relative proportions of νe’s

versus other flavors. In addition, the regenerated ν’s will have a coherent portion,

but much of it will average out. As explained in [37], this non-adiabaticity is the

dominant effect. This is quite reasonable: if the change were adiabatic, we would

have the same situation we have in the sun, where the neutrinos maintain their mass

eigenstate composition but the corresponding flavor composition changes. When they

are detected, they will have the flavor composition corresponding to the density of

the material surrounding the detector. Since the Earth has low density at the crust,

this would be the same as the vaccuum composition.

33

Figure 2-6: The density profile of the Earth, from the PREM model [38]. Figure from
[39].

This creates a difference between Pee for neutrinos that must pass through the

Earth and those that do not. This is known as the “Day/Night effect”, since neutrinos

only have to pass through the Earth to reach a detector when the bulk of the Earth is

between the Sun (the source) and the detector, i.e. at night. The resulting difference

is

Pee,Night − Pee,Day = −2 cos6(θ13)D3ν
EVe

∆m2
21

sin2(2θ12) sin2

(
∆m2

21

4E
L

)
(2.24)

where D3ν is the same as before, for the Sun, and Ve is for inside the Earth for the

path being evalutated.

For any experiment, counting statistics require integrating across a range of solar

positions. Usually, experiments divide their data in to a “Day” bin and a “Night”

bin, which integrate over all neutrinos that do not have to pass through the Earth

and all those that do, respectively. For the latter, this means integrating over a range

of different paths through the Earth, ranging from relatively glancing passes (if the

sun has just set) to going all the way through the Earth including the core. Both

the computation of values needed for Eq. 2.24 and integrating over these paths is

34

usually done numerically, though [40] makes a set of analytic approximations that

reproduce the numerical results well. In addition, each detector has a unique energy

and angular response, which also tend to average over some of the parameters and

must again be dealt with numerically. This is done in [37], which gives a prediction

of 4.5% for SNO.

At SNO, this is dealt with by the PhysInt group. They simulate the generation

of neutrinos in the sun and their passage through the Earth, taking the MSW effect

in to account. This allows them to find the predicted amount of both primary signal

(amount of νe relative to νx detected) and the day/night effect for a given set of

neutrino mixing parameters. This allows them to find those values of the mixing

parameters that correspond to the measured results of SNO.

35

Chapter 3

Sudbury Neutrino Observatory

The data used in the analysis presented in this thesis is from the Sudbury Neutrino

Observatory (SNO), a large water-Cherenkov neutrino detector. SNO is unique in

its use of heavy water, D2O, as its neutrino target, which gives it the ability to

separately measure the flux of νe and the flux of νx (all active flavors of neutrinos)

from the Sun. This benefit to using heavy water was first recognized by Chen [41],

who was instrumental in the creation of SNO. This advantage over other detectors

allowed it to definitively resolve the solar neutrino problem in 2001 [42, 43], showing

that the solar models predicted the correct number of neutrinos, but that their flavor

had changed by the time they reached the detector.

3.1 Detector

SNO looks for neutrino interactions in water. It contains both a region of heavy

water, the primary target, and two regions of light water (H2O). In all three of these

regions, particles that are charged and moving faster than the local speed of light

in water are detected, via light detectors sensing their Cherenkov radiation. This

radiation is conceptually similar to a sonic boom; it is an effect caused by a charged

particle affecting the medium it is travelling through faster than it can respond. This

leads to electromagnetic constructive intereference and light emission in a cone in the

direction of propagation of the particle. The emitted light is strongest in the UV

36

Figure 3-1: Diagram of SNO detector’s location in the Creighton mine. Taken from
the SNO image library.

portion of the spectrum, but extends to lower frequencies. The angle of the cone

is a property of the medium, for D2O it is approximately 42◦. Electrons in water

decelerate rapidly, giving a narrow circle of photons when detected.

The detector is located in the Creighton Mine, owned by Vale Inco Ltd., near

Sudbury, Ontario. See Figure 3-1 for a diagram of the mine area. This is an active

nickel mine, with the detector at a depth of 2092 meters (5890 ± 94 meters water

equivalent), making it one of the deepest in the world. This depth is primarily needed

to shield the detector from incoming cosmic ray muons. The overburden reduces the

rate to approximately three per hour, compared to the surface rate for a detector

this size of order 106 muons/s. This shielding is aided by the flat overburden of

rock, making all paths to the detector have at least 2092 meters of rock as shielding.

In the mine there is a great deal of rock dust and other particulates, so the SNO

collaboration maintains a clean room environment near the detector [44].

Figure 3-2 is a diagram of the SNO detector showing its major parts (except the

NCDs). The basic design is a spherical volume of 99.92 % isotopically pure D2O

surrounded by photomultiplier tubes (PMTs) that look for light signals from the

D2O region. The detector geometry is approximately spherical, arranged in a set

of spherical shell layers. The 1000 tonnes of heavy water is the innermost, housed

37

in a 12 meter diameter vessel of UV-transparent acrylic, appropriately named the

acrylic vessel (AV). The AV is nearly spherical, except for a hole in the top that

allows access to the D2O, with a cylindrical section leading from this hole to the

top of the detector (collectively called the “neck”). This is surround by a layer of

light water, approximately 1700 tonnes, that acts to shield the AV and heavy water

from external radiation, as well as physically support the AV. This is housed in

the photomultiplier support structure (PSUP), an 18 meter diameter stainless steel

geodesic sphere structure which containts the PMTs. There are 9456 PMTs looking

“inward”, toward the heavy water, that act as the principle signal detectors. Each

PMT has a light collector, which increases the total light collection coverage to 59%.

In addition, there are 91 PMTs facing “outward”, away from the heavy water, which

look in the much larger external H2O region (approximately 5700 tonnes, physically

separated from and not allowed to contact the inner light water by the PSUP) to look

for cosmic ray muons emitting Cherenkov radiation to aid in vetoing these muons. In

addition, this large volume of water acts to shield the detector from radiation from

the rock walls surrounding the detector cavity, particularly neutrons and energetic

photons from radioactive decays. Many details about the design and construction of

SNO can be found in [44], from which we draw much of the following discussion.

Water

To preserve the proper functioning of the detector, both the light and heavy water

must be kept extremely clean. This is to both keep out radioactive contaminants

that give rise to backgrounds, particularly radon and its daughters, and to prevent

the buildup of any particulates or biological agents that can cloud the water. This is

accomplished with an elaborate filtration process for the each of the water streams,

which are never allowed to come in contact.

The light water is continuously drawn from the inner light water region and piped

to a utility room near the detector. There it goes through a several stage purification

process and is returned to the detector. The process begins with irradiation with 185

nm UV light to kill any bacteria and break up organic compounds, then a set of ion

38

Figure 3-2: Diagram of the SNO detector. Note that the NCDs are not pictured.
Taken from the SNO image library, appeared in [44]

exchange columns to removed dissolved ions. This is followed by a degassing unit

designed to remove O2 and radon, but that removes all dissolved gasses. The water is

then regassed with ultrapure N2, to avoid electrical problems from gas diffusing out

of the PMTs. The water is then filtered through a set of 0.1 µm filters to remove

particulates, followed by exposure to 254 nm UV light to kill any bacteria introduced

by the cleaning process. The water is then run through a battery of purity and clarity

tests before finally being chilled to 10◦C and returned to the detector.

The light water in the outer region gets less purification treatment, as it is inher-

ently dirtier by virtue of being in contact with the walls of the cavity and the various

cables and supports associated with the external part of the PSUP. It is, however,

periodically purified using a similar system. In addition, it is kept from coming in

contact with the cavity walls by a plastic liner.

The D2O has a much more intensive purification process. This process includes

39

several stages of reverse osmosis filtration, several ultrafiltration units, and a degassing

unit. Here there is no need to regas the water. The water is then sent through a

stringent set of assays, to test the density, conductivity, pH, clarity and levels of

various contaminants. The design goal was to have sufficiently low levels of uranium

and thorium decay chain elements to assure that less than 10% of neutral current

events (described below) are from backgrounds. This results in limits of 3×10−15 g/g

of thorium and 4.5× 10−14 g/g uranium. In the NCD phase (see Section 3.2), these

levels were measured via the assays plus in-situ measurements to be (0.58± 0.35)×

10−15 g/g thorium and (5.10± 1.80)× 10−15 g/g urainum [45], well below the target

levels.

Acrylic Vessel

The AV houses the heavy water. It is made of a UV transparent acrylic, except for

the 1.46 m diameter “chimney” or “neck” region, which is UV opaque. It is spherical

in shape and 12 m across, with the only access to the water volume through the neck.

It consists of 122 acrylic panels joined together with a special adhesive; this design

allowed it to be assembled in the cavity. Most of the panels are 5.6 cm thick, except

along the equator of the sphere, where a set of 11.4 cm thick “belly” plates were used

to attach ropes to support the weight of the sphere. The acrylic used was chosen for

its optical properties, long term stability and low radioactive contaminant levels.

PMTs and PSUP

The PMTs are the primary detector elements for SNO (in the NCD phase are com-

plimented by the NCDs). The glass used was custom designed and handblown for

SNO (and LSND) to be extremely radiopure. The PMTs themselves were Hama-

matsu R1408’s with a waterproof enclosure. These were chosen for their excellent

electronic characteristics, with a timing resolution of 1.7 ns and a mean noise rate

of 500 Hz. As mentioned, each PMT has a light concentrator, increasing the pho-

tocathode coverage to about 59%. To protect the PMTs from the Earth’s magnetic

field, 14 field-compensation coils are embedded in the cavity walls, cancelling out the

40

horizontal components.

These PMTs (and associated hardware such as readout cables) are housed in the

PMT support structure (PSUP). It is a 889-cm radius geodesic sphere of stainless

steel, with a hole in the top to allow the chimney to pass through. It is designed

to be impermeable to water, to separate the inner H2O volume from the outer H2O

volume. The PSUP contains a housing for each PMT to support it structurally,

stabilize the direction it is pointing and separate its photosensitive face, which must

face the D2O, from its electronics end, which is attached to a cable in the outer H2O.

This separation is both in terms of keeping the water separate and keeping light from

one region getting in to the other.

Electronics and DAQ

The electronic pulses from each PMTs are sent through a separate cable to a set of

electronics outside of the detector making up the Data Acquisition System (DAQ).

The DAQ serves primarily to decide whether an event is sufficiently physics-like to

record, and to store that event. The primary triggers to record an event occurs when

16 PMTs fire within 100 ns (the transit time for light reflecting off of the AV) and

when the total charge collection in all PMTs is greater than 150 photoelectrons. A

secondary trigger occurs at 5 Hz to allow for accurate measurement of backgrounds,

both physical and instrumental. All triggers together led to a trigger rate between

15 and 20 Hz. Which trigger caused the event is recorded.

Accurate timing is critically important at SNO. The signal from the GPS system

is used for primary, absolute timing. This serves as a 10 MHz clock, which is fed from

the surface receiver to the detector. A secondary 50 MHz clock, located underground

near the detector, is used for relative timing between events.

3.1.1 Neutrino Interactions

As SNO is only sensitive to energetic charged particles and neutrons, to detect a

neutrino one or the other must be generated. Since only the D2O region is used for

41

neutrino detection, we look at neutrino interactions with heavy water. Given the

restriction of the generation of particles with high velocity, only three interaction

routes with heavy water are available.

Elastic scattering

The first of these, elastic scattering (ES), is also available in light water, and is the

only detection method available to most water Cherenkov detectors. It is the elastic

scattering of a neutrino off of an electron

e+ νx → e+ νx (3.1)

where x = e, µ or τ is the flavor of the neutrino. This imparts energy to the electron,

pushing it above the Cherenkov threshold. While all three neutrino flavors participate

in this reaction, it is dominated by νe. All three neutrinos have a Feynman diagram

involving the Z for this, but only νe has an additional diagram involving the W (the

diagrams are shown in Figure 3-3). This results in approximately 6 times a much

cross-section for νe at a neutrino energy of a few MeV, the region of interest for

water Cherenkov solar detectors. SNO separates its simulations in to an electron ES

component (ES) and a muon and tau component (ESµτ) to simplify dealing with this

distinction.

The scattered electron is detected. For an incident neutrino within SNO’s en-

ergy range, the scattering cross section is very strongly peaked in the direction of

the incident neutrino. This behavior is derived in [46], with results for a scattering

imparting an electron with 9 MeV shown in Figure 3-4. This varies a bit with energy,

but even at the lowest energy in SNO’s analysis window (6 MeV), 90% of electrons

are scattered within 13◦. This strong direction correlation is very useful in identifying

ES events, see section 4.3.

42

ν
e

ν
e

W

e

e

ν ν

Z

x x

e e

Figure 3-3: The Feynman diagrams for the elastic scattering interaction. x = e, µ, τ
is a neutrino of any flavor. Time is increasing to the right.

Charged Current

The second process available is the charged current (CC) reaction. This involves a νe

interacting with a deuteron to break it apart via

d+ νe → p+ p+ e− (3.2)

This only has a W-exchange diagram and is only available for νe, as the corresponding

processes for νµ or ντ would involve a µ or a τ in the final state and the neutrinos

from the Sun are not sufficiently energetic for this. This is extremely important, as it

gives a pure measurement of the νe flux. In [42], the CC and ES measurements were

compared as evidence for non-νe neutrinos in the solar neutrino flux.

The electron is detected via its Cherenkov radiation, but the protons are too

massive to gain enough energy to radiate. Working out the cross section here we find

that the direction of electron emission is weakly anti-correlated with the neutrino

direction, but the energy is strongly correlated [47]. Breaking up the deuteron takes

energy, with the final state having 1.442 MeV less kinetic energy than the initial state

(giving a lower limit on the neutrino energy that can initiate this reaction).

43

Figure 3-4: Scattering probability versus angle between incident neutrino and scat-
tered electron, for the ES process. Vertical axis is in arbitrary units and P (µ) is
the differential probability per unit of cos(θ). The solid line is relevant for SNO,
and shows that the electron is very likely to be scattered within a few degrees of the
neutrino direction. Tmin is the energy of the scattered electron. From [46].

Neutral Current

The third process available is the neutral current (NC) reaction. This also involves a

ν breaking up the deuteron, but with a different final state

d+ νx → p+ n+ νx (3.3)

This only has a Z-exchange diagram and is insensitive to the neutrino flavor, that

is to say it occurs equally for all flavors. The final state here is more massive than

in CC, having 2.224 MeV less kinetic energy than the initial state, again setting a

minimum on the energy of the incident neutrino.

None of these particles give off Cherenkov radiation. Instead, the neutron ther-

malizes in the detector and is captured, and its capture gives off a detectable signal.

Unfortunately, this thermalization process makes it impossible to tell the origin of

the neutron, so any neturon that makes it in to the detector will appear to be part of

the signal. In addition, any photon with sufficient energy can also cause this process,

and several photons in the uranium and thorium decay chains have enough energy.

See section 4.6 for more details.

44

3.2 Three phases

The signal given off by the neutron has been detected in three distinct ways at SNO.

These methods involve reconfiguring the detector, a major undertaking, and divide

the experiment in to “phases”. In each of these phases the systematics and back-

grounds of the detector were remeasured, to break correlations between phases and

detect any changes due to the reconfiguration.

3.2.1 D2O

In the first phase, the “D2O phase”, lasted from November 1999 to May 2001. In this

phase, the D2O itself was used to detect the neutron, which captured on a deuterium

to form tritium. The capture reaction has a cross section of 0.52 millibarns and

results in a single 6.25 MeV photon emitted from the excited final-state nucleus. This

photon Compton scatters in the water, creating electrons that Cherenkov radiate and

are detected.1

3.2.2 Salt

The second phase ran from July 2001 to September 2003. It was called the “salt

phase” as two tons of NaCl were added to the heavy water. Chlorine has a much

larger capture cross-section for neutrons of 0.44 barns, resulting in a much higher

percentage of captured neutrons than in the previous phase. The result is a chlorine

nucleus in an excited state that then gives off a cascade of photons with total energy

8.6 MeV, detected as in the previous phase.

3.2.3 NCD

The third phase ran from November 27, 2004 to December 28, 2006 with a livetime

of 385.17 days. In this phase, the “NCD phase”, the salt was removed from the

heavy water and a set of neutron detectors were added. These “neutral current

1The subsequent tritium beta decay has a maximum energy of 18.6 keV, too low for the electron
to Cherenkov radiate.

45

Figure 3-5: Diagram of the NCD array. The circular boundary is the equator of the
AV. The grey circles mark 3He strings, the white circles mark 4He strings. Note that
the markers indicating NCDs are not to scale. From [45].

detectors” (NCDs) were 3He proportional counters (nickel tubes with an interal gas

mixture of 85% 3He and 15% CF4) inserted directly in to the D2O. These acted as an

independent measure of the NC event rate, as both their detection mechanism and

their electronics were distinct from the PMTs. The previous phases relied on light

signals, so this serves as a truly indepenent measure and helps reduce correlations

between phases. Note, however, that the capture of neutrons on deuterium (as in

the first phase) occurs as well and forms part of the signal. The NCD and PMT

measurements of NC act as cross-checks on each other.

As mentioned, the NCDs are directly in the heavy water. On Figure 3-2, they

would appear as a set of vertical tubes between 9 and 11 meters long arranged in an

array in the inner sphere of the detector. The array, as projected in to the equatorial

plane of the AV, is shown in Figure 3-5. There are 36 3He NCD strings2, each an

independent proportional counter operating via neutron capture

3He + n→ p+ 3H (3.4)

2There are also four NCD strings with 4He, insensitive to neutrons, used for calibrations

46

Figure 3-6: Cross section of an NCD, showing both a neutron interaction and an
alpha particle. (a) shows the NCD from the side, (b) from above. From [48].

with the proton and the triton ionizing the gas, which is then amplified by the electric

field in the tube. This signal is then read off the central wire, as per normal for a

proportional counter. A cross section diagram is shown in Figure 3-6. This signal is

then recorded by two separate sets of electronics, one of which measures the integrated

signal and thus the energy of the event (the shaper-ADC), while the other records

the entire signal pulse (the Multiplexer or MUX-scope). The energy spectrum seen

in the ADC due to neutron capture is shown in Figure 3-8, note that it is peaked at

764 keV. A typical neutron MUX pulse is shown in Figure 3-7.

Radioactive decays in the tube also ionize the gas, giving rise to a complicated

background. These are dominated by alpha decays, which are peaked at much higher

energy (several MeV), but occur within the nickel body of the NCD. This leads to

much lower measured ionization energies, as they deposit much of their energy in the

nickel walls before they get to the gas. The net result is a relatively flat spectrum

in energy and a different pulse shape. To improve signal to noise, SNO created an

elaborate analysis to separate out the neutrons from backgrounds using this pulse

shape difference, called the Pulse Shape Analysis (PSA). It is described in detail in

[49], with the net result of extracting the number of neutrons detected by the NCDs.

Details about how this is integrated in to this analysis are in Section 8.3.

47

Figure 3-7: Sample pulse from an NCD. This pulse is a fairly typical pulse for a
neutron capture. From [48].

Figure 3-8: ADC energy spectrum for the NCDs, from neutron capture. The main
peak at 764 keV is from both the proton and the triton depositing all of their energy
as ionization. The long tail is from space charge effects and the proton or triton being
absorbed by the NCD wall before it can deposit all of its energy. From [48], which
also has more details.

48

Chapter 4

SNO Analysis

4.1 Overview

The goal of the SNO analysis is to convert the raw data (for the NCD phase de-

scribed here, this includes the light in the detector and the signal in the NCDs) into

a measurement of both the total flux of neutrinos from the sun and the proportion of

that flux that are νe. This is a many stage process, even discounting the work done

in designing and running the detector. The major parts of SNO’s analysis chain are

summarized in Figure 4-1. Each involves a team scientists and many have multiple

thesis projects as part of their development. As such, only a brief summary of most

of them are possible in this thesis, except the “Sigex”, “PDF Construction” and part

of the “Systematics” sections, which are the focus of the analysis presented here.

Run Selection

The highest level in the chart is the “Run Selection”. SNO’s data taking is separated

temporally in to runs, data taking periods generally between half an hour and a day

long. This is done both for practical reasons such as operator shift changes, calibra-

tion measurements in the detector and activity in the nickel mine, and for analysis

purposes of breaking the data in to smaller, more managable chunks over which the

detector parameters are stable. The decision is then made about which runs to keep

in the final data set for analysis. Those runs during or close in time to a calibra-

49

 Run Selection

 Monte Carlo Data

 MC Corrections Instrumental Cuts

 Efficiency Corrections

 PDF Construction

 Sigex

 High Level Cuts

CC/ES Spectrum
NC flux

 Data Corrections

 High Level Cuts

 Burst Removal Systematics

Figure 4-1: A graph showing the major steps in the overall SNO analysis chain. This
image was taken from [49].

tion, which often involved adding radioactive materials to the D2O, were removed,

as were those that showed any form of hardware problems, those corresponding to

detector maintenance and those with mine-activity related disruptions (such as power

failures). After selection, 1834 runs with a total livetime of 385.17 days, divided in

to 176.59 days and 208.58 nights, were in the final data set for the NCD phase. A

detailed description of the run selection process can be found in [50].

Data

For each run, the data is extracted from the raw PMT and NCD signals. This

is the “Data” section in the chart. The NCD signals are processed through the

PSA analysis (see Section 8.3) and the PMT signals are analyzed by a process called

reconstruction. This looks at the spatial and timing distributions of the light from

the PMTs to determine the physical event that took place. It is described in detail

50

in [50, 51, 45]. We will summarize here.

The reconstruction generates three pieces of information about an event: the

position, direction of travel and kinetic energy of the Cherenkov radiating electron.

The position and direction reconstruction process starts by computing the PMT hit

characteristics of Cherenkov light from an electron moving directly toward the hit

region from a grid of points in the detector volume. Since electrons stop quickly

in the detector (picoseconds), the electron’s path is approximated as a point. The

results most resembling the actual hit pattern (in both time and space) are then used

as starting points for a fit, maximizing the same likelihood used to determine these

best starting points. The best result out of these fits is then the reconstructed x, y,

z, ux, uy and uz (where the velocity ~u is normalized to 1, to only preserve direction

information).

The kinetic energy reconstruction behaves similarly. It assumes the electron was

at its reconstructed ~x with direction ~u. The number of PMT hits (corresponding to

the number of detected photons) is computed via a MC taking account of the optical

properties of the detector for a given electron kinetic energy E. This E is varied and

fit for the best agreement with the measured number of PMT hits.

This gives a total set of variables for the data event of x, y, z, ux, uy, uz and E.

Monte Carlo

Each run has a corresponding Monte Carlo run, generated using the simulation pack-

age SNOMAN. SNOMAN derives from EGS4 for electron and photon propagation,

MCNP for neutron propagation and GEANT for muon physics, and contains code

custom written by the SNO collaboration. In addition, the package was tested and

tuned by comparing it to callibration measurements throughout the SNO project [44].

The MC is given the run times and the detector parameters and simulates the de-

tector under those conditions, resulting in a prediction of what results we expect to

see. This is accomplished by simulating the light signal expected from an interaction

and running the reconstruction algorithm on this simulated light signal. This gives a

great deal of additional information about each event - the parameters used to gen-

51

erate it. We know the underlying primary process (in fact, we separate CC, ES, etc

into separate MC event sets for each run), the energy of the incident neutrino (Eν),

and the true value for the event location, energy deposited and direction (denoted by

xtrue, Etrue, etc.). Each of these is treated as an additional variable present for each

MC event, giving the set of variables of x, y, z, E, ux, uy, uz, xtrue, ytrue, ztrue, Etrue,

ux,true, uy,true, uz,true, Eν , plus several variables not used in the analysis.

While most aspects of the detector are modeled as well as possible, certain as-

sumptions about the neutrino flux are made. The MC assumes the neutrino flux from

the Sun in [16] and the 8B neutrino spectrum in [52] with no oscillations or other fla-

vor changing effects. That is to say that the neutrinos that arrive at the detector

are assumed to be 100% νe with an undistorted 8B beta-decay energy spectrum. The

exception to this is the separate simulation for ESµτ , which assumes the undistorted

8B energy spectrum with 100% νµ or ντ (SNO is unable to distinguish between these

two weak eigenstates).

MC Corrections

These are adjustments made to the MC reconstructed energy E to correct for a known

error in the Monte Carlo. They are described in [53] and are quite small.

Instrumental Cuts

For each event, an automated system evaluates its temporal position in a run, the state

of the detector, its relation to other events and its spatial and temporal distributions

of PMT hits. These are used to determine if it matches the profile for certain types

of events and the results are stored to the “DAMN” bits. This cut rejects any event

with certain bits set to true. The full set is provided in [49]. These cuts reject events

too close in time to a muon passing through the system (to avoid followers) or the

start or end of a run, events in the neck region, events with significant light in the

outer water region (indicating a muon in that region), events with a PMT generating

light or otherwise malfunctioning, events with electronic crosstalk between PMTs,

and events too close in time to each other (indicating reflections or instrumental

52

effect after-pulses).

High Level Cuts

The same set of high level cuts are applied to both MC and data. These are cuts to

further reject instrumental events and backgrounds. For the NCD phase data, this

consists of two cuts. The first is on the “In Time Ratio” or ITR, which measures

the fraction of PMT events that occur within a certain time of each other, related

to the time for light to cross the detector, for a given event. We keep events with

ITR > 0.55. The second is on β14, a measure of the spatial isotropy of the PMT hits

for an event. This involves a Legendre polynomial fit to the distribution of hit PMTs

on the sphere of PMTs, with β14 related to the coefficients of the first and fourth

terms in the polynomial. This is described in more detail in [51, 53]. We keep events

with −0.12 < β14 < 0.95.

Efficiency Corrections

A few very small corrections are needed to make sure that the MC accurately predicts

the correct number of events for each flux. For the NCD phase, there are eight of

these, which give corrections to the expected number of events and correspond to

better measurements of quantities made after the MC had been designed. These

corrections are already included in the predictions presented in this analysis. The

values for each type of correction are given in Table 4.1; the expected number of

events in the given flux is multiplied by the numbers in this table.

Data Corrections

Here the measured kinetic energy E is corrected for known temporal and spatial vari-

ations in the detector. One correction is for the total number of active PMTs slowly

changing as the experiment progresses and PMTs fail. This results in progressively

more light being lost, leading to underestimates of the energy. In addition, a small

vertical (z-direction) variation in the detector’s PMT efficiency is corrected for. These

are described in detail in [53].

53

Correction CC ES NC PMT NC NCD
Mean Orbital Radius 1.00000 1.00000 1.00101 1.00101
Deuteron density 1.01170 1.00000 1.00000 1.00000
Number of deuterons 1.00000 1.00000 0.99870 0.99870
Number of electrons 1.00000 1.01310 1.00000 1.00000
Cut acceptance 0.99170 0.99170 0.99170 0.86200
Livetime acceptance 0.98035 0.98035 0.98035 0.98035
Geometry Errors 1.01230 1.00730 1.00000 1.00000
Radiative correction 1.00000 1.00000 0.97656 0.97656
Total correction 0.9956869 0.9921400 0.9491510 0.8250158

Table 4.1: Values of efficiency corrections. The expected number of events in each
category is multiplied by the total correction, which is the product of the other
corrections.

PDF Construction

This is the process for turning the MC events in to an expected probability distribu-

tion to compare against the data. It is the topic of Section 8.1.

Burst Removal

Any event passing all other cuts but within 100 ms of another event is removed. This

removes a variety of delayed instrumental responses in the PMTs.

Systematics

The systematics are the systematic uncertainties in our measurement. These are

uncertainties that affect all the data points in the same manner, such as an offset

in the center of the detector, which would shift all events one direction. They are

measured by SNO’s calibrations and discussed in Section 4.7.

Sigex

Sigex is short for “Signal Extraction”. This is the process of using SNO’s processed

data and MC to determine the number of νe’s and νx’s detected, by determining the

amounts of the three principle fluxes CC, ES and NC. This is the subject of this

thesis; Chapter 8 deals most directly with it.

54

Figure 4-2: Results from the D2O phase. The three fluxes (CC, ES, NC) are shown
as color bands, the axes are the fluxes of νe and νµ,τ . Taken together, this shows that
the solar neutrino problem is solved by neutrinos changing flavor. Taken from [50].

CC/ES Spectrum, NC Flux

This is the output of the analysis: the energy spectrum and flux amount of each of

the principle fluxes, ES, CC and NC.

4.2 Previous analyses

This analysis is by no means the first one to look at SNO’s data. A number of analyses

are done with the data, but we will only highlight the “main” analyses here: those

looking to extract the principle signal fluxes (CC, ES and NC) and their Day/Night

differences (see Chapter 5).

The most critically important was the first analysis, the D2O phase results [54,

55, 50]. This definitively settled the solar neutrino problem discussed in Chapter 2 by

showing that the predicted flux of neutrinos from the sun was arriving at the detector,

but only a fraction of them were arriving as νe. Its final result is summarized in

Figure 4-2, showing the measured fluxes and the corresponding neutrino-flavor fluxes.

55

Figure 4-3: Measured total neutrino flux from the sun for the various phases of SNO.
“LETA I” and “LETA II” are two different signal extractions within LETA. Note the
large improvement in both systematic and statistical uncertainty. Taken from [51].

The second phase of SNO, the Salt phase, served to reinforce this result by de-

tecting the neutrons from the NC reaction via a different mechanism [56].

The first two phases of SNO were combined with a much improved analysis as

the “Low Energy Threshold Analysis” or LETA [51]. By very careful background

and calibration studies, they were able to lower SNO’s threshold in E from 6 MeV

to 3.5 MeV, resulting in greatly improved statistics, and significantly lower SNO’s

systematic uncertainties. The improvement in measuring the total neutrino flux from

the sun is shown in Figure 4-3.

The third phase of SNO, the NCD phase, served as yet another independent check

[57, 45]. For this phase, the neutrons from the NC were measured by a completely

independent system of detectors. In addition, this analysis was the first SNO analysis

to use the Markov Chain Monte Carlo (MCMC) method described in Chapter 7 and

used in the analysis presented in this thesis.

In addition, each phase of SNO did a separate analysis to look for the “Day/Night

effect”. This is the altering of the proportion of νe in the measured neutrino flux due

to the MSW effect on neutrinos passing through the Earth, described in Chapter 5.

Those neutrinos detected during the day have only passed through the atmosphere

56

and the small layer of rock above the detector; those detected at night have passed

through the bulk of the Earth, so this effect manifests as a difference in the solar

neutrino flux measured during the day versus that measured at night. This was

measured to be 0.070 ± 0.049 ± 0.013 for the D2O phase in [58] and 0.037 ± 0.040

for the Salt phase in [59]. It was included in LETA’s primary analysis in [51], with a

resulting value of 0.027± 0.043.

The analysis presented in this thesis is the Day/Night analysis for the NCD phase.

We take this measurement one step further, however, and incorporate the LETA

results to create a Day/Night measurement including all three phases of SNO.

4.3 Separation of Fluxes

In the NCD phase, we have PMT (light) signals from all three primary neutrino

interaction processes (ES, CC, NC), and a signal from the NCDs that only measures

NC. The ES signal is actually split in to two parts, the elastic scattering of electron

neutrinos (just labelled ES) and the elastic scattering of µ and τ neutrinos, labelled

ESµτ . This is due both to the two signals having slightly different distributions due

to the extra Feynman diagram (though this difference turned out to be too small to

observe) and for ease of computation later on, as described in Section 4.5. However,

for the purposes of this section, the two ES’s are indistinguishable and “ES” refers to

both.

For now, we focus on the PMT aspect as the NCDs are ultimately handled by

a separate analysis called PSA, as discussed in Section 8.3. We cannot separate the

signals on an event-by-event basis, due to the random nature of the processes - how

would we know that an individual electron event is from ES or CC, given that the

neutrinos enter the detector with a range of energies, and the processes themselves

are random? Instead, we separate them statistically.

From the reconstruction process, we have several pieces of information about each

event: its position in the detector (x, y and z), its energy (E), its direction of travel in

the detector (ux, uy, uz), its light-cone characteristics and the state of the detector at

57

the time. In this analysis, the latter two are used only to reject problematic events –

those resembling backgrounds or instrumental effects as described in the “High Level

Cuts” and “Instrumental Cuts” sections above. We can now look at how each of the

signals is expected to be distributed in each measured variable through the Monte

Carlo. However, we have a large number of variables, which will be problematic as we

are effectively looking to histogram our events. Thus, we need to look at the physics

of the system to find which variables or combinations of variables are actually useful

in distinguishing the fluxes from one another.

We start with the positions x, y and z. Since the detector is nearly spherical,

they carry mostly redundant information – rotation symmetry tells us that only the

distance from the center of the detector is important. This being the case, we can

reduce our number of variables by defining

ρ3 =

(√
x2 + y2 + z2

600 cm

)3

(4.1)

The normalizing distance 600 cm is chosen as it is the radius of the AV, i.e. the edge

of the D2O. The cube is taken so that bins of equal ρ3 will contain equal volumes.

For the direction of travel, again with a spherical detector we have no reason to

prefer one of our (arbitrary) axes. But here the symmetry of the detector is broken

by the neutrino flux itself - it is coming from the Sun, meaning the neutrinos are all

entering the detector from the same direction. Of course, this direction varies over

the course of the day and the year. So we define the variable

cos(θsun) = −
~Rsun · ~v
|~v|

(4.2)

where ~Rsun is a normalized vector in the direction of the sun. This measures what

actually matters - the direction of travel relative to the direction of the incident

neutrino, with the property cos(θsun) = 1 is a particle moving directly away from the

sun. We keep the polar angle and not the azimuthal angle as the physical interactions

are invariant under a rotation about the axis defined by the direction toward the sun.

58

6 8 10 12 14 16 18 20
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22 NC

CC

ES

ke

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.012

0.014

0.016

0.018

0.02

0.022

0.024

0.026

0.028
NC

CC

ES

r3

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35 NC

CC

ES

cstsun

Figure 4-4: Monte Carlo for the three signal fluxes, ES, CC and NC, are shown in
each of the variables used for analysis, E (labeled ke), ρ3 (labeled r3) and cos(θsun)
(labeled cstsun). The vertical scale is arbitrary.

We have now reduced down to three measured variables, a manageable number,

which are E, ρ3 and cos(θsun). We now look at the characteristics of each signal in

each of these variables to see what characteristics stand out. Figure 4-4 shows this

breakup from MC, which includes all known detector effects (in particular resolution

in the three variables). We see clearly that the ES signal is sharply peaked in cos(θsun),

while the CC shows a negative slope and the NC is flat. We also see that the NC

has a distinctive shape in both E, as it is the scattered energy of a monoenergetic

photon, and in ρ3. The reduction in flux at low ρ3 is a result of the high density

of NCDs there, which capture the majority of the neutrons, while the reduction at

high ρ3 comes from the long path that neutrons wander in the detector before being

absorbed interacting with the neutron-absorbing AV.

59

4.4 Signal Extraction

With the characteristics from the previous section, we should be able to separate

the fluxes. If only the signal fluxes were present, we would just vary the relative

proportion of each until we matched the histogrammed data. This is the basic idea

that we will follow, but there is much more going on in the physical system - there

are backgrounds and systematics that must be accounted for and the NCDs must

be taken in to account. In addition, we stand to gain in accuracy by moving to an

unbinned method, since we have a relatively small number of events.

The signal extraction method used for the analysis presented in this thesis is

described in detail in Chapter 8, but a few general points are needed to understand

the rest of this chapter. First, we seek to compare the data to the MC and adjust the

MC until it matches the data. We do this by taking the MC events, altering them

according to our systematics, doing the same for the backgrounds, and histogramming

the three variables previously described. We can vary the relative amounts of each

flux or background by varying how many events we take from each, though we do this

not by taking fewer events but by making each MC event count as more or less than

one event as it is added to the histogram. If we call our set of relative proportions

of fluxes and backgrounds, systematic values and total number of events ~α, we are

seeking to vary ~α to minimize the difference between the MC histogram and the data.

This will be made more precise in Chapter 8. The important thing for this chapter is

that we are rebuilding this MC histogram at each step, varying the number of events

in each flux and background and the values of the systematics within their measured

constraints.

We use the data from the NCD phase, both the PMT data and the NCD data.

However, the analysis is for all three phases of SNO simultaneously. To do this, we

need to include the results of the LETA analysis. While deciding how to implement

all three phases simultaneously, the SNO collaboration realised that the number of

correlated backgrounds and systematics between the NCD phase and LETA were

quite small, thanks to the presence of the NCDs and the recalibration done during

60

the NCD phase. Thus we can run the LETA and the NCD analysis separately, and

simply add the LETA results as a constraint term on the NCD results. How this was

accomplished will be explained in Section 8.2.

Similarly, we only discuss the PMT side of the analysis here. The NCD side is

almost entirely handled by the separate PSA analysis, described in Section 8.3.

That all said, we will describe how the flux separation is dealt with, and back-

grounds and systematics that go in to the analysis below.

4.5 Pee

So far, we have been saying that we vary the relative amounts of the four primary

fluxes (ES, ESµτ , CC, NC). This has been the case for every phase of SNO, but the

manner in which this is done has changed. In SNO’s first analysis, described in the

D2O phase paper [50], this was done in the most straightforward way possible. ES

and ESµτ were combined into a single flux and the overall number of events in each

flux were allowed to vary. This does not assume anything about the ratio of νe to

νµ,τ , but does assumes that the neutrino energy spectrum will be the same as the 8B

beta decay spectrum. This is equivalent to saying that the survival probability from

Chapter 2, Pee, which is the probability that a νe generated in the sun is still a νe

when it is detected, is a constant.

In Chapter 2 we showed that there are mechanisms for possible energy dependence

in Pee. One possible method for taking this in to account is by making no assumptions

about the energy spectrum of the incident neutrinos. This gives an analysis uncon-

strained in energy, meaning that the energy spectrum is either ignored or allowed to

vary. In [50], the former was presented as a secondary analysis, which did not use

the reconstructed energy information at all other than to remove events outside the

analysis window. In the NCD phase analysis in [57], the MC events were separated

in to energy bins (as we do in this analysis, see Section 8.1), and the height of each

bin was allowed to vary independently. This both makes use of the energy data and

gives more information about the energy spectrum, but is much more computationally

61

intense.

A third, less obvious option is to directly deal with Pee. This is the method SNO

has chosen both this 3-Phase analysis and the LETA analysis [51]. Here we balance

the two approaches: we known what the energy spectrum of 8B beta decay and how

the detector responds to νe’s and νµ,τ ’s and use that information, but we allow for

possible distortions in the energy spectrum. To allow for an energy dependent Pee,

we parameterize it as a polynomial in Eν , as

Pee = P0 + P1(Eν − 10) + P2(Eν − 10)2 (4.3)

where Eν is measured in MeV and the polynomial is centered around 10 MeV, the

most probable neutrino energy for our detector, to reduce correlations between the

Pi’s. We use a second order polynomial because we expect Pee to be slowly varying

over our region of interest and because we have insufficient data to extract information

about a cubic component. This latter point was discovered by testing on simulated

data.

When we build our MC histogram, each event is added with a weight. In a

traditional histogram, when we add an event, the total for the bin that event falls

into is incremented by 1. Instead, we increment by a different value, which we can

vary, called the weight (W). This gives us a simple method for altering the number

of events for each flux, by simply adjusting the relative W ’s. Since our MC assumes

100% νe for ES, NC and CC (and 100% νµ,τ for ESµτ), we adjust the number of

MC events for Pee 6= 1 by weighting events by Pee. As a simple example, if Pee = 1
3

(i.e. it is a constant), we would have 1
3

as many events in ES and CC and would

multiply their respective W ’s by 1
3
, while NC would be unaffected. Since we have a

Pee dependent on energy, we have a weight that varies with Eν and thus varies event

62

to event. If we call our overall scale B8 and ignore systematics, our weights are then

WCC = fCCB8 · Pee

WNC = fNCB8

WES = fESB8 · Pee

WESµτ = fESµτB8 · (1− Pee) (4.4)

where fx is the scaling factor to go from B8 to number of expected events for the

respective flux. This is a constant for each flux that is determined by the units we

choose for B8 and the number of MC events relative to the number of expected data

events.

Now we are no longer fitting the relative number of events in each flux, but rather

the Pee function directly. We can still extract the fluxes if we wish, we need merely

count the number of events in each flux at the best-fit values of Pee. One concern

is that this has removed the freedom of ES and CC to vary relative to each other.

This is partially true, though we have separated ES into ES and ESµτ to compensate

for this. Beyond this, we assume that our model gives the correct ratio of CC to ES

events. This is the assumption that we understand how neutrinos interact with our

detector, a necessary one.

4.6 Backgrounds

The SNO detector is extremely sensitive to radiation, by design. This means that

backgrounds must be carefully measured and controlled. SNO spent a great deal of

time and effort on this process, in experimental design, analysis optimization and in

calibration.

The backgrounds fell in to several major classes: direct backgrounds from electrons

and photons, instrumental backgrounds, cosmic-ray muons and neutrons from various

sources.

The direct backgrounds were associated with radioactive decays in the uranium

63

and thorium chains. Any β decay with sufficient energy can cause a signal, as can a

photon via Compton scattering. To combat this, extreme care was taken to reduce

the levels of these elements in all aspects of the detector (see [44] for the system

design, especially regarding purfication of the H2O and D2O, special order PMTs and

design of the AV, and [45] for the NCD-phase impurity measurements). Most of these

decays are relatively low energy; a cut removing events with energy E < 6 MeV is

used to remove them. In addition, the AV contained more impurities than the D2O.

The AV is at a radius of 600 cm, so events with radius greater than 550 cm were cut.

This served to reduce these backgrounds to negligible levels [45]. Finally, since the

8B neutrino flux is expected to have a maximum neutrino energy of approximately

15 MeV, any event with energy greater than 20 MeV was cut.

As mentioned before, a major motivation in building the detector deep under-

ground was the reduction in the cosmic ray muon rate. In addition, the experiment

looked for muons in either the light water or the heavy water and vetoed any event

within 20 seconds of one. This was to avoid both prompt effects from the heavy ion-

ization, which generates a great deal of light in the detector, and the delayed effects

of “muon followers”. Muon followers are neutrons produced by spallation from the

passing muon, which then thermalize in the detector and are captured. The length of

the cut window is to allow enough time for this process to occur, with an estimated

“leak through” of less than one event. There is some possibility that a muon could

interact in the rock surrounding the detector, producing neutrons that may wander in

to the detector but no corresponding light signal to veto, but this rate was calculated

to be so low as to be ignorable at 0.18 neutrons per year [45].

Though we are focusing on the neutrinos from the 8B beta decay in the solar

spectrum, neutrinos from the hep reaction are also present in the energy range we

measure. They have a different energy spectrum and a much lower flux, as shown in

Figure 2-3, so we treat them as a background. They interact identically to the main

fluxes in the detector via the three interactions (ES, CC, NC), giving rise to three

separate backgrounds called hepes, hepcc, and hepnc. The expected number of events

is very small, as shown in Table 4.2. The numbers in the table lack uncertainties as

64

they were not floated, and lack PMT-to-NCD conversions because they were not

included in the NCD analysis as only a fraction of an event was expected.

As mentioned before, any neutrons in the detector were indistinguishable from

NC signal. This makes them irreducible backgrounds, so they can’t be removed from

the data set. It was imperative, then, to understand how many such neutrons we

expect in the detector, both in the NCD and the PMT signals. These are, of course,

correlated - a neutron background that affects one affects the other, though not

necessarily equally. Since the NCDs are near the center of the D2O volume, neutrons

coming from outside the detector have less of an effect on them. However, they are

more sensitive, so more events are expected in the NCDs in general. From Monte

Carlo simulations, the ratio of NCD events to PMT events was computed for each

type of background (described below), with conversion factors appearing in Table 4.2.

Each background has its own Monte Carlo, giving expected distributions, which was

treated identically to the principle fluxes CC, ES, ESµτ and NC.

One prominent source of neutrons was photodisintigration of deuterium. As men-

tioned before, any photon with more than 2.2 MeV of energy can break up the

deuteron, creating a neutron. The dominant source of these photons in SNO is the

decay of 214Bi in the 238U chain and 208Tl in the thorium chain. While great care was

taken to purify the D2O, some of these elements remained. This is the background

“d2opd” (D2O photodisintigration). The material of the NCDs and the cables con-

necting them to the external electronics both contained these elements as well (the

backgrounds “ncdpd” and “cab”, which were combined in to one background), as did

the AV (part of the “ex” background). In addition, the NCDs contained two “hot

spots”, places where some contamination was introduced during the installation pro-

cess. These two hotspot backgrounds are “k2pd” and “k5pd”, named for the NCDs

that they appear on.

An additional source of neutrons was from the (α, n) reaction. Alpha particles

from polonium decays in the U and Th decay chains can induce this background by

interacting with other nuclei in the detector, in particular deuterium and oxygen in

the heavy water and carbon and oxygen in the AV. These were found to be negligible

65

Background NCD-to-PMT Conversion factor NCD Events
ex 0.5037 40.9± 20.6
d2opd 0.2677 31.0± 4.7
ncdpd 0.1667 27.6± 11.0
k2pd 0.2854 32.8± 5.3
k5pd 0.2650 45.5± 8.0
cab 0.1407 8.0± 5.2
atmos 1.8134 13.6± 2.7

Hep flux NCD-to-PMT Conversion PMT Events
hepcc N/A 31.291
hepes N/A 1.938
hepnc N/A 0.986

Table 4.2: Number of events for each neutron background, with number of expected
events in the NCDs given. Number of events in the PMTs is computed by multiplying
the number in the NCDs by the conversion factor, so that the number of events in
the PMTs and NCDs are 100% correlated.

for the heavy water and NCDs [45]. The rate from the AV was determined by directly

counting α rates on the surface of the AV both before and after the NCD phase, and

these were included with the AV’s photodisintigration rates to create the “externals”

or “ex” background.

Neutrinos from sources other than the Sun can also cause the NC reaction. The

only significant contribution is from atmospheric neutrinos, from cosmic ray events

in the upper atmosphere. This is the “atmospheric” or “atmos” background.

From a combination of measurements and Monte Carlo studies, summarized in

[60], an expected number of events for each background was computed. These are

shown in Table 4.2. The conversion factor between the PMTs and the NCDs is

assumed to be fixed.

4.7 Systematics

SNO relies heavily on its Monte Carlo. While this simulation of the detector is very

detailed and accurate, it is not perfect. If any parameter of the detector model is

off, this can introduce a systematic error - as an example, if the PMT response is

mismodeled slightly, this could result in a systematic mis-measurement of particle

66

Source Use

Electronic pulser Sends pulses to PMT electronics. Calibrates
timing and charge characteristics

Laserball and LED sources Light sources controllable in frequency, inten-
sity, direction and timing. Calibrates PMT re-
sponse to light and optical properties of detec-
tor.

Contained radioactive
sources: 16N, 252Cf, 8Li,
Th, U

Source inside containers placed in D2O. Cali-
brates detector reponse to photons, neutrons
and energetic electrons.

Diffuse radioactive sources:
Rn, 24Na

Radioactive sources mixed in to D2O and re-
moved by water purification system. Calibrates
as previous, but over longer time period and
over entire detector volume.

3H(p,γ)3He accelerator source Accelerator, creates high energy photons. Cal-
ibrates detector response to high energy pho-
tons.

Tagged radioactive sources:
252Cf, 24Na, 228Th

Contained radioactive source with coincidince
counter to detect decays, allowing background-
free measurements. Calibrates detector photon
and neutron response.

Radioassays Measures contaimination levels in detector
components (water, AV, cables, etc)

Table 4.3: Table of calibration sources used in SNO. More detail is available in [44]

energy. Thus these systematics are taken as potential adjustments to the MC.

A great deal of time was spent doing a variety of calibrations at SNO, setting

limits on as many of these systematics as possible. Many different calibrations using

a variety of sources were performed, as described in [45, 44]. A brief summary is

given in Table 4.3. The limits set by these calibrations set constraints on the possible

values these systematics could take - we interpreted a measurement of 0 ± σ for a

systematic to mean that its possible values were a Gaussian distribution with mean

0 and width σ.

Most of these systematics are floated in the analysis within their constraints, in

order to get their uncertainty contributions correct. The full list of floated system-

atics in the analysis, except day-night aspects that are discussed in Chapter 5, is in

Table 4.4, and a description of each appears below. These descriptions and values

67

were agreed upon by the 3-Phase working group in SNO and this list appears in [49].

Since the MC generation proccess is exceedingly computationally expensive, in-

stead of re-running the MC for each potential adjustment the effects are applied to the

resulting MC events. This actually aligns well with how the systematics are measured

- in general, the event variables (energy, position, etc) are measured and compared

to the MC or to known quantities, rather than directly measuring the input MC

parameters (water properties, physics of the PMTs, etc). Thus we characterize our

systematics as functions that we apply to the MC events to make their distribution

agree with the data events. We write them in terms of how they adjust the parame-

ters, which we then sum over for the final result. As an example, suppose energy had

two systematics, which give ∆E1 and ∆E2. Then we would take our “new”, adjusted

MC energy to be Enew = E + ∆E1 + ∆E2.

Energy

First we look at those systematics affecting the reconstructed energy E. These can

have a large impact on the results – all three primary fluxes have most of their events

at the lowest energies in the analysis window, so changing the lower boundary can

alter the number of included events significantly. The adjustments we allow are the

energy scale, the resolution and a non-linearity term. The scale and resolution were

measured in [61] and the non-linearity was measured in [62].

Energy Scale

The energy scale is the simplest, as it adjusts the energy by

∆E = (aE0,c + aE0)E (4.5)

where the two terms are the part that is correlated between the three phases of SNO,

aE0,c, and the part specific to the NCD phase, aE0 ; the E is the reconstructed energy of

the MC event. As expected, this is effectively multiplying the energy by a constant.

68

Energy Resolution

The energy resolution is a bit more complicated. This is the resolution of the detector,

and it relies on a variable present in the MC that isn’t available in the data: the true

energy of the interaction (Etrue). This is the energy that the charged particle actually

has, as opposed to that measured via reconstruction. The width of the distribution

of the difference between this value and the reconstructed energy is the detector’s

energy resolution. To broaden or narrow this resolution, we adjust the energy by

∆E = bE0 (E − Etrue) (4.6)

this has the property that when bE0 = −1, Enew = E, that is our energy measure-

ment is perfect. In the systematics table, two values appear for this number, bE0 (e−)

and bE0 (n). These are the values of resolution applied to electron events (ES, CC)

and neutron events (NC, many backgrounds). These come from physically distinct

processes, as the neutrons are actually measured via an emitted photon that then

Compton scatters electrons in the D2O. In [61], the conversion from the measured

photon scattering (NC-like behavior) to monoenergetic electrons (ES and CC-like

behavior) finds that the difference between calibration data and MC for the energy

resolution is narrower for neutrons by a factor of 1.36. The resolution is a property of

the detector, so changes affect neutrons and electrons simultaneously. Thus the two

bE0 ’s are 100% correlated and are varied as one parameter in the analysis.

Energy Nonlinearity

The posibility of a non-linearity in the detector’s energy response is handled by the

energy nonlinearity systematic, cE0 . This is implemented as

∆E = E

(
cE0

(E − 5.05)

(19.0− 5.05)

)
(4.7)

where the constants come from from the most probable (5.05 MeV) and highest (19.0

MeV) energies in the calibration and are effectively a normalization.

69

Position

Next we look at the position systematics. Here we treat x, y and z separately and

recombine them into ρ3 later. This is done because there are a few known vertical

variations in the detector, corresponding to the z direction.

Position Offset

The simplest is the offset. In each direction, we have a potential offset

∆x = ax0 (4.8)

∆y = ay0 (4.9)

∆z = az0 (4.10)

The measurement of these values was described in [63].

Position Scale

Next is the position scale. This uses different values for z v. x and y, and is applied

as

∆x = ax,y,z1 x (4.11)

∆y = ax,y,z1 y (4.12)

∆z = (ax,y,z1 + az1)z (4.13)

so that there is a scale correlated to all three directions, effectively a radial scale, and

a z-specific component. These were described in [64].

Position Resolution

The position resolutions are more complicated. They are conceptually the same as

the energy resolution, but they are known to vary vertically in the detector. This

70

leads to a z-dependent resolution, as if the b0 were a function of z. This is applied as

∆x = (bxy0 + bxy1 z + bxy2 z
2)(x− xtrue) (4.14)

∆y = (bxy0 + bxy1 z + bxy2 z
2)(y − ytrue) (4.15)

∆z = (bz0 + bz1z)(z − ztrue) (4.16)

An extra complication is that these parameters are correlated. Their measured values

do not have standard uncertainties, instead the constraints appear as a covariance ma-

trix Σ. Just as a standard uncertainty describes a Gaussian probability distribution

for a parameter, this describes a mulit-dimensional Gaussian for a set of parameters

~β, with central values ~̄β

p(~β) =
1

(2π)m/2|Σ|1/2
exp

(
−1

2
(~β − ~̄β)TΣ−1(~β − ~̄β)

)
(4.17)

One matrix describes bxy0 , bxy1 and bxy2 , it is

Σxy =


0.000818124 −2.24984× 10−7 −4.19131× 10−9

−2.24984× 10−7 3.66098× 10−9 3.71423× 10−12

−4.19131× 10−9 3.71423× 10−12 3.92118× 10−14

 (4.18)

Another describes bz0 and bz1, it is

Σz =

 0.00078696 3.47188× 10−7

3.47188× 10−7 6.80761× 10−9

 (4.19)

These parameters are described in [63].

cos(θsun) Resolution

The third variable, cos(θsun), only has a resolution parameter. In addition, this

resolution parameter is only applied to the ES signal, as it has no effect on NC and

very little on CC. It parameterization, however, can cause problems in those fluxes if

71

the resolution parameter is negative. The parameterization is

cos(θsun)new = 1 + (1 + aθ0)(cos(θsun)− 1) (4.20)

We have departed from our ∆x description here for clarity as to what this is doing.

For positive values of aθ0, it moves events further away from 1, about which the ES

signal is sharply peaked. This may cause points to “fall off the edge”, i.e. gain an

unphysical value of cos(θsun) < −1. To compensate for this, any event that does

this is instead given a random value from the uniform distribution [−1, 1]. If aθ0 is

negative, values are moved closer to 1. This parameterization is designed to avoid

the cos(θsun) > 1 issue, but can result in a region near −1 having no events; this is

not a problem for ES (there are very few or zero events there anyway), but would be

a large problem for CC or NC, hence why it is not applied to them. This parameter

was measured in [65].

Weighting Systematics

The remaining four systematics behave differently from the previous ones. They do

not change the value of one of the event variables; instead, they change the weight

given to an event. This is best thought of in the context of a histogram: when an

event is added to a histogram, the number of events in that bin usually increases by

one. Instead, we allow each event added to increase the number of events by a real

number amount W , the weight of that event. An example of this is a decrease in

efficiency of the detector, so that if only half of the events in the MC are actually in

the data, we would apply W = 0.5. These are applied as a product rather than a

sum, i.e. if an event had two weight systematics W1 and W2, it would be added to

the histogram with a weight W = 1 ·W1 ·W2. The weights discussed in Section 4.5

are applied as systematics of this form.

72

Energy Dependent Fiducial Volume

The first weight-affecting systematic is the energy dependent fiducial volume. This

treats the possibility that the detector’s position reconstruction depends on the energy

of the event. It only treats the net effect of possibly pushing events out of the fiducial

volume of the detector, changing the overall number of events. This is applied as

W = 1 + cR
3

0 (E − 5.05) (4.21)

the 5.05 is the same as in the energy nonlinearity. This was described in [64].

Neutron Detection Efficiencies

The next two weight affecting systematics are the neutron detection efficiencies. These

measure what proportion of generated neutrons are detected by the PMTs (εPMT)

and by the NCDs (εNCD). These are applied as

W = εx (4.22)

to the PMT NC events or the NCD NC events, as is appropriate. Note that in the

actual analysis described in Chapter 8, these are normalized to have central value 1

and the number of expected events in the relevant NC flux is adjusted appropriately.

This was done for computational reasons.

Winter Spectrum Uncertainty

The final weight affecting systematic is the uncertainty in the 8B energy spectrum.

This spectrum comes from [52], a paper by Winter, et al. that measured the spec-

trum of neutrinos from a terrestrial source of 8B, hence the title Winter Spectrum

Uncertainty for this parameter. This is applied as

W = 1 +
1

3
σ8B(0.018− 0.001999Eν − 8.8769 · 10−5E2

ν) (4.23)

73

Name Symbol Value
Correlated Energy Scale aE0,c 0.0000± 0.0041
Energy Scale aE0 0± 0.0081
Energy Resolution (neutron) bE0 (n) 0.0000± 0.0104
Energy Resolution (e−) bE0 (e−) 1.36 · b0(n)
Energy Nonlinearity cE0 0.0000± 0.0069
Position Offset X ax0 0.0± 4.0
Position Offset Y ax0 0.0± 4.0
Position Offset Z ax0 5.0± 4.0
Position Scale XYZ ax,y,z1 0.0000+0.0029

−0.0077

Position Scale Z addition az1 0.0000+0.0015
−0.0012

Position Resolution XY Constant bxy0 0.06546∗

Position Resolution XY Linear bxy1 −5.501 · 10−5 ∗

Position Resolution XY Quad bxy2 3.9 · 10−7 ∗

Position Resolution Z Constant bz0 0.07096∗∗

Position Resolution Z Linear bz1 1.155 · 10−4 ∗∗

cos(θsun) Resolution aθ0 0.00± 0.12

Energy Dependent Fiducial Volume cR
3

0 0.0000+0.0088
−0.0067

PMT NC Efficiency εPMT 0.046725± 0.0000603
NCD NC Efficiency εNCD 0.211± 0.005
Winter Spectrum Uncertainty σ8B 0± 1

* The position resolution XY systematics have a constraint matrix, see text
** The position resoultion Z systematics have a constraint matrix, see text

Table 4.4: List of systematics floated in the analysis. Does not include day/night
aspects. See text for explanation of how these are applied.

where Eν is the energy of the incident neutrino, rather than the measured energy.

74

Chapter 5

Day/Night

5.1 Introduction

The analysis described in Chapter 4 is the main analysis as described in [57] (which

was for the NCD phase only). That analysis assumes that Pee is a constant as a

function of time. Our analysis is an extension of this, called the Day/Night analysis,

that allows for Pee to be different during the night versus during the day.

As discussed in Section 2.5, the oscillations of neutrinos passing through the Earth

are expected to be modified by the MSW effect. This has the effect of altering the

expected rate of νe’s detected during the night, when ν’s must pass through the Earth

to reach the detector, relative to the rate detected during the day. It should have no

effect on the total rate of ν’s of all flavors reaching the detector. This is known as

the “Day/Night effect”, and measuring this is our goal.

We will be discussing the difference between day and night for many quantities.

As such, we define a few general terms we will see repeatedly. In general, the val-

ues measured in the main analysis of the data do not distinguish between day and

night; instead they measure an average value of sorts. If the value of a parameter is

independent of the counting time, for example most of the systematics, the day/night

averaged value is a simple average

ᾱ =
αN + αD

2
(5.1)

75

where α is our parameter, and the subscripts N and D indicate night and day re-

spectively. Following common practice, we measure the day v. night difference with

the asymmetry

Aα = 2
αN − αD
αN + αD

(5.2)

which is the difference divided by the average. Since we would like to compare against

the main analysis, we characterize our parameters by ᾱ and Aα rather than αD and

αN . We solve for the latter in terms of the former to get

αD = (1− A

2
)ᾱ

αN = (1 +
A

2
)ᾱ (5.3)

This is obviously a problem for a quantity with ᾱ = 0. In those cases (which include

many of the systematics), we avoid the problem by redefining our parameterization

so that we use the quantity 1 + α, which alters asymmetry to be

Aα = 2
αN − αD

2 + αN + αD
(5.4)

this changes our day and night values to

αD = ᾱ− ᾱA

2
− A

2

αN = ᾱ +
ᾱA

2
+
A

2
(5.5)

In those cases where values depend on the counting time, such as the number of

background events, we must modify our approach. As expained in [60], in those cases

we are really concerned about a day/night difference in the underlying rates

A = 2
RN −RD

RN +RD

(5.6)

76

but we actually measure the number of events, so our constraint is on

N = RNTN +RDTD (5.7)

where TD and TN are the amount of counting time (livetime) for the day and night,

respectively. We solve this to arrive at the expected rates for day and night

RD =
N

TD + TN
1+A/2
1−A/2

RN =
N

TN + TD
1−A/2
1+A/2

(5.8)

which we can convert to counts by simply multiplying by the appropriate livetime.

We then treat the day and night as nearly independent analyses, except that all of

the parameters are linked. We separate both the Monte Carlo (MC) and the data in

to its day and night components, and have a ~αD and a ~αN . We then fit the day data

to the day MC and the night data to the night MC, but we do not vary ~αD and a ~αN

directly. Instead, we vary the parameters ᾱ and A and compute the corresponding

αD and αN at each step in the fit. We then evaluate the log likelihood for the day

and night separately and sum them to arrive at ELL(~α), where our ~α is expanded to

now include ᾱ and A for each parameter. In this way, we are using all of our data in

our fit, rather than doing two smaller fits for day and night separately. This has the

large benefit of automatically taking into account correlations between day and night

values for the parameters.

5.2 Survival probability

The survival probability Pee described in Section 4.5 was the Pee neglecting MSW

effects in the Earth. The day/night signal is a measure of how this changes when

we do include these effects. We choose to parameterize the measurement as Pee,day

and APee , with A defined above. We expect both of these quantities to be energy

dependent, so we treat them as polynomials in neutrino energy Eν . We initially

77

chose a third order polynomial for Pee,day, but discovered that we could gain no

information about the E3
ν term, so we chose a simpler quadratic. For similar reasons

(lack of statistics but an expected energy dependence), we parameterize the A term

as a linear equation. This gives us five parameters

Pee,day = P0 + P1(Eν − 10) + P2(Eν − 10)2

APee = A0 + A1(Eν − 10) (5.9)

where Eν is in MeV, and the polynomials are centered at 10, the peak of our expected

neutrino signal, to reduce correlations between terms. Since we are choosing Pee,day

instead of P̄ as our parameter of choice, we re-solve the system of equations to find

Pee,day = P0 + P1(Eν − 10) + P2(Eν − 10)2

Pee,night = Pee,day
2 + A

2− A
(5.10)

This gives us the separate day and night Pee’s, which are applied to the separate

day and night MCs as described in Section 4.5. Note that we do not have an asym-

metry on the 8B flux, so that we are assuming that the NC rate is constant, as it is

unaffected by the Pee.

5.3 Systematics and Backgrounds

We are looking for a very small change in the neutrino flux for day versus night. If

the detector itself has day/night variations, these may mask or mimic this change.

For example, if one of the backgrounds has a day/night difference, we may see this

as an excess of counts during the day or night. Similarly for systematics, as they

can change the sensitivity of the detector or the analysis region, which is particularly

important for low energies. Also, long term variations in the detector will appear to

be day/night differences as the seasons and the length of the day change.

The main analysis for the NCD phase in [57] is mostly insensitive to these effects.

78

However, since they can creep in to the main analysis, the Monte Carlo already mod-

els most of the known differences. Anything that was missed in the MC, however,

needs to be accounted for. This was the goal of the Day/Night group within SNO,

which studied as many of the systematics and backgrounds as possible for unmod-

eled day/night differences. These differences fell in to two categories: diurnal and

directional.

Diurnal differences correspond to parameters that are truly different during the

day versus at night. For example, the energy scale of the detector may have a true

difference between day and night, if PMT voltages were less stable during the day

due to more activity in the mine. These studies relied on looking at calibrations or

in-situ measurements that had both day and night information available.

Directional differences are spatial (top v. bottom) differences in the detector that

make parameters for upgoing versus downgoing events appear different. Note that

these are upgoing or downgoing charged particles, not neutrinos. These produce

Cherenkov radiation that illuminate the top or bottom of the detector, respectively.

The question is how these up-down differences will then affect the apparent neutrino

signal. Looking at Figure 5-1, we can see the answer. For NC, the answer is “not

at all”, as there is no correlation between the neutrino direction and the direction

of motion of the detected charged particles. For CC, the answer is “not much”, as

the correlation is low. For ES, however, the answer is “a lot”, since the scattered

electron distribution is very sharply peaked in the direction of travel of the incident

neutrino. Since neutrinos during the night will mostly be upgoing and those during

the day will mostly be downgoing, this will mimic a day/night difference. As such, we

only apply these asymmetries to ES and ESµτ MC events. Measuring the directional

asymmetries of many of the systematics was the main contribution to the day/night

group by the author of this thesis. The results appear below, but the details of how

these are measured are in Chapter 6.

The results of the asymmetry measurements of the Day/Night group are collected

in [60]. We expect our detector to be the same day v. night, so those measurements

which see a non-zero difference µ ± σ are treated instead as if they had measured a

79

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35 NC

CC

ES

cstsun

Figure 5-1: Flux event distribution for cos(θsun). The vertical axis is in arbitrary
units.

zero difference with a larger error 0±(µ+σ) (there are two exceptions to this, both are

measured background rates with real, expected asymmetries). This allows the fitting

procedure to wander in to the larger area if the data takes it there, without biasing

our results toward a non-zero asymmetry. Many of the asymmetry measurements

found an asymmetry too small to be a concern, these had A fixed to 0, i.e. they had

αD = αN , to reduce the number of parameters in our fit. A parameter with A = 0

is described as not having an asymmetry of that type (directional or diurnal). The

values for the measured asymmetries appear in Table 5.1, those with no entry have

A = 0.

For a systematic with only a diurnal asymmetry, denoted Adiur, we simply use

A = Adiur and the formulas above for all fluxes and backgrounds. For one with only

a directional asymmetry, denoted Adir, we use A = Adir for the ES and ESµτ fluxes

and A = 0 for all other fluxes and backgrounds. For a systematic with both Adir 6= 0

and Adiur 6= 0, we use A = Adir + Adiur for ES and ESµτ and A = Adiur for all other

fluxes and backgrounds.

As in Chapter 4, here we only describe the asymmetries for the PMTs. As men-

tioned in Section 5.2, the NC flux is assumed to be constant, so the NCD rates are

assumed to be the same day v. night and have A = 0 for all parameters. The NCDs

are handled by the PSA analysis, described in Section 8.3.

80

Parameter Type Center Value Measurement
Energy Scale (aE0 + aE0,c)

1 diur 1 0± 0.0038 16N [66]
Energy Scale (aE0 + aE0,c)

1 dir 1 0± 0.0099 16N, Chapter 6
Energy Resolution (bE0)2 dir 0 0± 0.012 16N, Chapter 6
Position Scale (ax,y,z1)3 diur 1 0± 0.0015 16N [67]
Position Scale (ax,y,z1)3 dir 1 0± 0.0018 16N, Chapter 6
cos(θsun) Resolution dir 1 0± 0.069 16N, Chapter 6
ex background diur B −0.0195± 0.0112 Radioactivity on NCDs [68]
d2opd background diur B −0.034± 0.112 Radioactivity on NCDs [68]

1 The Energy Scale is the sum of two parameters, see Section 4.7. The asymmetry is
applied to their sum.

2 The Energy Resolution has different values when applied to neutrons v. electrons,
this asymmetry is only applied to the electron value.

3 The Position Scale is ax,y,z1 for x and y, and ax,y,z1 + az1 for z. The asymmetry is
applied to these values.

Table 5.1: All day/night asymmetries for background and systematics. Parame-
ters not listed have A = 0. “Type” indicates whether the asymmetry is diurnal
(diur) or directional (dir), and “center” indicates whether the asymmetry is defined
as equation 5.2 (0), equation 5.4 (1), or equation 5.8 (B).

81

Chapter 6

Asymmetry Analysis

6.1 Introduction

The Day-Night measurement in the SNO detector is, fundamentally, simply subtract-

ing the electron neutrino flux during the day1 from the flux during the night. Of

course, that simple measurement could suffer from many problems that we hope to

avoid, including artificial biases of many natures. To counteract this, we make a num-

ber of measurements of the properties of the detector that could artificially cause a

day v. night difference. Any difference we see is a systematic error we need to either

correct for or keep track of.

This report describes one of these measurements: differences between the response

of the top and the bottom of the detector. In SNO, we are not capable of directly

detecting neutrinos; instead, we detect electrons or neutrons that are generated when

neutrinos interact with the water in our detector. There are three main types of

interactions, charged current (CC), neutral current (NC) and elastic scattering (ES).

The ES signal is neutrino-electron elastic scattering, which is dominated by electron

neutrinos; the CC signal is the process νe + d → p + p + e−, where d is a deuteron,

which only occurs for electron neutrinos; and the NC signal is νx + d → νx + p + n,

which occurs equally for all three neutrino flavors. For elastic scattering, the direction

of motion of the electrons thus generated is highly correlated with the direction of

1When the sun is above the θ = π/2 horizon in detector coordinates

82

motion of the neutrino itself. Since the sun is our source of neutrinos, the “night”

signal will mostly be electrons moving toward the top of the detector and the “day”

signal will mostly be toward the bottom of the detector. Thus, if the top of the

detector and the bottom of the detector differ in some way, this will seem like a

difference between day and night, but may be too subtle to be apparent in analyses

that are not specifically looking for it.

The detector itself has several known top-bottom differences. The most prominent

is the “neck”, a hole in both the acrylic vessel (AV) and the PMT support structure

(PSUP). It is the cylindrical object at the top of the detector in Figure 3-2. The

neck provides necessary physical access to the D2O volume, but has a corresponding

hole in PMT coverage. In addition, the neck is made of a different material than the

rest of the AV and is opaque to ultraviolet light. These are both very significant,

as the electrons that we detect are actually detected via their Cerenkov radiation.

This hole results in light being lost, and the algorithm that determines the electron’s

track from the light turns this in to lowered energy for the electron. This is, for the

most part, a well understood and well modeled problem, but is still the dominant

top-bottom difference. In addition, the detector is a large tank of very pure water,

leading to vertical thermal and density gradients. Finally, the PMTs in the detector

are not all from the same batch (a batch is a set of PMTs produced at the same time),

in particular the top and bottom of the detector are from different batches. These

differences are supposed to be corrected by calibrations and adjusting the operating

voltages and parameters of the PMTs, but subtle differences may remain.

6.2 Basic Methodology

The basic method followed is to look at events that illuminate the top of the detector,

characterize their behavior and compare it with the behavior of events that illuminate

the bottom of the detector. The top versus bottom asymmetries of these characteri-

zations are what we seek, traditionally calculated in terms of some parameter S that

83

characterizes the distribution2

AS = 2
Snight − Sday
Snight + Sday

(6.1)

Here we are not examining day versus night differences per se, but rather top versus

bottom differences that can mimic them. However, we ultimately want a systematic

uncertainty we can apply to our actual Day/Night measurements, so we will need

to convert our measured asymmetry in to an AS of this form. To do this, we will

weight our results by the expected spatial distribution of the neutrino flux, as will be

discussed later in this section.

The method we describe here is derived from and similar to those used for this

analysis for the salt [69] and D2O [58] phases of SNO. However, we make several

additions and alterations to the method.

6.2.1 16N source

To actually measure the physical asymmetries in the detector, we can use any cal-

ibration source that illuminates both the top and the bottom of the detector. The

16N calibration runs were used in the analysis described here, as they have both this

property and many additional properties that make them desirable for this analysis:

they sample the detector spatially, occur at intervals throughout the NCD phase and

thus sample the detector temporally, have an energy spectrum that is in the range

we expect neutrino induced events to fall in, are well modeled with a corresponding

Monte Carlo, and have a large number of events to provide good statistics.

16N is a radioactive isotope of nitrogen with a half-life of 7.1 s, which decays

to 16O via β decay. The 16O is created in an excited state and releases photons

en route to the stable 16O ground state. With such a short half life, the 16N was

produced on site by the reaction 16O(n, p)16N. The generated 16N was then flowed

into a stainless steel decay chamber in the D2O, which absorbed the β particle and

2An example of S examined in this report is the center of a Gaussian fit to the distribution of
electron energies

84

allowed the photon to enter the detector. Three branches dominate the β decay:

one produces no photon (28% of decays), another produces a photon with 6.1 MeV

(66% of decays) and the third produces a photon with 7.1 MeV (5%). Other photon

energies between 2 MeV and 8.9 MeV are possible, but occur in less than 1% of

decays. The emitted photons undergo Compton scattering with the electrons in the

heavy water, producing electrons that give off Cerenkov radiation that SNO’s PMTs

detect. It is these electrons that we are talking about when we say “electrons” in

measurements in this report.

For each data run, this source is placed in the detector at a location that varies

from run to run but is constant for each run, and 16N is pumped in for the duration

of the run. The detector otherwise behaves normally, so the light generated by the

electrons is captured by the PMTs. Given the distribution and timing of the PMT

response, a reconstruction algorithm determines where the electron originated from

(the event’s position), its energy and the direction of its velocity. It is this information

that is stored in the 16N data set and is examined in this report.

In addition, a very well developed Monte Carlo simulation of the detector exists

for each data run. It simulates the expected results for the run, with the 16N source at

the run’s position. Well known top-bottom asymmetries present, such as the neck, are

included in the model and corrected for when the neutrino signal is extracted. We are

not concerned with these asymmetries, and need to subtract out their effects - we are

looking to determine a correction to apply to the MC. To do this, for each parameter

we measure, we also measure the same parameter in the Monte Carlo simulation. It

is only if these two differ that we are concerned, so we either subtract (or divide) the

two, and then look for deviations from either zero (or one). This leaves us with only

those asymmetries that are corrections to our model, which are systematics of the

form discussed in Section 4.7.

6.2.2 Detector binning

Not all up going events (or down going events) are equal. Those that originate from

the bottom of the detector (or top of the detector) will have a larger Cerenkov ring

85

Bin Radius (cm) θspatial
0 r ≤ 150 0 ≤ θ ≤ π
1 150 < r ≤ 375 0 ≤ θ < π

8

2 150 < r ≤ 375 π
8
≤ θ < 3π

8

3 150 < r ≤ 375 3π
8
≤ θ < 5π

8

4 150 < r ≤ 375 5π
8
≤ θ < 7π

8

5 150 < r ≤ 375 7π
8
≤ θ < π

6 375 < r ≤ 550 0 ≤ θ < π
8

7 375 < r ≤ 550 π
8
≤ θ < 3π

8

8 375 < r ≤ 550 3π
8
≤ θ < 5π

8

9 375 < r ≤ 550 5π
8
≤ θ < 7π

8

10 375 < r ≤ 550 7π
8
≤ θ < π

Table 6.1: Spatial bins used in the analysis. r and θspatial defined relative to the
detector center and zenith.

and thus affect more PMTs and a larger area of the detector. If some form of non-

uniformity is present in the detector, these events could be affected by it differently.

Since we have ample statistics, we divide the detector in to spatial bins to separate

these events.

Following the lead of Jeff Secrest’s Energy Systematics study [61], we use “LETA

style” bins, giving us 11 spatial bins. These bins are defined in terms of divisions in

r (radius relative to the center of the detector) and θspatial (polar angle relative to

the zenith direction in the detector, i.e. straight up). See Table 6.1 for the bins used.

These bins are annular sections spherical shells in the detector. For simplicity, an

event is placed in the bin corresponding to the location of the 16N source during that

data run. This division, however, is insufficient for determining whether an event is

up going or down going.

To actually separate up going events from down going events, we further divide

these spatial bins in to direction bins, defined in terms of the direction of the electron’s

reconstructed velocity, ~v
|~v| . Since we are only concerned about the direction of motion,

we only need two variables to describe it. The polar coordinates θdirection and φdirection

are the traditional choice, measured relative to the same fixed detector coordinates

as the spatial bins. Here we use 5 equal bins each in cos θdirection and a modified φ,

which we call φcenter.

86

v

y

x

r

φ

φ

φ

position

direction

center

Figure 6-1: The x and y axes are fixed in the detector. Note that both φdirection and
φcenter are negative.

The choice to use φcenter comes from the realizations that the dominant physical

top-bottom asymmetry in the detector comes from the neck and that the detector is

approximately azimuthally symmetric. Hence taking all of the events in a ring-shaped

spatial bin and looking at those moving “left” or “right”, i.e. binned in φdirection in

a set of detector-fixed coordinates, will average out any neck effects. Also, all of the

φdirection bins would look approximately the same, making them not a useful division.

Instead, we use a set of bins that measure whether an event is moving toward z-axis

of the detector. The simplest way to do this is

φcenter = φdirection − φposition (6.2)

Where φdirection is the detector-fixed direction φ and φposition is the azimuthal angle

φ of the event’s position, relative to the same detector-fixed coordinates from the

spatial bins. φcenter is then the angle between the electron’s direction of travel and

the direction from the center of the detector to it. This is illustrated in Figure 6-1.

As noted earlier, each data run had the 16N source at a fixed position in space,

and the runs occurred throughout the NCD phase. To be able to look for trends in

time, we actually do our full binning and fitting procedure on each run individually.

87

This puts runs as wholes in spatial bins. We then average each of the 25 direction

bins over the runs in a given spatial bin to give the resulting directional bin values

for each spatial bin.

6.2.3 Weighting

Now that a binning scheme is defined, we can finally return to the issue of transforming

from the top-bottom asymmetry to the day-night asymmetry. To accomplish this,

we use an additional set of data: the expected neutrino signal. Given theoretical

knowledge, the previous two phases of SNO, and a lot of hard work on the part of

the simulation group [44], a very good Monte Carlo simulation of the detector and

its expected behavior in response to the neutrino flux from the Sun exists3. We use

this MC to convert our measurements in terms of our spatial and direction bins in to

a measurement of the expected effect on the signal fluxes.

First, we separate this MC in to the three signals (ES, CC, NC) and in to day and

night. For each signal, we then bin the MC events in the same 275 bins (11 spatial x

25 direction) as the 16N data, for day and night separately.

Next, to convert a measurement in to day and night, we sum the measured values

across the bins, weighted by the expected neutrino signal in that bin. Since we are

generally looking at the difference between data and Monte Carlo, the weighted sum

is

∆Si = Si,data − Si,mc

Aday =

275∑
i=1

∆Si νi,day

275∑
i=1

νi,day

(6.3)

where S is the measured parameter and νi is the expected neutrino signal in bin

i. Anight is calculated in an identical manner. We use two different methods of

calculating Aday in this document. For the energy values, a fit is done for each run,

3We obtained this signal MC from [70]

88

to give Si,data and Si,mc for each run. We then do a simple weighted average over

runs for data and MC separately, then subtract to arrive at the ∆Si in the previous

equation. For both the angular resolution and position reconstruction, the individual

run fits are still done, but then ∆Si is calculated for each run, and a weighted average

is done over these ∆Si’s. This latter way is more appropriate and a better measure of

comparing like to like. The energy was done differently because it didn’t appreciably

affect the results and was simpler to implement.

This serves two purposes: it averages our measurements across the detector, and

weights bins according to how they contribute to the day-night asymmetry. So if a bin

is expected to have the same signal in day and night, when we take Anight−Aday that

bin will not contribute. This becomes more apparent when we rewrite the difference

as:

Nday =
275∑
j=1

νj,day , Nnight =
275∑
j=1

νj,night

Anight − Aday =
275∑
i=1

∆Si

(
νi,night
Nnight

− νi,day
Nday

)
(6.4)

To compute the error on this Aday and Anight, we simply do propagation of errors.

We define two parameters, N and B, to make the equation more readable.

N =
275∑
j=1

νj,day , B =
275∑
j=1

∆Sj νj,day

σ2
Aday

=
1

N2

275∑
i=1

(νi,day σ∆Si)
2 +

275∑
i=1

[(
∆Si
N
− B

N2

)
σνi,day

]2

(6.5)

We note that since νi,day is simply counting, its uncertainty is its square root. The

uncertainty for Anight is calculated in an identical manner.

For each of the different quantities studied in the detector, we make small adjust-

ments to this method as needed. For each quantity we will explain what S we are

89

measuring, how we define ∆S (which can be either ∆S = Sdata − Smc as above or

∆S = Sdata
Smc
− 1) and how σ∆S is calculated.

6.3 Energy

The first set of parameters we study are those related to the ability of the detector

to measure energy. All measurements at SNO are sensitive to shifts in the energy

scale, and this is measured as a systematic for other SNO results [61]. However, we

are concerned with any shift in energy scale that is asymmetric across the detector

as opposed to an overall shift.

To measure the energy scale, we look at the measured energies for the electrons

in our data. In each of our 275 bins, we build a histogram of measured energies

of electrons, which we expect to be the same for each bin, and fit it. Since the

energy spectrum is mostly Gaussian, but with non-Gaussian behavior in the tails

(see Figure 6-2), we use an iterated Gaussian fit. For each histogram, the mean µ

and RMS are determined, and a Gaussian is fit over µ± RMS. The µ and σ of the fit

Gaussian are extracted, and the fit is repeated over µ± 1.6σ. This is repeated twice,

and the resulting µ and σ are the S’s for our first two asymmetry measurements: the

energy mean and the energy width. For a sample fit, see Figure 6-2.

For the energy mean, S = µ and we use ∆S = 1 − Sdata/Smc, so that we are

measuring and averaging percentage changes in the energy. This corresponds to

changes in the energy scale, a quantity that is well understood. For σ∆S, we use the

uncertainty on the fit value of µ as given by Root’s Minuit fitter.

For a few runs, the fit was very poor. To avoid these runs causing problems, they

were cut by a generic cut on any run with less than 200 events. This cut approximately

5000 events out of approximately 7,000,000 events for the total set by cutting 124 out

of 1300 runs.

Figure 6-3 shows the fit µ value versus run number for a randomly chosen bin.

Since increasing run number corresponds to increasing time, any trend here would be

a change over time in the detector. None seems to be present.

90

Figure 6-2: Histogram of event energy for randomly selected run, fit with iterated
Gaussian

Figure 6-3: Fit center v. run number for randomly selected bin, data only

91

Figure 6-4: Fit µ, averaged over runs v. angle bin for spatial bin 2, data only. See
text for an explanation of the pattern in this and subsequent graphs.

Figure 6-4 shows the 25 angular bins in spatial bin 2, after averaging over the data

runs. The same bin in Monte Carlo is shown in Figure 6-5. An interesting trend is

the clear progression in groups of 5 bins, these correspond to going from the bottom

of the detector to the top. Apparently light and energy are lost in the neck region,

which is not surprising. This pattern is matched between data and Monte Carlo, and

does not affect our final result.

To proceed to the final result, we apply our weighting procedure. This results in

six measurements, one each for ES, CC and NC, for day and for night. The difference

between day and night for each of these is our total asymmetry, shown in Table 6.2.

Signal Weighted Average
ES, Day -0.0082 ± 0.0096
ES, Night 0.0017 ± 0.0095
CC, Day -0.0024 ± 0.0080
CC, Night -0.0036 ± 0.0080
NC, Day -0.0036 ± 0.0080
NC, Night -0.0036 ± 0.0080

Table 6.2: Energy center shift as fraction, weighted average over detector

For the energy width, we repeat this procedure for σ from the same Gaussian

fit. Figure 6-6 shows the fit σ value versus run number for the same bin as before.

92

Figure 6-5: Fit µ, averaged over runs v. angle bin for spatial bin 2, MC only

Figure 6-6: Fit σ v. run number for randomly selected bin, data only

93

Figure 6-7: Fit σ, averaged over runs v. angle bin for spatial bin 2, data only

Figure 6-7 shows the 25 angular bins in spatial bin 2, as in the µ case. The same loss

of energy to the neck is seen, and is again matched in Monte Carlo. Averaging across

all bins leads to the final results, summarized in Table 6.3.

Signal Weighted Average
ES, Day 0.001 ± 0.022
ES, Night 0.013 ± 0.022
CC, Day 0.009 ± 0.018
CC, Night 0.007 ± 0.018
NC, Day 0.008 ± 0.018
NC, Night 0.008 ± 0.018

Table 6.3: Energy sigma shift as fraction, weighted average over detector

6.4 Angular Resolution

Another aspect of the detector that is of great concern is the angular resolution. The

angular resolution is how well the detector is able to resolve the direction of motion

of the object we are trying to measure - neutrinos in the case of SNO’s normal data

taking, the photons from 16N in the case of the calibration runs. We measure this

for the calibration data by measuring the angle between the electron’s velocity and

the straight line between the source and the event location. This line is the path

94

Figure 6-8: Sample fit for cos θ. Order of parameters: A, α1, α2, β1, β2, β3

Note that parameters here are square roots of respective quantities

the photon travelled from the source (we neglect multiple scattering), and hence its

direction of motion. In equation form, this is:

cos θ =
(~xevent − ~xsource) · ~v
|~xevent − ~xsource||~v|

(6.6)

We expect this distribution to be strongly peaked near cos θ = 1, i.e. θ = 0.

Looking at a sample histogram (Figure 6-8), we see that this is the case, and that

this is clearly a non-Gaussian distribution. Typically, this distribution is fit to the

sum of two exponentials, but our statistics are sufficient that we can see a small rise

near cos θ = −1 as well, so our fit to the histogram is to three exponentials (where x

is cos θ):

N(x) = A(eβ1(x−1) + α1 e
β2(x−1) + α2 e

β3(x+1)) (6.7)

Figure 6-8 also shows a sample fit. We note that there is an ambiguity in the

fitting process: the first two terms are identical, and can be switched by letting

α1 → α−1
1 and β1 ↔ β2. To account for this, if α1 < 1, we make this switch in our

graphs and analysis. Due to our choice of initial conditions for our fitter, this means

95

we are choosing β2 > β1, so β2 corresponds to the steep slope and β1 to the shallow

slope.

For this measurement, our binning becomes a problem. In particular, using φcenter

is a very poor choice. For a source position on the z-axis, effectively all events are

“outgoing” events. The “in going” bins then have only the small tail near cos θ = −1,

but exaggerated due to the removal of most of the other events. In essence, our φcenter

bins are correlated with our measured value. Since the φdirection bins, i.e. those fixed

with respect to the detector, are basically identical due to axial symmetry, we only

use the 5 bins in cos θdirection. Our averaging scheme as defined earlier still applies

- we simply sum over the 5 bins instead of 25 angular bins (so 55 bins total, rather

than 275).

Following our prescription for our analysis, we need to define S, ∆S and σS.

We actually have three separate S’s, the α1, β1, and β2 from our fit, so we can

see how the distribution changes across the detector. We aren’t actually interested in

characterizing the tail at cos θ = −1, so we do not look at α2 or β3; they are only used

to improve the quality of the fits. As in the energy section, we define ∆S = Sdata
Smc
− 1,

here calculated for each run, and use the error on the fit produced by Root’s Minuit

fitter for σS. We have an additonal cut on events for this section, rejecting those

events less than 60 cm away from the source, to allow for the various angles to be well

measured. Due to some fitting problems, we reject those fits with χ2/dof > 4, where

dof is number of degrees of freedom. In addition, a few bad fits slipped past this cut,

so fits with values of ∆S more than 6 σ∆S from their bin’s average are removed (as a

simple outlier rejection). These two cuts together cause most bins to lose 0 to 2 runs,

but one exceptional bin loses 10 runs out of 52, and the next worst bin loses 8 runs

out of 113.

A sample of β2 v. run number is shown in Figure 6-9. No pattern or drift over

time is apparent. We now average across runs to get
β2,data

β2,mc
− 1 for each of our 55

bins (11 spatial and 5 angular, for this section). All 55 bins are shown in Figure 6-10,

with each group of five bins being one spatial bin, so bins 0 through 4 are in spatial

bin 0, bins 5 through 10 are in spatial bin 1, etc.

96

Figure 6-9: Sample
β2,data

β2,mc
− 1 v. run number

Figure 6-10: Averaged
β2,data

β2,mc
− 1 for all bins. Each group of five is one spatial bin,

with the flat region being the empty bin 7, which is set to zero for graphing.

97

This process is repeated for β1 and α1. The results are weighted using the neutrino

flux weightings, using the 55 bins in this section rather than the 275 bins from before.

The resulting day and night values are summarized in Table 6.4.

α1 β1 β2

ES, Day -0.042 ± 0.059 -0.017 ± 0.048 -0.043 ± 0.009
ES, Night 0.007 ± 0.058 0.044 ± 0.047 0.026 ± 0.009
CC, Day -0.017 ± 0.049 0.019 ± 0.040 -0.003 ± 0.008
CC, Night -0.018 ± 0.049 0.011 ± 0.040 -0.011 ± 0.008
NC, Day -0.016 ± 0.047 0.014 ± 0.039 -0.009 ± 0.007
NC, Night -0.017 ± 0.048 0.014 ± 0.039 -0.009 ± 0.007

Table 6.4: Angular resolution fit parameters as fractional change data v. MC,
weighted average over detector

6.5 Position Reconstruction

In this section, we will be looking for any offsets in space in the reconstruction algo-

rithm and detector response. To do this, we look at ~x−~xsource, i.e. the distance of an

event from the 16N source, as three separate components (X, Y, and Z). Here we use

25 angular bins, as in the Energy section. We apply the same algorithm as before,

except that we are now looking at ∆S = Sdata − Smc instead of ∆S = Sdata
Smc
− 1 as

in previous sections. The reason for this change is that we expect the difference to

be approximately zero, which makes any quantity relying on division not useful (and

potentially infinite).

The quantity X−Xsource (or Y or Z) is expected to be roughly gaussian, but with

heavy tails. This is usually fit to an empirical function that is the sum of a gaussian

and a decaying exponential, i.e.

A exp

(
(x− µ)2

2σ2

)
+B exp

(
|x− µ|
τ

)
(6.8)

This equation fits the data reasonably well. However, it was not used here due to

problems with the fitting algorithm. Instead, since we are merely characterizing the

center of the peak, we opted for the iterated gaussian fit used in the Energy section.

98

Figure 6-11: Sample fit for (X −Xsource)

This does a good job of finding the center of the distribution, since it is restricted to

µ±1.6σ and thus not strongly influenced by the non-gaussian tails of the distribution.

A sample distribution and fit is shown in Figure 6-11.

As in the angular resolution, each run is fit individually, then a weighted average

of ∆S = µdata − µmc is done to arrive at the ∆µ for each of the 275 bins. However,

here the uncertainty on µdata is not simply the fitter error from Minuit, as there is also

an uncertainty in determining the position of the source. To account for this, a 3 cm

uncertainty is attributed to Xsource for the data, adding in quadrature to the fitter

error. This is representative of a typical uncertainty in determining the manipulator

position. Its exact value has very little effect on the results of this analysis, as long

as it is of order a few centimeters. The µ for each run for a randomly selected bin is

shown in Figure 6-12. No particular pattern is apparent, as expected. An example of

the averaged difference in the angular bins of a randomly selected spatial bin is shown

in (Figure 6-13). The groups of five bins are due to the bin ordering, with every fifth

bin the start of a new φcenter, as this is a 1-D listing of a 2-D bin ordering. Finally,

averaging over all bins gives the final results in Table 6.5. We expect to see an offset

in Z, but one that is the same for day and night, as is present.

99

Figure 6-12: Fit (X −Xsource), data - MC, v. Run Number

Figure 6-13: Averaged (X −Xsource), data - MC, v. angle bin, for spatial bin 0

100

X Y Z
ES, Day 0.92 ± 0.30 0.89 ± 0.75 5.01 ± 0.84
ES, Night 1.24 ± 0.30 0.75 ± 0.73 6.08 ± 0.82
CC, Day 1.10 ± 0.24 0.80 ± 0.62 5.61 ± 0.69
CC, Night 1.06 ± 0.24 0.82 ± 0.62 5.50 ± 0.69
NC, Day 1.09 ± 0.22 0.83 ± 0.58 5.54 ± 0.64
NC, Night 1.09 ± 0.23 0.84 ± 0.58 5.53 ± 0.65

Table 6.5: Shift of position, in cm

6.6 Conclusion

Overall, the differences between day and night are small, almost all within uncer-

tainties with zero. As expected, the difference for ES is larger than for CC or NC,

in all measurements. Table 6.6 shows the final asymmetries, as a night minus day

difference, for ES for each of the measurements made. The relevant point is that the

energy asymmetries are approximately 1%, the angular resolution parameter asym-

metries are all within a few percent (but not as well measured), and the reconstructed

spatial asymmetries are all less than 1 cm.

The error bars quoted for the night-day asymmetries are simply the day and night

value uncertainties added in quadrature. This is most likely an overestimation, as this

assumes that the day and night have no systematics in common. This is not possible

given how these values were calculated. However, in the NCD Day/Night analysis,

only the measured central values will be used as the size of the systematic error. The

uncertainties quoted here will not be used in the analysis, except possibly as a limit

on how far the floated asymmetry systematic is allowed to wander.

These values are converted to day/night directional asymmetries in [60]. We

assume that all of the day/night differences are zero, with uncertainty given by the

central value. The suggested directional asymmetries for the systematics and their

corresponding parameter from this study are given in Table 6.7.

101

ES CC NC
Energy µ 0.010 ± 0.014 -0.001 ± 0.011 0.000 ± 0.011
Energy σ 0.012 ± 0.031 -0.002 ± 0.025 0.000 ± 0.025
Angular Resolution α1 0.049 ± 0.083 -0.001 ± 0.069 -0.001 ± 0.067
Angular Resolution β1 0.061 ± 0.083 -0.008 ± 0.057 0.000 ± 0.055
Angular Resolution β2 0.069 ± 0.013 -0.008 ± 0.013 0.000 ± 0.010
Reconstructed X (cm) (0.32 ± 0.42) (-0.04 ± 0.34) (0.00 ± 0.32)
Reconstructed Y (cm) (-0.14 ± 1.05) (0.02 ± 0.88) (0.01 ± 0.82)
Reconstructed Z (cm) (1.07 ± 1.17) (-0.11 ± 0.96) (-0.01 ± 0.91)

Table 6.6: Night - Day asymmetries for all measurements made. All but Recon-
structed positions are a fractional shift, (data/mc - 1)

Systematic Parameter Suggested Value
Energy Scale Energy µ 0± 0.0099
Energy Resolution Energy σ 0± 0.012
cos(θsun) resolution Angular Resolution β2 0± 0.069
XShift Reconstructed X 0 (negligible)
YShift Reconstructed Y 0 (negligible)
ZShift Reconstructed Z 0 (negligible)

Table 6.7: Translation of values from the 16N directional asymmetry study to sug-
gested directional asymmetries for ES events

102

Chapter 7

Markov Chain Monte Carlo

The main signal extraction presented in Chapter 8 minimizes the difference between

the Monte Carlo and the data, varying proportions of the various signals and back-

grounds and distortions in the MC (the systematics). This involves a large number

of parameters and each step is very computationally expensive, making a typical

minimizer such as Minuit [71] impractical. Instead, we turn to the Markov Chain

Monte Carlo (MCMC) method. Here we describe the basic ideas of the method, the

particular MCMC algorithm we have chosen, and why this method is preferable for

this problem.

7.1 Definitions

The Markov Chain Monte Carlo (MCMC) method derives from the principles of

Bayesian statistics. We will not go in to the fundamentals of this, which can be found

in a number of references [72, 73]. But we will need a few definitions of terms that

are commonly used in this field, as the following discussion will rely on this notation.

In addition, we define several terms as shorthand or for convenience in the following

discussion. To illustrate the meaning of these quantities, we look at a hypothetical

problem: we have a model of the weather in Boston, and wish to test its validity.

p(x) is the probability distribution function (pdf) for x. This requires context -

103

if x is Temperature, then p(x) for Boston will be different from p(x) for Orlando,

which will be very different than p(x) for a quark-gluon plasma.

p(x|y) is a conditional probability of x, given y (i.e. assuming y is true). Con-

tinuing our example, p(x|summer) will have much more weight near 80◦F than

p(x|winter).

{~x} is a set of data points. Individual points will be denoted ~xi. Our example

could be a set of measurements of temperature and wind speed at various times.

{~y} is a set of simulated events from a Monte Carlo based on our model. Indi-

vidual points will be denoted ~yi.

~α is a set of model parameters. Again, individual points will be denoted αi.

Our example could be the season and the time of day, so that we are asking our

model to only look at summer afternoons.

7.2 Markov Chain Monte Carlo

The method of the Markov Chain Monte Carlo is a combination of two parts: a

“Markov Chain”, a random walk with the next step only dependent on the current

step; and a “Monte Carlo”, a simulation method using repeated random sampling. It

requires a known relation between the data distribution and a set of model parameters,

giving p(~x|~α) and a measured set of data points {~x}; it returns information about

the values of ~α, i.e. about the probability distribution p(~α|{~x}) (called the posterior

distribution). The method randomly walks through the space of ~α in a particular way

(which defines the algorithm but is always a Markov Chain) and returns a random

sample (the Monte Carlo aspect) from p(~α|{~x}), usually called a “chain”.

This random sample is akin to the output of a “normal” fitter, most of which

assume that this distribution is Gaussian to report some value αi ± σαi for each

model parameter. To convert from p(~α|{~x}) to αi±σαi , we need merely assume that

p(~α|{~x}) is Gaussian near its maximum and, for each parameter individually, either

104

fit with a Gaussian or numerically compute the mean and standard deviation of the

random sample. But with the MCMC methods, we have the flexibility of looking

directly at the probability distribution if we wish.

The method relies on having a way to define the probability that a data set was

drawn from a distribution, since we will be varying our distribution as we vary ~α. This

is most naturally done with the Likelihood function, described in the next section. In

the context of the overall analysis, the question arises of how to describe p(~x|~α) at all,

given the complexity of the experiment forces us to rely on Monte Carlo simulations.

We will delay answering this question until Chapter 8; for the rest of the chapter we

will assume we have this available to us.

There are many MCMC algorithms (see [72, 74] for an overview), differing mainly

in how the random walk through parameter space is implemented. The simplest,

and first to be discussed, is the Metropolis algorithm [75]. This is the one we will

use. Many factors went in to this decision. The most proiminent are that the more

advanced algorithms often require the analytic derivative of p(~x|~α), which we do not

have available, or they require more evaluations of p(~x|~α), which we will find is very

computationally expensive to evaluate. In addition, the Metropolis algorithm was

used is the previous SNO analysis presented in [57], so the SNO collaboration had

experience with the algorithm and had already approved its use.

7.3 Extended Log Likelihood

In general terms, we have an experiment that produces a set of data points {~xi},

with each point consisting of a number of values. Assuming that these data points

represent statistically independent events (interactions in our detector), we can say

that these are random draws from some probability distrubtion p(~x|~α), where ~α is

a set of parameters describing this distrubtion’s shape. Since it is a probability

distribution, we have
∫

all ~x
p(~x|~α) = 1 for any ~α. We don’t know this distrubtion a

priori (else we wouldn’t need to do the experiment), but we assume that we have a

good enough understanding of the system that our ignorance can be characterized by

105

the set of parameters ~α. Our goal is now to find the ~α that best matches our data.

As per usual, the Likelihood is defined as the product of the probabilites of drawing

each of the points.

L(~α) =
n∏
i

p(~xi|~α) (7.1)

This gives a measure of the “probability” that the data set was drawn from p(~x|~α),

in the sense that the better that p(~x|~α) agrees with the data, the larger L.

Unfortunately, this is too simple. First, this assumes that we are drawing from a

normalized probability density function (PDF), when in reality the number of events

in our data set is very important. Second, many of the elements of ~α are constrained

by external measurements. The former is dealt with by using the Extended Like-

lihood, which penalizes differences between the number of events expected and the

number of data events, and the latter by adding terms to the likelihood.

The Extended Likelihood is a standard prescription. We now have a “PDF”

N · p(~x|~α), which will have N events in it - integrating across the distribution gives

N · 1. To incorporate this, we multipy the Likelihood in equation 7.1 by a Poisson

distribution for the number of data events, with mean equal to the number of events

N in the “PDF” (which is now no longer normalized to one). We call the number

of data events n and we will drop the quotes around PDF from now on, with the

knowledge that we are now talking about Np(~x|~α) instead of p(~x|~α). This gives

EL(~α) =
Nne−N

n!
L(~α) =

Nne−N

n!

n∏
i

p(~xi|~α) (7.2)

We will later take the logarithm of this for computational reasons. Quickly evaluating

that logarithm gives

log(EL) = n log(N)−N− log(n!)+
n∑
i

log(p(~xi|~α)) =
n∑
i

log(Np(~xi|~α))−N− log(n!)

(7.3)

Note that n is a constant (since the set of data points is fixed), while N is not (since

this is a parameter of our PDF, which we will later take to be part of ~α).

106

The constraint terms are external measurements for our parameters, giving inde-

pendent information about the values the parameter can take. We simply multiply

our L by the (normalized) pdf that corresponds to the measurement. This is stating

that we have a prior distribution for that parameter, so that our external information

tells us what we think the probability distribution for that parameter should be. In

our analysis, these take one of three forms: a Gaussian, a “two sided Gaussian”, and

a covariance matrix.

The simplest and most common case is the Gaussian. If a parameter αj has a

value ᾱj ± σ, then we multiply L by a gaussian distribution

p(αj) =
1√
2πσ

exp

(
−(αj − ᾱj)2

2σ2

)
(7.4)

The “two-sided Gaussian” is the case of asymmetric uncertainties, i.e. a measured

value of ᾱ
+σ+

−σ− . This corresponds to a Gaussian with one value of σ above the mean

and a different one below, so we multiply L by

p(αj) =

√
2√

π(σ+ + σ−)

 exp
(
− (αj−ᾱj)2

2σ2
−

)
if αj ≤ ᾱj

exp
(
− (αj−ᾱj)2

2σ2
+

)
if αj > ᾱj

(7.5)

A covariance matrix is somewhat more complicated, as it links the values of sev-

eral parameters. It corresponds to a multi-dimensional Gaussian. Given an m ×m

covariance matrix Σ linking m parameters (label them ~β)

p(~β) =
1

(2π)m/2|Σ|1/2
exp

(
−1

2
(~β − ~̄β)TΣ−1(~β − ~̄β)

)
(7.6)

For ease of computation, and computational accuracy on a finite-precision ma-

chine, we take the logarithm of the product of the extended likelihood and the con-

straints. Since log(x) is a monotonically increasing function of x, maximizing one is

equivalent to maximizing the other. We drop all terms that are constants and hence

do not contribute to the maximization process to end up with the Extended Log

107

Likelihood:

ELL(~α) = log(EL) +
∑

constraints

log(p(~α)) =
n∑
i=0

log(Np(~xi|~y))−N +
∑

constraints

log(p(~α))

(7.7)

When the constraint terms are expanded, in general the normalization coefficients,

being constant, are dropped.

In sum, we now have a way of measuring the probability that our data set {~x}

was drawn from the distribution characterized by ~α, taking in to account the known

constraints on ~α. How this ELL changes as we change ~α will tell us how we want

to direct our random walk through parameter space, as codified in the Metropolis

algorithm.

7.4 Metropolis Algorithm

The Metropolis algorithm consists of a loop which walks across the parameter space

of ~α. At the end of the ith step, it will have the parameter values ~αi. The (i + 1)th

step starts by varying each of the parameters by adding a random draw from a

Gaussian with µ = 0 and σ = σαj , i.e. each parameter is varied around its current

position with a width specific to that parameter (determined before the process starts,

see Section 7.5). This creates a “proposed” step ~αpropi+1 . The Extended Likelihood

(including all constraints, so exp(EL(~α)) is then compared between the previous and

the current step by taking the ratio p(step) =
EL(~αpropi+1)

EL(~αi)
. A random number is drawn

from the uniform distribution between 0 and 1, call it rand(0, 1). If rand(0, 1) <

p(step) then we keep the proposed value and set ~αi+1 = ~αpropi+1 , if not we don’t take

the step and keep our old one, so ~αi+1 = ~αi. This latter point is important - the

repetition in our data set of “better points” is a large part of what gives rise to the

108

useful behavior of this algorithm. In more algorithmic form this is:

~αpropi+1 = ~αi + ~g(~σ~α)

p(step) =
EL(~αpropi+1)

EL(~αi)

if rand(0, 1) < p(step)

then ~αi+1 = ~αpropi+1

else ~αi+1 = ~αi

The output of the algorithm is the set {~αi}. The first few steps depend on the

initial starting position ~α0, so we discard those as the “burn-in” period (discussed in

Section 7.5). The rest of the points are a random draw from the posterior distribution

of the parameters p(~α|{~xi}) - the probability distribution for our parameters given

the data points. This is exactly what any fitting algorithm (or experiment, for that

matter) sets out to find. Since we have a collection of random draws from this

distribution, we bin them to create an approximate PDF, or we assume that they

will be Gaussian (or two-sided Gaussian) near the maximum and do an unbinned fit,

to find out what values of parameters best correspond to our data. An example fit,

from the final analysis, is shown in Figure 7-1. Since this is directly the probability

distribution, its mean is the parameter value and its standard deviation (σ) is the

parameter uncertainty. With many parameters, if we do this for a single parameter (so

we only fit or histogram one element of the vector), we get the distribution integrating

across all other parameters. If we wish to find the covaraince between two parameters,

we merely histogram them against each other, fit them as a 2D fit, or directly compute

the covariance of the two sets of values.

7.5 Step Size Finding

In the MCMC process, at each step each parameter is varied by adding a random

draw from a Gaussian, with a different width for each parameter. These widths don’t

affect the theoretical behavior of the chain, in the sense that any choice of widths will

109

Figure 7-1: An example posterior distribution, with an asymmetric Gaussian fit. This
is the energy resolution systematic from the final fit.

eventually produce a random sampling of p(~α|{~x}). They do, however, have a very

large impact on the practical behavior of the MCMC.

This can be illustrated by thinking about a case with one parameter, for example

one with the Likelihood versus parameter value shown in Figure 7-2. Suppose we

start our chain at the point marked with an arrow. The dimension marked σ is a

reasonably good width for our Gaussian. Since the Likelihood is steep there, we are

much more likely to take a step “uphill” and will reach the maximum in a few steps.

More importantly, the region containing most of the probability is only approximately

ten σ’s wide. Once a parameter value near the maximum is reached, the algorithm

should have a good probability of stepping back “downhill” in one direction or the

other, and thus exploring the space around the maximum, as a step of size σ will not

change the likelihood value too dramatically. If the width were a tenth of σ, however,

we would have two problems: first, it would take many steps to get to the maximum

(this corresponds to a longer burn-in period) and, once at the maximum, it would

take a very large number of steps to explore the majority of the probability. If the

110

L
ik
e
li
h
o
o
d

Parameter

σ

Figure 7-2: An example of a possible Likelihood versus parameter value graph, in the
case of a system with a single parameter. See text for details.

width were ten times σ, the opposite problem would occur: it would be very likely

that the step would take us away from the maximum completely, and with a very low

likelihood away from the maximum, that step would be rejected by the algorithm.

We seek to balance between these two cases.

Looking at Figure 7-2, we can immediately see that the starting location of our

chain plays a role. Thankfully, it can be proven that this role is transient, that is that

regardless of the starting point the chain will settle in to a proper sampling p(~α|{~x})

[74]. We need to discard this initial transient, called the burn-in period, as it is not

part of the sample we want. The characteristic behavior of this burn-in period is a

rapidly changing log-likelihood, as the chain wanders through low-probability regions

where it is very probable for it to take steps “uphill”. Once the chain reaches a high

probability region, the stable sampling behavior will set in; this is called a stationary

chain or stationarity. This gives rise to graphs of log-likelihood versus step such as

Figure 7-3. The end of the burn-in period is fairly obvious on the graph, occuring

around step 200, when the changes become the size of the long-term fluctuations.

We customarily add 50% or 100% to the size of the burn-in period to be safe, as

occasionally a parameter will not have settled in to stationarity at that point, if it

has a very small impact on the likelihood. Ideally, we should check each parameter

individually, but this is not practical when we are dealing with hundreds of runs each

containing dozens of parameters. Instead, we choose a few sample runs and check to

111

Figure 7-3: Sample log likelihood v. step plot showing burn-in

make sure the safety margin is sufficient. We can, of course, force the burn-in period

to be shorter by moving the initial point closer to the maximum likelihood point (as

with any fitter).

Before discussing how to optimize these step sizes, we need a goodness measure-

ment for our step sizes. We seek to avoid two problems: too large a step, which results

in few steps taken, and too small a step, which results in the space not being sampled

properly. The former is simple to measure, we just measure how often the algorithm

takes a step. Denote that “% steps”. The rule of thumb is that it should be roughly

23.4% for a system with multiple parameters [72, 76], though the precision of this

number belies the range of acceptable values - any % step between 20% and 30% is

quite good, and something between 15% and 35% is acceptable. The latter problem

is less obvious, but is well measured by the autocorrelation. This measures how many

steps the algorithm takes before values are no longer correlated with earlier values, in

colloquial terms how long before the chain “forgets” where it was before. The smaller

this is, the better we are sampling the space, so it measures how independent our

samples of p(~α|{~x}) are. The autocorrelation is not an indepedent measure from %

steps, as when very few steps are taken, the chain “remembers” its location for a long

112

time. In fact, [72, 74] point out that the autocorrelation is the correct measure of

what we desire in a chain, while the % step is just a useful rule of thumb. We note,

however, that letting % step get too small, even if it gives a better autocorrelation,

can unacceptably increase the burn-in period. The autocorrelation is defined as

ρ(h) =

∑
t

[(xt − x̄)(xt+h − x̄)]√∑
t

(xt − x̄)2 ·
∑
t

(xt+h − x̄)2
(7.8)

where xi is an element in a sequence and h is called the “delay”. ρ(h) is equal

to the traditional definition of correlation between two sequences for the sequence

xi and xi+h. Note that this is only a useful measure once the burn-in period has

been removed, as we wish to measure the stationary sampling behavior of the chain.

The autocorrelation should decay exponentially, with a fluctuating background level

due to the finite number of points available. A sample autocorrelation is shown in

Figure 7-4, which includes an exponential fit of the form

ρ(h) = A exp(−h
τ

)

The exponential’s decay-time parameter τ gives us a single, real number measure

of the autocorrelation. The smaller this τ , the faster the chain forgets its previous

position, giving “more independent” random draws from p(~α|{~x}).

We now seek to minimize τ for all parameters in our chain simultaneously while

keeping the % step in an acceptable range. A way of automating this process is still

an active area of research, called Adaptive MCMC (see, for example, [76]). Having

found no accepted method for finding the σαj ’s, through trial and error we settled on

a methodology that, while a bit slow and labor intensive, produces good results. This

method attempts to make best use of our parallel computing resources by running

many chains with different step sizes in parallel at each step. We will refer to each

instance of MCMC running in parallel as a “run”. Each run has a fixed step size for

each parameter.

We start by running a large sweep over possible step sizes. Since we are assuming

113

h, lag
0 1000 2000 3000 4000 5000 6000 7000 8000

A
ut

oC
or

re
la

tio
n

-0.2

0

0.2

0.4

0.6

0.8

1

Acck5pd_Day / ndf 2χ 42.26 / 7499
p0 1.281± 74.19

 / ndf 2χ 42.26 / 7499
p0 1.281± 74.19

Acck5pd_Day

Figure 7-4: Sample autocorrelation with exponential fit

to start with very little knowledge of the correct step size, we will look over several

orders of magnitude and sample logarithmically, so that we get approximately the

same number of samples in each decade. First we select a range to sample over

for each parameter. In the case of a parameter with an external constraint, this is

straightfoward - the step size will be less than the width of the constraint, but could

be much smaller if the data more sharply constrains it. We will denote the constraint

width as δ. If we know nothing else about the system, we take a range [10−4δ, δ]. We

restrict this range if we have more information, such as a similar system of parameters

to compare against. In the case of a parameter with no constraint, we need to guess.

If we have an idea of the ranges of values that we expect the parameter to take, we

use these in place of δ, possibly extending the range to [10−6δ, 10 δ]. Otherwise, we

simply run as broad of a sweep as we can, starting with a range of [10−8, 102] when

we run 100 runs in parallel (to keep about 10 runs per decade). We may find we are

still outside the range we want, in which case we repeat with a different range. We

then randomly sample within this range for each parameter, to generate a number of

114

runs with different step sizes. We randomly choose instead of picking a progression

as the large number of parameters (over 50 in the main analysis) would require a

unacceptably large number of runs. We then run these in parallel, compute the

autocorrelation for each parameter and % step for each run, and generate a plot of τ

versus step size and % step versus step size for each parameter. The burn-in period

can be a problem here, as it will vary for various step sizes. We attempt to control for

this by starting the chains as close to the maximum as we can. Since we do this step

size finding process on simulated data to avoid bias and blindness problems, we know

the actual maximum and can start arbitrarily close to it. In addition, those runs

with too small a step size to find the maximum will return very bad autocorrelations,

which we need to keep in mind when looking at results.

A sample τ plot is shown in Figure 7-5. The key characteristics to note are that

τ tends to decrease as the step size increases. Figure 7-6 shows a sample % step

versus step size plot. Here we see that as step size increases, % step decreases.

This is the fundamental trade-off in the step size finding process: increasing the

step size of a parameter decreases that parameter’s autocorrelation, but decreases

the % step, which increases the autocorrelation of all parameters. We have found

that the “corner” in the τ graph, where τ stops decreasing as quickly (about 0.4 in

Figure 7-5, though we note that the τ v. step size behavior is actually power-law

like) is approximately the best value. We then find this corner for each parameter

and record it; we will denote this value ς. If the corner is not present, we have not

looked over a sufficiently large range of step sizes so we repeat this step with altered

ranges.

With the ς’s in hand, we know approximately the correct values. Unfortunately,

the τ ’s are correlated, both through the % step change and through the MCMC

process itself. Thus we must search again, though on a more restricted range. We

again create runs with logarithmically randomly selected step sizes for each parameter,

this time from the range 1
3
ς, 3ς (this is, of course, arbitrary). We again run these in

parallel and compute the autocorrelations. Instead of graphing the results, we search

though them for those with desirable characteristics. We search for two types of

115

ZShift_stepSize
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

Z
S

h
if

t_
ta

u

0

500

1000

1500

2000

2500

ZShift_tau:ZShift_stepSize

Figure 7-5: Sample autocorrelation τ v. step size

P0_stepSize
0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

P
0_

fr
ac

ti
o

n

0.15

0.2

0.25

0.3

0.35

0.4

P0_fraction:P0_stepSize

Figure 7-6: Sample % step v. step size

116

runs: those with the smallest τ ’s (in particular ones with all τ ’s less than a particular

value, which we lower until only a few runs qualify) and those with the most uniform

τ values. Ideally, we’ll find a run with all τ ’s similar and small, in the case of the

final experimental run this was a τ of approximately 200. If we do, and this has a

reasonable % step, we have found our step sizes and we stop. If not, we look at the

best runs and see what needs to change.

If the runs are close to what we need, we adjust by hand and test. In the case of

one or two parameters with too large τ ’s, we increase the step sizes of those problem

parameters and decrease the step sizes of a few parameters with much lower τ ’s to

compensate (unless the % step is too large, in which case we only increase). If all of

the τ ’s are similar but too large, we look at the % step. If it is too large, we increase

all step sizes, if too small we reduce all step sizes. We must be careful here - if all

of the τ ’s are much too large, this can be the result of the autocorrelation not fitting

well to an exponential, for example Figure 7-7. This usually arises from a run that

hasn’t actually passed through the burn-in period, though it can also result from a

run with a τ so large that we simply did not run long enough to properly measure

it. We reject those runs, as they tell us nothing. Either way, this gives a new set

of values, ς̃. We now again randomly sample, this time of the linear range [1
2
ς̃ , 3

2
ς̃],

but include an additional run with all parameter step sizes at ς̃. We then repeat the

search described in this paragraph, adjusting as necessary and iterating. This usually

only takes one or two iterations, but occasionally can become problematic.

In an attempt to automate and streamline this process, we implemented the Adap-

tive MCMC described in [76]. This is a variant on the Metropolis algorithm which

adjusts the step sizes at each step, in an ever decreasing way. This adjusts the MCMC

117

h, lag
0 1000 2000 3000 4000 5000 6000 7000 8000

A
ut

oC
or

re
la

tio
n

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Acck2pd_Day / ndf 2χ 787.9 / 7499
p0 14.41± 746.8

 / ndf 2χ 787.9 / 7499
p0 14.41± 746.8

Acck2pd_Day

Figure 7-7: Sample autocorrelation plot where exponential fit failed

algorithm to

~αpropi+1 = ~αi + ~g(~σ~α,i)

p(step) =
EL(~α, i+ 1

prop
)

EL(~αi)

if rand(0, 1) < p(step)

then ~αi+1 = ~αpropi+1

else ~αi+1 = ~αi

~σ~α,i+1 = ~σ~α,i + ~σ~α,0(p(step)− 0.234)i−β

where β is a real number controlling how quickly the adjustments reduce in size,

usually set somewhere between 0.5 and 1. This is a very simple change: we now have

a variable step size, which we adjust at every step, decreasing if the probability to

take a step was smaller than 23.4% and increasing if it was larger. This serves to force

the algorithm to take % step = 23.4%. This algorithm, as presented in the paper,

has an unacceptable drawback: it changes all the step sizes together. This means

118

that their relative proportions never change. This was the case for the example in

the paper, but is not the case for us. We do not know beforehand what the ratios

should be, since some parameters affect the likelihood more than others. To correct

this, we adjust this algorithm to only alter one parameter at a time. The algorithm

behaves identically, save that the last line now reads

(~σ~α,i+1)j = (~σ~α,i)j + (~σ~α,0)j(p(step)− 0.234)i−β

and j is incremented at each step, modulo the number of parameters, so it walks

through the parameter list from top to bottom repeatedly.

When we initially did this, we found that the first parameter was being altered too

much. The size of the changes in ~σ~α,i is falling like i−β, where we used β = 0.66, which

is 1 for the first step, and approximately 0.08 by the end of the first pass through our

roughly 50 parameter long list. To correct for this, we instead keep the size fixed for

the first pass through the list: we have the first m steps (where m is the number of

parameters) replace i−β with m−β.

This altered algorithm does amazingly well at causing the chain to settle in to a

set of step sizes where % step is 23.4%. Unfortunately, there are many such sets of

step sizes - this is a single (albeit complicated) constraint in a high-dimensional space

of possible step sizes. This adaptive algorithm did not produce useful results, as it

always found a region where some of the autocorrelations were very small and some

were very large. We wound up discarding it after many trials and reverting to the

original Metropolis algorithm with the step size finding procedure outlined above.

7.6 Benefits and drawbacks

The most obvious strengths to this method are computational. In particular, it is

an “embarrasingly parallel” algorithm - to run it across multiple computers, we run

an instance of the algorithm on each machine. They do not need to communicate.

We then simply take each machine’s output for {~α} (which will be different, as this

119

is an inherently random process) and concatenate them in to a larger set. This

is in stark contrast to a deterministic Minuit-style minimizer, which is extremely

difficult to parallelize. The only catch to this is the burn-in period. Each computer

will individually go through this process, so the first few events of each computer’s

output chain must be removed before concatenation. Even with that being true,

this easily allows much longer chains to be run. For instance, in this analysis we

had access to a cluster of approximately 1500 nodes, called Tier2, of which we could

reasonably expect to use 100 or so at a given time. In the final analysis, we could run

approximately 7000 algorithm steps in a 24 hour period. With a burn-in period of

2000 steps, we were able to use a chain of 305000 events in a 24-hour run (not all 100

jobs ran due to computer cluster problems), more than sufficient for good results.

In addition, the MCMC algorithm deals reasonably well with large numbers of

parameters. The additional cost of an additional parameter is very small, one random

draw from a Gaussian per step. The real additional costs come from two places:

adding an additional parameter usually implies adding complexity to p(~x|~α), which

can be expensive, and more parameters generally require a longer burn-in period and

chain length. The longer burn-in period is from adding a dimension to our parameter

space, which slows the random walk process. The chain length increases because of

the step size problem: as more parameters are added, the probability of taking a step

goes down (assuming the additional parameters have a reasonably strong influence

on the ELL), requiring smaller step sizes.

Another, less obvious benefit is that the MCMC deals well with systems where

the likelihood is very complicated. If the likelihood is not smooth near the maximum,

as is the case for our SigEx, a typical Minuit-type minimizer can easily get caught

in a local maximum. In addition, since these fitters assume Gaussian-like behavior

near the minimum (corresponding to our maximum), they can get incorrect uncer-

tainties. The MCMC, however, simply maps out the likelihood space and is immune

to these problems. They will, instead, show up as non-smoothness is p(~α|{~x}), which

is appropriate. How to interpret this is a separate issue. We found all of our parame-

ters to have posterior distributions sufficiently close to a two-sided Gaussian near the

120

maximum that we were comfortable fitting that function to them and report a value

αj
+σ+

−σ− for each.

From a statistical standpoint, a major benefit is that we get a random sample of

p(~α|{~x}). We can now compute any quantity we like, such as the correlation between

any pair of variables, by simply computing that quantity on those two elements of

{~α}. In addition, when we histogram a single parameter’s value, we integrate across

all other parameters. This is in a rather literal sense: when we do this, we get

p(αj|{~x}) =

∫
· · ·
∫
p(~α|{~x})dα1 . . . dαj−1dαj+1 . . . dαm (7.9)

This is the correct way to treat nuissance parameters such as systematics, as it cor-

rectly folds their contributions to the likelihood in to the width of the distribution

of the parameter, including any correlations. This then avoids complications associ-

ated with correlated parameters, though if we want to give the point of maximum

likelihood rather than the most probable value for each parameter, we need to fit

a multi-dimensional function to the joint distributions of those parameters we are

concerned about.

The MCMC is not without drawbacks. The most glaring is the issue of finding step

sizes. This adds greatly to the complexity of running an MCMC, though we hope that

researchers will one day perfect an adaptive MCMC that does not have this problem.

Another problem related to its complexity is that, as a random process, it tends to

be slower than a deterministic fitter on simpler systems. In addition, it is not always

clear when the burn-in period has passed, as the algorithm does occasionally fall in

to local minima. It will wander out of them eventually, but that can be much longer

than is reasonable to wait. This is unusual, thankfully, and can be tested by either

starting many parallel chains with different initial conditions or by running one very

long chain. The last drawback we will mention is that since this algorithm is less

well understood than some other fitters, interpreting the results is more difficult. It

is impractical to report the full p(~α|{~x}), except possibly for a few parameters. In

addition, the expectation is that a single number plus an uncertainty will be reported.

121

This is fine when p(αj|{~x}) is well approximated by a Gaussian or two-sided Gaussian

near the maximum, but that is not always the case.

122

Chapter 8

Signal Extraction

Thus far, we have looked at all the pieces that make up the analysis presented in this

thesis, the three phase Day/Night signal extraction. Now we put all of these pieces

together to actually perform the analysis. We look at the underlying methodology,

the computer code used to implement it, and the tests done to ensure it was working

as expected.

We begin by summarizing the method: The analysis starts with a set of Monte

Carlos of the SNO detector, simulating the principle fluxes (CC, ES, ESµτ and NC)

and backgrounds. These are summed together, varying the relative amounts of each

and applying a set of distortions representing possible inaccuracies and uncertainties

in the simulation (the systematics). The parameters describing the relative amounts

and distortions are collectively refered to as ~α. This summed, distorted MC is com-

pared to the data, giving a log likelihood. We then vary this ~α via a Markov Chain

Monte Carlo method (the Metropolis algorithm) to extract the probability distribu-

tions for values of our parameters given our data - this is the posterior distribution

p(~α|{~x}) described in Chapter 7.

To understand how this process is carried out, we first explain how N p(~x|~α) is

calculated. We then explain how the results of the two external analyses LETA and

PSA are included. We then explain the implementation itself and how our computer

code is structured. Finally, we show the results of our tests to confirm the code is

working as expected.

123

8.1 PDF

Throughout our discussion of the log likelihood, we left N p(~x|~α) abstract. To actually

build a functional MCMC, we must specify how it is evaluated. There are many ways

to do this in principle, though the complexity of any modern experiment leaves us

with basically one choice: Monte Carlo. A detailed MC of our experiment gives

us a set of MC simulated events {~y}. Each of these events will consist of a set of

values containing those in the data, {~x}, plus additional information from the MC

not available in the data, such as the “true” values that went in to the generation

of the event (as opposed to the measured values). As described in Chapter 4, the

analysis only uses three data variables, E, ρ3 and cos(θsun), while the Monte Carlo

uses E, Etrue, x, y, z, xtrue, ytrue, ztrue, cos(θsun), and Eν .
1

To turn this set of points in to a PDF, we histogram {~y} and interpret the value in

each bin as p(~x|~α) for any point in that bin. This potentially introduces a systematic

uncertainty - we are effectively integrating the “true” p(~x|~α) in each bin and only

looking at the average. If the underlying p(~x|~α) varies quickly, we may wash out

features that we are interested in and lose discriminating power. This can be tested

by looking at the one dimensional projections of the MC in each of the principle

variables (E, ρ3 and cos(θsun)), reducing the bin size significantly and looking for

any regions of rapid change. The one dimension projections are used only to increase

statistics and allow finer bins. This was done for the NCD phase analysis presented

in [57], though not discussed there. Additionally, we repeated this simple test and

saw no such regions that would be averaged out by the binning process.

We define a set of bins in each of the data values (a 3-D histogram here) and fill

with the MC events. As explained in Section 4.3, we restrict to a particular range in

each value, so we only create histogram bins over that range. Many of our MC events

are outside these ranges and thus do not appear in the histogram at this stage, but

we retain them as the systematics may alter their values enough to move them inside

our cuts. In this analysis, we used the following bins: 10 equal bins in ρ3 from 0 to

1ρ3 is then computed from x, y and z

124

0.77025, 25 equal bins in cos(θsun) from −1 to 1 and a set of bins in E consisting of

0.5 MeV spacing between 6 and 13 Mev, a larger bin from 13 to 20 MeV (13 total

bins). Since the Pdf is three dimensional, this it has 10 · 25 · 13 = 3250 bins. These

are the same bins used in the NCD phase analysis [57].

Several different physical processes, our primary fluxes, contribute to our signal.

Each of these has a separate set of MC events. We also expect to have several

backgrounds producing events, again each with a separate set of MC events. These

backgrounds are treated identically to the fluxes. We take each set of MC events

separately, apply the relevant subset of the systematics to each event in that set, and

fill the resulting “new” event values in to the histogram. Each event is filled with a

weight determined both by the weight systematics and a conversion factor from the

number of MC events to the expected number of data events. In this manner, we are

able to vary the relative proportions of each flux in the resulting histogram, as well

as the total number of events N . This makes N dependent on both the intensities of

each flux as well as the systematics.

This leads us to our construction method for N p(~x|~α). We have m sets of MC,

one for each flux (or background), and a set of parameters ~α. This ~α contains values

for our systematic parameters and parameters defining the size of each flux. The

latter took several related forms over the course of testing the code, but for sake of

exposition we’ll use the final form: each flux has a parameter with nominal value 1 that

represents the “scale”, i.e. how much it deviates from expectation (with expectation

normalized to 1). This necessitates a fixed conversion factor from MC events to

data events representing how many “experiments worth” of MC are in the set, called

TimesExpected, defined as the number of events expected for this flux (in the data)

divided by the number of MC events in the analysis window. The systematics can

change the number of events, but this ratio assumes systematics at their nominal

values. Since not all systematics are applied to each flux, each flux is assigned a

FluxNumber and each systematic knows which FluxNumber’s it acts on. The process

is then to go through the fluxes one at a time, taking each individual event, computing

the value changes for the relevant systematics and filling the histogram with the

125

Flux MC events Data events TimesExpected

CC 6198.589 5628150 907.9728
NC 266.051 244751 919.9367
ES 532.611 970822 1822.762
ESµτ 82.7599 1508525 18227.725
ex 20.60133 119417 5796.528
d2opd 8.2987 244751 29492.692
ncdpd 5.7265 70175 12254.431
k2pd 9.36112 112710 12040.226
k5pd 11.557 118464 10250.411
atmos 24.66224 244751 9924.119

Table 8.1: The total number of MC events in the analysis window, expected number
of data events and TimesExpected for each flux and background. TimesExpected

can be computed by (expected data events)/(MC events). Note that the expected
data events are for the PMTs, the amounts in Table 4.2 are for the NCDs.

resulting event values, with weight given by

Wfinal =
Scale

TimesExpected

∏
k

Wsys,k (8.1)

where the survival probability from Section 4.5 is treated as a systematic. The number

of MC events, expected number of data events and TimesExpected for each flux and

background are shown in Table 8.1.

The resulting histogram is almost N p(~x|~α). If the bin volumes in our histogram

are all equal, then it is and we stop. However, if they are unequal, we must compensate

for that. The problem arises in that we are interpreting this as an (unnormalized)

PDF. A simple example to illustrate is the case of a constant probability over some

region, say [0, 1]. A sequence of 1000 random draws from this distribution (as our

MC) will be uniformly distributed across [0, 1], as we expect. Suppose our histogram

has two bins. If they are [0, 0.5) and [0.5, 1], then there is no problem - each has (on

average) 500 events. If the two bins are [0, 0.3) and [0.3, 1], however, this doesn’t work

- one has 300 events and the other 700. If we then look at these as our Np(x), we

see that this will incorrectly over-weight the larger bin. To correct for this, we divide

each bin by its width. This results in each bin having a “size” (it is no longer simply

counts) of 1000.0, again equal. This naturally raises the question of whether we should

126

then re-scale the histogram to get back to some semblance of counts. Interestingly,

this actually does that for us - we have
∫

(Np(x)) dx = N , in this case 1000. Of

course, the next question is: does not dividing by the bin width in the uniform case

cause a problem? Since we are using the log likelihood, the answer is no. If we have

a constant scaling factor γ applied to all bins, this is equivalent to having Nγp(~x|~α).

Ignoring constraint terms (which are unaffected), using this in our ELL gives

ELL(~α)γ =
n∑
i

log(Nγp(~xi|~α)) =
n∑
i

(log(Np(~xi|~α)) + log(γ)) = ELL(~α) + n log(γ)

(8.2)

Since γ is fixed during the maximization process (it is a property of the binning,

which doesn’t change), it has no effect and we can neglect it.

8.2 LETA Constraint

As has been mentioned, this signal extraction sets out to incorporate both the NCD

phase data and LETA in a “three phase” analysis using all of SNO’s data. In theory

this could be done by creating a very large signal extraction that fits Pee and APee

from the NCD phase and LETA simultaneously, reproducing the results of [51] in the

process. This is decidely impractical. In [77], a better method was outlined. The key

insight was that very few of the systematics and backgrounds are correlated between

the NCD phase and LETA, thanks to the large number of independent calibrations

done and the changes in the detector. This vastly reduces the amount of information

from LETA needed for the NCD phase - we need only the likelihood function for those

correlated values.

As explained in [77], we can look at the problem as follows. Denote our signal

parameters (8B flux, Pee, APee) by ~φ, the systematics and backgrounds correlated

between NCD and LETA by ~β, those specific to LETA as ~γ and those specific to

NCD as ~η. We can write our log likelihood (equivalent to our ELL(~α)) as

lnL(~φ, ~β,~γ, ~η) = lnLLETA(~φ, ~β,~γ) + lnLNCD(~φ, ~β, ~η) (8.3)

127

where we recognize that our ~α from before is the combination of ~φ, ~β and ~η, and

lnLNCD as our ELL(~α). But we aren’t interested in the values of the “nuisance”

parameters ~β, ~γ, ~η, so we want to marginalize over them, i.e. we wish to integrate

over these parameters so that we can ignore them. Ideally, we would compute

lnL(~φ) =

∫∫∫
lnL(~φ, ~β,~γ, ~η) d~β d~γ d~η (8.4)

However, we do not yet know ~η or ~β, since they involve information from the NCD

phase. So instead we compute

lnL(~φ, ~β, ~η) =

∫
lnL(~φ, ~β,~γ, ~η) d~γ =

∫
lnLLETA(~φ, ~β,~γ) d~γ + lnLNCD(~φ, ~β, ~η)

(8.5)

Something very nice has happened - the full, three phase lnL is simply the sum

of lnLNCD, which we have been computing all along, and
∫

lnLLETA(~φ, ~β,~γ) d~γ -

the LETA likelihood with uncorrelated parameters marginalized, i.e their analysis

results. We make the approximation that the maximum of their likelihood, lnLLETA,

is a high-dimensional Gaussian, so we can describe it with a covariance matrix (and

a mean). If ~φ and ~β have small numbers of elements, this matrix will be manageable.

We can now treat our NCD phase analysis as a full three phase analysis, simply by

adding an extra term to our likelihood.

A slight complication comes in that the LETA group reports a correlation rather

than a covariance matrix. This is simple to convert, however. If we call our set of

parameters ~µ, then given a mean ~̄µ, a set of uncertainties ~σ and a correlation matrix

ρ, the covariance matrix is

Σij = ρijσiσj (8.6)

where there is not an implied sum. Once we have the covariance matrix, the log

likelihood contribution is the logarithm of the corresponding Gaussian probability

distribution, giving

lnLLETA = −1

2

(
~µ− ~̄µ

)T
Σ−1

(
~µ− ~̄µ

)
(8.7)

128

Parameter Value Uncertainty
8B Scale 0.931651 0.0380756
P0 0.319267 0.0217643
P1 0.00737952 0.0093339
P2 -0.000617788 0.00363615
A0 0.02664 0.0425076
A1 -0.0220252 0.0318916
aE0,c -0.00162829 0.0030292
cE0 0 0.0069
Winter 0 1

Table 8.2: LETA best fit values and uncertainties. The uncertainties here are the
statistical and systematic uncertainties added in quadrature. See text for details.
Note that the values are presented at the precision input to the program; the excessive
number of digits in the values and uncertainties is intentional.

8B Scale P0 P1 P2 A0 A1 aE0,c cE0 Winter
8B Scale 1.000 -0.704 0.292 -0.120 0.031 -0.013 -0.138 -0.029 0.095
P0 -0.704 1.000 -0.318 -0.422 -0.386 0.114 0.066 0.202 0.008
P1 0.292 -0.318 1.000 -0.061 0.169 -0.686 -0.443 -0.212 0.053
P2 -0.120 -0.422 -0.061 1.000 0.016 -0.061 -0.066 -0.334 0.005
A0 0.031 -0.386 0.169 0.016 1.000 -0.231 -0.012 -0.012 0.000
A1 -0.013 0.114 -0.686 -0.061 -0.231 1.000 0.010 0.025 0.000
aE0,c -0.138 0.066 -0.443 -0.066 -0.012 0.010 1.000 0.000 0.000
cE0 -0.029 0.202 -0.212 -0.334 -0.012 0.025 0.000 1.000 0.000
Winter 0.095 0.008 0.053 0.005 0.000 0.000 0.000 0.000 1.000

Table 8.3: The correlation matrix from LETA. The entries are actually double preci-
sion, but truncated to three digits for readability. See text for details.

just as in the case for a constraint term with a covariance matrix, as this is the same

situation.

SNO determined that the set of correlated parameter was quite small, consist-

ing of only the signal parameters (P0, P1, P2, A0 and A1) and three systematics

(the correlated energy scale aE0,c, the energy nonlinearity cE0 and the Winter spectral

shape uncertainty). For the full data set, the LETA group reports the mean and

uncertainties shown in Table 8.2 and a correlation matrix shown in Table 8.3.

129

8.3 PSA

The process for computing ELL(~α) so far has only included information from the

PMTs. In the NCD phase analysis [57], the NCDs were included with a likelihood

computation directly analogous to that described here for the PMTs. The energy for

each NCD event, EADC , was used as the data {x} in a one dimensional Pdf, compared

against a set of MC events for both the expected neutron spectrum and a set of back-

grounds. These backgrounds contained both those neutron backgrounds described in

Section 4.6 and NCD-specific backgrounds. Since only the event energy was used and

neutrons have thermalized before they capture in the NCDs, the background neutrons

are indistinguishable from signal neutrons. The NCD-specific backgrounds are dom-

inated by alpha particles emitted from radioactive decays in the nickel bodies of the

NCDs, but also include some instrumental events, just called “other” backgrounds.

This solution was considered less than satisfactory, as it only used the energy

information from the NCDs and ignored the full digitized pulse also recorded. Ad-

ditionally, it combined all of the NCD string events together (except for six strings

completely excluded from the data set due to instrumental problems), but it was

known that the alpha and “other” backgrounds varied from string to string. To

remedy this, the Pulse Shape Analysis (PSA) analysis was created. A much more

detailed simulation of the NCDs was generated [48] and PSA used this in three sep-

arate methods to increase differentiation between neutrons and alphas. The results

of these three methods were ultimately combined to improve both rejection of alpha

events, to over 98%, and acceptance of neutron events, to 74.8%. Details of the three

analyses are available in [49, 78].

The NCDs only have one purpose: detecting neutrons. PSA has limited ability

to distinguish the spatial location of an event using which NCD the event occured

in and the vertical position along the NCD. The latter can be crudely determined

by the timing distribution of the signal pulse from the NCD, as the pulse is read off

of the central wire at the top, but reflects off the bottom, creating two pulses a few

nanoseconds apart. This suggests that the PSA may be able to distinguish the NC

130

signal from some of the neutron backgrounds. Unfortunately, this turned out to not

be the case. Instead, the PSA only reports the total number of neutrons detected

as NPSA ± σPSA. To integrate this in to the analysis, we compute the number of

neutrons expected in the NCDs given the current value of ~αi, which we call Nexp. In

Section 4.6, we saw that there is a direct relationship between the number of events

in the PMTs and those in the NCDs, in that the number of events expected in the

PMTs is given by fxNx,NCD where x is one of our backgrounds and fx is the NCD-

to-PMT conversion factor. We choose to vary the number of events in the PMTs in

actual analysis for computational ease. Our MC of the detector also provides us with

the expected number of neutrons in the NCDs from the NC flux (labeled NNC,NCD).

We combine these to give

Nexp =
εNCD
ε̄NCD

B8NNC,NCD +
∑
x

Nx,PMT

fx
(8.8)

where B8 is the 8B flux, normalized to 1, εNCD is the NCD efficiency of capturing

neutrons and ε̄NCD is the mean value of εNCD. The backgrounds are given in expected

numbers of events, so they are not altered when the efficiency is floated. The efficiency

is normalized since NNC,NCD already accounts for it.

Nexp is computed at each step in the MCMC and compared to NPSA to give a

contribution to the log likelihood given by

lnLNCDs(~α) = −(Nexp −NPSA)2

2σ2
PSA

(8.9)

which is added to the total ELL(~α) in the same manner as the LETA constraint.

8.4 Implementation

To actually run the signal extraction, the abstract method we have been describing

must be made concrete in the form of a computer program. We wanted this pro-

gram to be written in C++ using ROOT, the current standard in particle physics,

as C++ gives reasonably fast, portable code and ROOT allows direct interaction

131

with ROOT’s powerful analysis utilities. We wanted it to be object oriented to take

advantage of C++’s object-oriented nature and object-oriented code’s flexibility and

understandability. We wanted it to be flexible, so that it could be used for another

experiment with minor or no changes. Finally, we wanted as much as possible to be

controlled by a configuration file that exists outside of the code, so that we could run

various tests on different configurations of data, systematics and MC without having

to change the underlying code.

In the following discussion, we will attempt to distinguish between the C++ com-

puter code (the code), the compiled executable that runs (the program), the configu-

ration file that directs the program as to what to do (the config file or the configuration

file) and the files containing the data events (the data file) and the MC events (the

MC file). Often the difference between something in the code and something in the

program is ambiguous, as the program is generated from the code. In those cases,

it is simplest to assume that the thing in question is part of both, or rather that

it is part of the abstract conception underlying both rather than these two concrete

expressions of this conception. Additionally, the expression “structure” here does not

mean a traditional C/C++ struct, rather it refers to any sort of logical organiza-

tion within the code. Anything appearing in typewriter font refers to a component

of the code or program, for example to distinguish between the Pdf class and the

mathematical Pdf N p(~x|~α).

8.4.1 Overview

A run of the program consisted of several stages. First, the config file was read and

checked for errors (usually typos). Next, the information in the config file was used to

set up the necessary internal structures, telling the program how many fluxes of what

type, how many systematics and what their action should be, the initial state and step

sizes for each parameter, likelihood contributions from any constrained parameters,

etc. Then the MCMC chain ran, walking the parameters across configuration space

and recording the appropriate parameter values. Finally, the results were output to

files and the program performed clean up actions (closing files, clearing memory, etc).

132

The setup phase is the most complicated. A hierarchy of structures is created.

At the highest level, the MCMC itself runs. It contains ~α as a list of parameters,

with an initial starting point, step size, current value and possible constraint for each

extracted from the config file. It also extracts from the config file how many steps

the chain should take and how it should record its output, i.e. to what file, which

parameters to write and how often to print status messages to the screen. To run

the MCMC, it varies the current values of the parameters, evaluates ELL(~α), decides

whether to keep or reject the step and records the result. Computing ELL(~α) is

not trivial. There are two contributions: from the data and from the constraints.

With a few exceptions noted in the class descriptions below, the constraints are dealt

with by the MCMC via the mechanism of the LogLikelihoodFormula or parameter

constraints. The former is a function defined in the config file that is explicitly added

to the log likelihood. The latter adds directly to the log likelihood as well, but is a

separate, simpler function that only deals with Gaussian constraints, which are by

far the most common kind. The data portion is handled by the Pdf’s, one for each

data set. For this analysis we have two three dimensional Pdf’s, one for the day data

and one for the night.

Each Pdf has a simple task: it takes a the current ~α as input and returns the

corresponding log likelihood. To this end, it contains the data set {~x} and a number

of Flux’s and Sys. Each Flux corresponds to a flux as we have been referring to it so

far: it is a repository of the MC events {~y} for a single signal or background. Each

Sys takes a single MC event ~yi as input and returns how the vector has changed,

the ∆~yi from Chapter 4. The Pdf thus takes one flux at a time, applies the relevant

systematics (not all systematics are applied to all fluxes, see Section 4.7) to it one

event at a time, then fills that event in to a histogram with the appropriate weight,

all of which are calculated by the Sys. Once all the fluxes have been processed,

the histogram is renormalized to create the binned Pdf. The log likelihood is then

computed by finding the value of our Pdf corresponding to each data event and

summing, then adding the extended log likelihood component at the end to give the

ELL(~α) described in Section 7.3.

133

8.4.2 Classes

In object-oriented programming, the majority of the code and actual computation

is handled through classes. The code has ten classes, three of which are “helper”

classes that aren’t directly involved in the signal extraction, each of which handles

a particular aspect of the process. To explain how the code as a whole works, we

must first describe how each class works. Thankfully, the nature of object-oriented

programming allows us to ignore most of the internal details of a class when it interacts

with another class, only the inputs and outputs matter. In this explanation, we will

strive to separate the descriptions in to a short explanation of how the “outside world”

sees the class, then a longer explanation of what happens inside the class. We will

start from the most basic classes and build up to the most complicated, as the topmost

class (the MCMC class) contains within it instances of almost all the other classes.

ConfigFile

ConfigFile is the first helper class, and the only code not written expressly for this

project. It is an open-source config file reading utility, written by Richard J. Wagner

at the University of Michigan [79]. This is the only code we inherited from and have

in common with [57]; that analysis downloaded this class from an online repository.

This rather simple class reads in a file that consists of a list of lines of the form

key = value and creates an internal structure allows one to either traverse the list

of keys or reports the value associated with a particular key. It is very similar to the

map class in the C++ standard library. We will refer to this library by its customary

acronym STL for brevity.

Tools

Tools is the next helper class. As the title suggests, it contains a set of tools

that were useful across most of the other classes. The first of these utilities is

SearchStringVector, which looked through an STL vector (effectively a list) of

strings for a particular string. This was used a great deal during set up, as the vari-

134

ous program components were kept track of by a string (their “name”). The next is

ParInfoToString, which converted internal descriptions of components to the exter-

nal, more human-readable ones used in the config files. The third is

DoublesAreCloseEnough, which compares to doubles to see if they only differ in the

last few bits - this allows checking if two doubles are “equal” within machine round-

ing. The final tool is VectorScramble, which randomizes the order of entries in an

STL vector. This was used mostly for debugging.

Errors

The final helper class is Errors. It is a very simple class that contains an STL vector

of strings. This is a global list, so that any time any piece of code adds to it, all

of the program can see it. This was used for error handling - any time a piece of

code encountered an error, for example a malformed configuration file entry or a

non-existant file, it reported this to Errors. This allowed the program to process

things as best as possible instead of immediately exiting, allowing multiple problems

to be seen at once. At the end of the setup phase or when an error that could not

be overcome was encountered, the Errors class printed all of the accumulated error

messages to the screen and exited the program cleanly, rather than crashing. This

was extremely helpful any time the config file was changed, as it often caught all the

typos in one run.

RealFunction

RealFunction is a simple class that takes an arbitrary number of double (real num-

ber) inputs and returns a single double, i.e. a code implementation of a simple

multivariable function f(x, y, z, ...). Another class can set the values of each input

with SetParameter and ask for the computed value by calling Eval. It is actually a

virtual parent class, with each daughter class being specified to perform one compu-

tation. For example, one daughter class takes two inputs and returns their product,

and another takes four inputs (a, b, c and x) and returns a + bx + cx2. So what

function RealFunction performs is decided at set up time by choosing one of the

135

available daughter functions, which have the property that the code can’t distinguish

between them and RealFunction in terms of use.

Internally, RealFunction contains an array of doubles, one element for each in-

put. The Eval function is different in each daughter class, but it is almost always just

the real function being performed. Unfortunately, that means that if a function not

already available is needed, a new daughter class must be written and the code recom-

piled (these daughter classes are very simple and are all defined in FunctionDefs.h.

This naturally raises the question of why this was done this way, rather than writing a

general purpose class that can take any arbitrary function without needing to specify

beforehand. The answer is simple: speed. This general purpose function exists in

ROOT as TF1, but is much, much too slow to be useful. This implementation is over

ten times faster, and this function gets called billions of times during a typical run,

meaning that speed is critical. In fact, evaluation of RealFunction is more than 30%

of the total running time of the program.

Flux

The Flux class keeps track of the MC events for a single flux or background. It

is the first “named” class - it has a unique string value that identifies it, so each

instance must have a name that is unique in the program (not shared with any other

named structure). This allows for it to be looked up and called in other classes by

name rather than some more abstract way, which is necessary as part of the setup

process. During setup, it reads the MC events from a config file specified file. It also

reads from the config file the TimesExpected (described in Section 8.1) and a quantity

called FluxNumber; the former is a scaling factor that determines the nominal number

of data events for this flux, the latter is used by MCMC to decide whether a given Sys

should act on this flux. During running, this simple class returns an individual MC

event ~yi when called. It can return events in any order.

Internally, the MC events are stored in memory as a large array, for speed. They

are returned as a vector of doubles of length equal to the length of ~yi plus one, with

the extra element being the weight W , set to 1 and altered by the Sys. Flux has

136

member functions to return its name, number of MC events, TimesExpected and

FluxType

Sys

The Sys class applies a function to a set of values. It is another named class, again its

name must be unique within the program. At its heart, an instance of Sys contains

either a RealFunction or a TF1 that returns a single double given a set of parameters.

The Sys keeps track of which parameters out of ~α it needs, as well as any parts of

~yi it needs, and hands these to the underlying function. It then records the results

in a separate vector with the same size as ~yi, which it returns. This allows for all

Sys to have access to ~yi as it comes from the Flux. Each Sys also contains a list of

FluxNumber’s that it affects, and returns either true or false when asked if it affects

a particular FluxNumber. Most instances are within a Pdf, but the class also serves

double duty in that it is used to implement both the LogLikelihoodFunction’s and

the AsymmFunc’s, described in the MCMC description.

As mentioned, Sys contains either a RealFunction or a TF1. These are nearly

identical in function, save that RealFunction has a very short list of functions it can

perform but is fast, while TF1 can perform an arbitrary function but is slow. During

setup, the Sys is given a list of all the parameters in ~α (called the mcmcPars) and

all of the components of the MC events (called the branchPars or branches). The

config file tells the Sys what function to use and what values it needs in what order,

out of these two lists. Since this is a bit error prone, many of these are hard-coded

into the Sys class and automatically selected by the Sys’s name, though this can

be overridden. Sys keeps track of which values it needs to pass to the underlying

function, in the sense that it stores these values as class members. Each Sys only

alters one component of ~yi, called the “target”, just as each systematic does. This

is necessary, both to follow the logical structure of the analysis and because the

underlying function only provides a single output. The config file (or the automatic

selection) sets whether the computation is done using the ~yi from Flux or ~yi + ∆~yi,

i.e. the “new” value incorporating all Sys applied thus far. It also sets whether the

137

output value should be added to the target element (most systematics) or multiply

the target element (the weight altering systematics). Finally, it reads from the config

file (or the automatic selection) a list of FluxNumber’s, which it stores. During a run,

a Sys takes the list of parameters ~α and updates its internal values to correspond to

the new list. A member function takes a FluxNumber as input and returns either true

or false, corresponding to whether it acts on that FluxNumber or not. This happens

once per Flux. Finally, the Sys is given an event ~yi and the changes made thus far

to its value ∆~yi and updates those changes.

Pdf

This actually encompasses three classes: PdfParent, Pdf1D and Pdf3D. Pdf1D and

Pdf3D implement a 1D and a 3D histogram/pdf, respectively, while PdfParent han-

dles tasks that are common to the two. We will ignore the division of labor and

dimensionality differences and speak of a Pdf class. From the viewpoint of outside

entities, it only has two tasks: it reads from the config file, data file and MC file the

information it needs (and sets itself up) and it returns its contribution to ELL(~α)

when given ~α.

Internally, this class coordinates the activities of the other classes (except MCMC).

It stores the data events {~x} in the same way that Flux stores the MC events. Also,

it contains the histogram that is to be filled with the MC data to create N p(~x|~α),

a TH1D for Pdf1D and a TH3D for Pdf3D. During setup, it reads from the config file

which fluxes it should use when building its Pdf and which systematics (including

things treated as systematics, such as Pee), creates instances of Flux and Sys as

appropriate, and gives them the information they need to construct themselves. In

particular, each element in the MC event vector ~yi has a name, given in the config

file, which must be consistent across all MC sets. The config file specifies what file

the Pdf’s data is in, which it reads in to an internal array, with the element names

also specified in the config file as for the MC events. During a run, the Pdf is given

a new value for ~α, which is passes along to the Sys. The histogram is then emptied.

Then the first Flux is asked for its FluxNumber and each Sys is asked if it acts on

138

this flux, creating a list of Sys that act on this Flux. The Flux is then asked for its

elements one at a time, with each acted upon by the appropriate Sys to create ∆~yi.

The histogram is then filled with ~yi + ∆~yi, with weight given by equation 8.1. The

Scale term is special, in that it is a parameter with the same name as the Flux that

is automatically created by MCMC when the Flux is created. This is then repeated

for each Flux and the histogram is rescaled as explained in Section 8.1. Then the

Pdf takes each data event, finds the corresponding bin in the histogram, and adds

the logarithm of the histogram’s entry to log likelihood (which is reset to zero when

this process starts, so only this Pdf and this step’s values are used). The extended

log likelihood is computed by subtracting the total number of events. This value is

returned.

MCMC

The MCMC is the highest level class. There is only one instance per program. In fact,

other than some input processing and a timer, the main program consists of having

MCMC read the config file then calling MCMC.Run(). From the outside point of view,

this class is a black box that takes a config file as input, then performs the analysis

(including reading the files and writing the output).

As most of the work is actually done by Pdf and the classes inside it, the MCMC

class mostly acts to coordinate. During setup, it reads from the config file those

parameters directly governing the MCMC chain behavior, such as the number of

steps in the chain, how often to print to the screen (every nth step it prints the

current parameter values) and which extra information about the parameters to save

(such as the proposed values ~αpropi that are rejected). It reads the name of the output

file and creates both that file and the TTree (a ROOT data storage class) that will

be written to the file. It reads the number and dimension of the Pdf’s and creates the

appropriate Pdf’s, then passes the config file to each to allow it to construct itself.

It then reads out of the config file all of the parameters that make up ~α, most of

which are explicitly parameters, but one is automatically created and shares a name

with each Flux and Sys. For each of these parameters, it reads in the initial value,

139

maximum and minimum value (if defined), step size and (if applicable and Gaussian)

the mean and width of the parameter’s constraint. Finally, it reads from the config file

the setup information for the LogLikelihoodFunction’s and the AsymmFunc’s. These

are special instances of the Sys class that do not act on the MC events. Instead, the

LogLikelihoodFunction uses the Sys machinery to create a function that takes some

number of the parameters as an input and outputs a number that is directly added to

the log likelihood at each step in the MCMC. This is used to compute values for non-

Gaussian constraints, which can be arbitrary functions, and for direct contributions

to the likelihood such as LETA and PSA. The AsymmFunc’s are used to alter the

values of parameters based on other parameters. This allows a parameter such as the

energy scale to be computed - it is actually the sum of two other parameters. It is also

used to compute the values for the day and night versions of a parameter from ᾱ and

Aα, as the name might suggest. Once this setup is complete, the MCMC unsurprisingly

run the Metropolis algorithm. At each step, it varies the values of the parameters

according to their step sizes (which can be zero) and adjusts them according to any

AsymmFunc to create the ~αpropi . If any parameter is above its max or below its min,

the step is rejected. Otherwise, the log likelihood is reset to zero and the contribution

from each constraint, each LogLikelihoodFunction and each Pdf is computed and

added. Then the Metropolis algorithm decides whether to keep or reject the step. If

it is kept, the proposed parameters replace the old parameters, if not the proposed

parameters are rejected. The values of the parameters are then added to the TTree.

When the whole algorithm has finished (i.e. it has taken the prescribed number of

steps), the TTree is written to the output file, stray memory is cleaned up and the

program exits.

Details about how to interact with the various aspects of the program, in particular

how to write a config file to use the program, are given in Appendix A.

140

8.5 Three independent methods

This analysis was one of three competing analyses. All three took the NCD phase

data with the goal of extracting a three phase, day/night result. We all shared the

same data, Monte Carlo, background and systematic numbers and some simulated

data for testing. The major differences were in implementation. One of the two,

QSigEx by Pierre Luc Drouin, uses a minuit-type minimizer and limits the number

of floated systematics. The other, UASigEx by Shahnoor Habib, also uses an MCMC

method. However, it reuses the code used in [63, 57] with heavy modification, while

the code used here was entirely written from scratch, except for the open-source code

that reads in configuration files. The other two analyses are described in detail in

[49].

8.6 Fake data tests

This section describes the series of ensemble tests done to test to see if the machinery

of the SigEx was working correctly. Many sets of fake data events were generated,

each one equivalent to the real data in size and scope. Each was then fit using the

SigEx as if they were real data, and results were compared against the known input

values.

As this was a common task for all three SigEx’s, we share a set of fake data sets,

created by Pierre Luc Drouin by sampling the Monte Carlo. To help with terminology,

we will refer to one experiment-equivalent set of fake data events as a “set” and a

group of these sets sharing common parameters an “ensemble”.

For each ensemble, values of P0, P1, P2, A0, A1 and systematics values (most of

~α from the previous section) were chosen. A mean value (matching that of the real

data) was chosen for each flux and background for each ensemble. For individual sets

within an ensemble, the number of events for each flux was randomly drawn from a

Poisson distribution with mean equal to the ensemble’s mean value for that flux. This

is important for getting the statistics to work out correctly, see [80] for details. Also

141

of note is that the individual fluxes were kept separate at the time of the ensemble

creation so that which fluxes and backgrounds were used in a particular test could

be varied at will. This was extremely helpful, as it made it possible to remove the

backgrounds when they were distracting from testing other components.

Comparing the SigEx output over the many of sets in an ensemble, certain char-

acteristics of the results are expected. In particular the distributions of the Pull and

Bias (defined below) are expected to be Gaussian distributed, with centriods consis-

tent with zero and, in the case of Pull, a standard deviation consistent with 1. The

test of the SigEx was to see if this was indeed the case for its output.

8.6.1 Pull and Bias

For each fake data set signal extraction, the MCMC procedure produces a posterior

distribution for each parameter. The “best fit” value for each parameter is then

retrieved by either taking the mean of the posterior distribution or by fitting a function

(either a Gaussian or a two-sided Gaussian) to the distribution. Since we will be

comparing our results against a Minuit-type fitter, we fit our results to an interated

Gaussian fit and use the centriod (µ) of the Gaussian as the value of the parameter,

and the σ of the Gaussian as the uncertainty on that parameter. Figure 8-1 is a

sample fit.

The Pull and Bias are defined for each parameter and are viewed in terms of the fit

results of that parameter for each set in an ensemble. For the rest of this discussion,

we will be looking at things in terms of an individual ensemble and will assume that

context. For each data set, we get a set of parameter values ~α. Since we now have a

collection of vectors, let the first subscript define which parameter we are referring to,

and the second subscript define which fake data set it is extracted from. For example,

the centriod of the ith parameter (say, P0) from the jth data set (the ensemble is, in

some sense the set {j}) will be denoted µi,j. Then the pull for a given parameter and

data set is defined as

Pi,j =
µi,j − µ̄i,j

σi,j
(8.10)

142

Figure 8-1: A sample iterated Gaussian fit. This is from the Signal Only Day/Night
pull/bias test, for parameter P2

and the Bias is defined as

Bi,j =
µi,j − µ̄i,j

µ̄i,j
(8.11)

where µ̄i,j is the expected value, i.e. that used to generate the fake data set (the value

in the case of a systematic or other parameter, the mean in the case of a number of

events in a flux).

For each parameter, a histogram is made of Pi,j over all j’s. A Gaussian is then fit

to this distribution (Figure 8-2 is a sample fit). The centriod of this Gaussian gives

the value of the Pull for that parameter for the ensemble and is the quantity we are

interested in. We expect it to be consistent with zero. We expect the distribution to

have a “width” (as defined by the σ of the Gaussian) of 1. The Bias Bi,j is treated

identically save that there is no expectation for the width of the Bias distribution -

its width can be anything and is not particularly interesting.

One note of caution is necessary when dealing with parameters with constraints.

If run naively, using the same constraint term for all sets, the distribution of pulls

will be much too narrow. To deal with this, the mean value of the constraint needs

to be varied - the idea being that if this really were an ensemble of experiments run

143

Figure 8-2: A sample Gaussian fit of a set of Pulls. This is from the Signal Only
Day/Night pull/bias test, for parameter P2

independently, each would have a different measured value of the mean of the external

constraint (due to the limits of our ability to measure the constraint value as reflected

in its uncertainty). To simulate this, the value of each constraint is drawn from a

Gaussian with mean and width equal to the measured constraint value. See [80] for

more information.

8.6.2 Signal only, no Day/Night

The ensemble tests were done in order of increasing complexity. The simplest fake

data set to use was one where there were no systematics, no backgrounds, and

no Day/Night difference - Pierre Luc’s pee lma highstats data sets were used here.

Hence, in this first round of tests, only NC, CC, ES and ESµτ were included on

the PMT side, and only the 8B signal on the NCD side. This was before PSA was

implemented, so the NCDs were treated very similarly to how they were treated in

[63]. The parameters varied in this set of data sets were P0, P1, P2, the 8B scale

(labeled BoronFlux in the plots), NCD Efficiency (labeled EffNCD in the plots) and

PMT Efficiency (labeled EffPMT in the plots). One point of concern is that the

144

pee lma highstats data sets were generated with a third-order polynomial survival

probability (so it had a P3 value), but these fits were done assuming a second-order

polynomial. A second-order polynomail was used since all subsequent fake data sets

used second order, and this was decided by the 3-Phase group to be the appropriate

order to use in the actual extraction. This does not seem to have been a problem

with the results, as we will see below.

Due to limits of computing resources available, each run (a full SigEx for a single

fake data set) was limited to 25000 steps, with the first 1000 steps rejected as burn-

in. Two concerns immediately present themselves: if the burn-in period is sufficiently

long, and if enough steps have been taken. This is especially a concern when the other

MCMC-type method uses much longer runs, often 10 times a many steps. Thankfully,

there are simple methods for determining if these are sufficient.

For the burn-in period, three checks are needed. The most primitive is to look at

the (log) likelihood as a function of step number and make sure that it has converged,

indicating that the equilibrium (best-fit) value of the parameters has been reached.

Convergence is indicated by the value becoming relatively stable. It will still fluctu-

ates, but to a much smaller degree. Figure 8-3 shows the expected behavior. The

second is to do the same for each parameter - occasionally a parameter will be able

to vary without noticably changing the likelihood (for example, if two parameters

are strongly correlated and are changing together in a non-random way). The third

is to arrange an extremely long run and make sure that it converges to the same

equilibrium value. Additionally, the burn-in period can be artificially shortened by

simply starting the MCMC near the equilibrium value, which is very easy when we

know the values used to construct the fake data sets.

For determining if a sufficient number of steps have been taken, it is important

to realize that it is independent steps that are important. The Autocorrelation,

described in section 7.5, is a measure of how many steps need to be taken before the

parameter values at a step are not correlated with the values at an earlier step.

The resulting values of Pull are plotted in Figure 8-4, with the widths of the Pull

distributions in Figure 8-5. As noted, the ideal situation is to have the Pull values

145

Figure 8-3: Sample log likelihood v. step plot showing burn-in

consistent with zero and the Pull widths consistent with 1. Here, all of the pulls

are within two standard deviations of zero, and all of the widths are consistent with

1, indicating a successful test. The Biases are a bit less clear, though they are all

acceptable. The “raw” Bias (as defined above) is shown in Figure 8-6. The parameter

P2 is not as well determined as many of the other parameters, as indicated by the very

large error bar on its Bias (again, this error is the uncertainty in the centriod of the

Gaussian fit). Its Bias is still consistent with zero, however. Unfortunately, it makes

the other Biases hard to see, so Figure 8-7 shows the Biases scaled by the width of the

distribution of the Bias, i.e. µ
σ

for each Bias Gaussian fit, with uncertainties scaled

appropriately. From this we see that all Biases are consistent with zero.

8.6.3 Signal only, with Day/Night

For the rest of the ensemble tests, Pierre Luc’s data set pee lma highstats v4 was

used. This includes a Day/Night difference and a second order Pee polynomial. In

this section, as in the previous, no systematics and no backgrounds are included, so

only NC, CC, ES and ESµτ are included on the PMT side and the 8B signal on the

NCD side. The varied parameters now include the Pee asymmetry terms, bringing the

146

Figure 8-4: Centriod (with errors from Gaussian fit) of Pulls for parameters in Signal
Only, no Day/Night studies

Figure 8-5: Distribution width (with errors from Gaussian fit) of Pulls for parameters
in Signal Only, no Day/Night studies

147

Figure 8-6: Centriod (with errors from Gaussian fit) of Bias for parameters in Signal
Only, no Day/Night studies

Figure 8-7: Centriod (with errors from Gaussian fit) of Bias, divided by the width of
the Bias distribution, for Signal Only, no Day/Night studies

148

Figure 8-8: Centriod (with errors from Gaussian fit) of Pulls for parameters in Signal
Only, Day/Night studies

total parameters to P0, P1, P2, A0, A1, the 8B scale (labeled BoronFlux in the graphs),

the PMT Efficiency (labeled EffPMT) and the NCD Efficiency (labeled EffNCD). The

results for Pull values are shown in Figure 8-8, Pull widths are shown in Figure 8-9,

Bias values are shown in Figure 8-10 and Bias divided by Bias width is shown in

Figure 8-11. Here we see that the results aren’t quite as ideal as before, especially

for P0, P1 and P2. The Pull widths are all consistent with 1, but both the Bias

and Pull values for the P ’s are not consistent with zero, or at least are marginally

so. While this seems like a problem, much of this was resolved in the next section,

when Backgrounds were included. In the process of including the backgrounds, it was

discovered that a small adjustment to the expected number of events in the CC, ES

and ESµτ was missing - the presence of Pee slightly adjusts the relative amounts of

the these three fluxes, which we had not accounted for when determining the correct

MC to Data ratio.

149

Figure 8-9: Distribution width (with errors from Gaussian fit) of Pulls for parameters
in Signal Only, Day/Night studies

Figure 8-10: Centriod (with errors from Gaussian fit) of Biases for parameters in
Signal Only, Day/Night studies

150

Figure 8-11: Centriod (with errors from Gaussian fit) of Biases, divided by width of
the Bias distribution, in Signal Only, Day/Night studies

8.6.4 Backgrounds, no Systematics

The next set of Pull/Bias tests included everything in the previous section as well as

the backgrounds available in Pierre Luc’s fake data: external neutrons (labeled Ex),

NCD photodisintigration (labeled ncdpd), D2O photodisintigration (labeled d2opd),

K2 hotspot photodisintigration (labeled k2pd), K5 hotspot photodisintigration (la-

beled k5pd) and atmospheric events (labeled atmos). Cable events were not included.

Each background had a very small number of events relative to the main fluxes (CC,

ES, NC) and thus had a small impact on the fits. They were almost entirely con-

strained by their measured constraints, which became apparent when the widths of

the posterior distributions was the same as the width of the constraint. The Pull

values are shown in Figure 8-12, the Pull widths are shown in Figure 8-13, and the

Bias divided by the width of the bias distribution is shown in Figure 8-14. The

results shown here are from a set of tests performed after the next section (the sys-

tematics) and include several corrections discovered after the initial set of pull/bias

tests, and include the PSA contraint. These results are in excellent agreement with

151

Figure 8-12: Centriod (with errors from Gaussian fit) of Pulls for parameters in
Day/Night studies with backgrounds but no systematics

expectations.

8.6.5 Systematics, no Backgrounds

The next component of the signal extraction tested was the implementation of the

systematics. These were subdivided into groups called Energy, XY and CosTheta.

Due to an oversight, a few Z direction position systematics were not put through

this test, but should behave identically to the X and Y position systematics. The

Winter spectrum uncertainty was also not tested. These tests were all performed with

backgrounds turned off, to both speed up and simplify the tests. Note that these tests

were performed before the ones in the previous section. They do not include all of

the final corrections or the PSA constraint. We decided not to rerun them due to

time constraints, as each test took several weeks, but are confident that their results

would show improvement similar to that between sections 8.6.3 and 8.6.4.

The Energy tests included the systematics Energy Scale (this was before the dis-

tinction between the energy scale and correlated energy scale was made), the diurnal

asymmetry on the energy scale, the directional asymmetry on the energy scale, the

152

Figure 8-13: Distribution width (with errors from Gaussian fit) of Pulls for parameters
in Day/Night studies with backgrounds but no systematics

Figure 8-14: Centriod (with errors from Gaussian fit) of Biases, divided by width of
the Bias distribution, for parameters in Day/Night studies with backgrounds but no
systematics

153

P
0 P
1

P
2

B
or

on
F

lu
x

P
M

T
E

ffi
ci

en
cy

N
C

D
E

ffi
ci

en
cy A

0 A
1

E
ne

rg
yS

ca
le

E
ne

rg
yS

ca
le

A
D

iu
rn

al

E
ne

rg
yS

ca
le

A
D

ir

E
ne

rg
yR

es

E
ne

rg
yR

es
A

D
ir

E
ne

rg
yN

on
Li

n

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

PullsPulls

Figure 8-15: Centriod (with errors from Gaussian fit) of Pulls for parameters in
Energy systematics set

energy resolution, the directional asymmetry on the energy resolution and the energy

non linearity. The pulls are shown in Figure 8-15, the pull widths in Figure 8-16, and

the biases divided by the width of the bias distribution in Figure 8-17. The offsets

for the energy scale and P2 are large, but at a bit more than 2 σ were considered

marginally acceptable.

154

P
0 P
1

P
2

B
o

ro
n

F
lu

x

P
M

T
E

ff
ic

ie
n

cy

N
C

D
E

ff
ic

ie
n

cy A
0

A
1

E
n

er
g

yS
ca

le

E
n

er
g

yS
ca

le
A

D
iu

rn
al

E
n

er
g

yS
ca

le
A

D
ir

E
n

er
g

yR
es

E
n

er
g

yR
es

A
D

ir

E
n

er
g

yN
o

n
L

in

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

PullWidthsPullWidths

Figure 8-16: Distribution width (with errors from Gaussian fit) of Pulls for parameters
in Energy systematics set

Figure 8-17: Centriod (with errors from Gaussian fit) of Biases, divided by width of
the Bias distribution, for parameters in Energy systematics set

155

Figure 8-18: Centriod (with errors from Gaussian fit) of Pulls for parameters in the
XY systematics set

The XY tests included the systematics x shift, y shift, the xyz scale, the diurnal

asymmetry on the xyz scale, the directional asymmetry on the xyz scale, and the three

xy resolutions (constant, linear and quadratic). The pulls are shown in Figure 8-18,

the pull widths in Figure 8-19 and the biases in Figure 8-20. The large pull for the xyz

scale is not a concern, it merely reflects that the xyz scale variable has an asymmetric

uncertainty with more weight in the negative direction.

156

Figure 8-19: Distribution width (with errors from Gaussian fit) of Pulls for parameters
in the XY systematics set

Figure 8-20: Centriod (with errors from Gaussian fit) of Biases, divided by width of
the Bias distribution, for parameters in the XY systematics set

157

Figure 8-21: Centriod (with errors from Gaussian fit) of Pulls for parameters in
CosTheta systematics set

The final set of systematics tests, the CosTheta tests, included the systematics

cos(θsun) resolution, the directional asymmetry on cos(θsun) resolution and the energy

dependent fiducial volume. The pulls are shown in Figure 8-21, the pull widths in

Figure 8-22 and the biases in Figure 8-23. The large uncertainty on the cos(θsun)

resolution and the large bias on P2 are due to a fitting error. Unfortunately, the raw

data is no longer available to correct this.

8.7 Comparison between methods

8.7.1 1
3 fake data comparison

The major comparison tests between the three SigEx methods was a 1
3

fit. This is

a fit over a fake data set with one third of the statistics of the real data set, so a

third of the statistics used thus far in fake data sets. The reason for this change

was preparation for the next stage - a test on a third-statistics real data set. For

testing and process development purposes, SNO creates a data set with one third of

the full statistics with some small changes to the data. This allows code to be tested

158

Figure 8-22: Distribution width (with errors from Gaussian fit) of Pulls for parameters
in CosTheta systematics set

Figure 8-23: Centriod (with errors from Gaussian fit) of Biases, divided by width of
the Bias distribution, for parameters in the CosTheta systematics set

159

on realistic data without breaking blindness, in the hopes of catching any errors that

may still be lurking.

Since this is an ensemble test, many different fake data sets were fit. In this case, 45

data sets in one ensemble and 45 in a different, nearly identical ensemble. The second

ensemble, called the “Alternate Seed”, was exactly that - the same input parameters

with the random number generator reseeded, resulting in slightly different data sets.

Since so many data sets were fit, a reduced set of systematics and backgrounds were

used to reduce computation time. Also, some of the systematics used different values

than those listed in Section 4.6. The full list of systematics and backgrounds used

appears in Table 8.4. As always, the four main fluxes (CC, ES, ESµτ and NC), P0,

P1, P2 and A0, A1 were present.

As per usual, the output of the MCMC was fit with Gaussians and the mean

(µ) and standard deviation (σ) of the Gaussian fit were used as the fit value and

uncertainty, respectively. These values (labelled RO in the graph) are compared to

QSigEx (Pierre-Luc Drouin’s SigEx, labelled PL) and UASigEx (Shahnoor Habib’s

SigEx, labelled SH). Each graph is for a single parameter, showing the three SigEx’s

values together for each data set. Only the “primary” values are compared: 8B Scale

(called BoronFlux, Figure 8-24), P0 (Figure 8-25), P1 (Figure 8-26), P2 (Figure 8-27),

A0 (Figure 8-28) and A1 (Figure 8-29). Similar graphs were made for the alternate

seed and showed very similar results.

The comparison results are summed up in two tables. Table 8.5 is the “average”

value, and it is simply that - an unweighted average. The uncertainty on that value

is a little misleading, as it is the uncertainty treating the uncertainties (σ’s) from the

fits as the uncertainties on the values, rather than the fit uncertainties. It is most

likely a significant overestimation, though the fit uncertainties would produce an

underestimation, as the fitted value for a particular set is known better than the size

of the fluctuations between sets. Unfortunately, this information was not available

for all three methods.

160

Systematic Value
NCD NC Efficiency 1.000000± 0.012905
PMT NC Efficiency 1.000000± 0.023697
Energy Scale Correlated (aE0 c) 0.0000± 0.0041
Energy Scale (aE0) 0.0000± 0.0081
Energy Scale Diurnal Asymmetry (ANCDdiurnal) 0.0000± 0.0038

Energy Scale Directional Asymmetry (ANCD,ESdir) 0.0000± 0.0099
Energy Resolution, e− (b0(e−)) 0.000000± 0.016184∗

Energy Resolution, n (b0(n)) 0.0000± 0.0119∗

Position Scale, xyz (ax,y,z1) 0.000± 0.009
cos(θsun) Resolution (aθ0) 0.00± 0.12
cos(θsun) Resolution Directional Asymmetry (AESdir) 0.000± 0.069
Background Number of Events1

ex 6.918± 3.484
d2opd 2.768± 0.429
atmos 8.227± 1.633
ncdpd 1.979± 0.678
k2pd 3.134± 0.497
k5pd 2.793± 0.327
hepcc 4.281± 0.000
hepes 0.356± 0.000
hepnc 0.385± 0.000

Table 8.4: Systematics and backgrounds used for 1
3

comparison. Symbols in paren-
thesis correspond to those in Section 4.6
∗ these values are 100% correlated and vary as the same parameter multiplied by a
constant
1 These are events in the PMTs. In the actual fit, the number of events is incorporated
in to the TimesExpected quantity and the floated parameter is a scaling factor of
mean 1

161

Run
0 5 10 15 20 25 30 35 40 45

B
o

ro
n

F
lu

x

0.85

0.9

0.95

1

1.05

1.1

Means for BoronFlux

RO

PL

SH

Means for BoronFlux

Figure 8-24: Comparison between the three SigEx’s, for BoronFlux

Table 8.6 shows the “average difference”, defined as

∑
j

2
|µj,RO − µj,SH |
σj,RO + σj,SH

Where j represents a set in the ensemble, and the RO v. SH subscripts represent

different fitter results. This is the average “number of σ’s” that the fitter results differ

by (with the σ’s averaged). The absolute value was chosen over the square to prevent

over-penalizing excursions. Since the 3-Phase group agreed that 0.5σ was the largest

acceptable difference, this test was considered successful.

It is interesting to note that there is a systematic difference between the methods,

particularly for BoronFlux. This difference is thought to occur due to the MCMC

method integrating out parameters, as P0 and BoronFlux have a very strong corre-

lation. This tends to give a difference between a Minuit-type fitter, which returns

the values at the point of maximum likelihood, and an MCMC-type process, which

returns the posterior distribution.

162

Run
0 5 10 15 20 25 30 35 40 45

P
0

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Means for P0

RO

PL

SH

Means for P0

Figure 8-25: Comparison between the three SigEx’s, for P0

Run
0 5 10 15 20 25 30 35 40 45

P
1

-0.1

-0.05

0

0.05

0.1

0.15

Means for P1

RO

PL

SH

Means for P1

Figure 8-26: Comparison between the three SigEx’s, for P1

163

Run
0 5 10 15 20 25 30 35 40 45

P
2

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

Means for P2

RO

PL

SH

Means for P2

Figure 8-27: Comparison between the three SigEx’s, for P2

Run
0 5 10 15 20 25 30 35 40 45

A
0

-0.2

-0.1

0

0.1

0.2

0.3

Means for A0

RO

PL

SH

Means for A0

Figure 8-28: Comparison between the three SigEx’s, for A0

164

Run
0 5 10 15 20 25 30 35 40 45

A
1

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Means for A1

RO

PL

SH

Means for A1

Figure 8-29: Comparison between the three SigEx’s, for A1

Normal seed
Parameter RO PL SH
BoronFlux 0.979± 0.093 1.002± 0.093 0.987± 0.093
P0 0.331± 0.052 0.321± 0.049 0.327± 0.056
P1 −0.012± 0.028 −0.013± 0.027 −0.007± 0.042
P2 0.002± 0.014 0.002± 0.014 0.000± 0.025
A0 0.026± 0.099 0.034± 0.099 0.03± 0.10
A1 0.025± 0.087 0.030± 0.094 0.021± 0.099

Alternate seed
BoronFlux 0.973± 0.092 1.002± 0.093 0.982± 0.094
P0 0.328± 0.051 0.328± 0.050 0.333± 0.059
P1 −0.011± 0.028 −0.010± 0.028 −0.005± 0.042
P2 −0.001± 0.015 −0.000± 0.014 −0.002± 0.028
A0 −0.012± 0.097 0.014± 0.098 0.00± 0.10
A1 0.003± 0.092 0.006± 0.096 0.00± 0.10

Table 8.5: Average value of each measured parameter for each SigEx. Uncertainties
are from fitted uncertainties (σ of fit Gaussian) rather than fitting uncertainties.

165

Normal seed
Parameter RO v. PL RO v. SH PL v. SH
BoronFlux 0.249 0.181 0.201
P0 0.207 0.246 0.216
P1 0.13 0.219 0.254
P2 0.166 0.26 0.275
A0 0.139 0.256 0.225
A1 0.139 0.309 0.319

Alternate seed
BoronFlux 0.312 0.189 0.221
P0 0.198 0.229 0.244
P1 0.281 0.241 0.303
P2 0.244 0.218 0.28
A0 0.345 0.256 0.273
A1 0.275 0.186 0.249

Table 8.6: Average difference of each measured parameter between pairs of SigEx’s

8.7.2 Conclusion

The analysis code has now been tested on many fronts. It was shown to not have

any significant pull or bias, with or without backgrounds and systematics. It was also

shown to produce the same fit results as the other two analyses performing signal

extraction on our shared data sets. Since all analyses were developed independently,

this indicates the extraction is being performed correctly - it is extremely unlikely all

three analyses made the same mistake. Thus we decided that the analysis was ready

to run on the real data.

166

Chapter 9

Results

9.1 1/3 Data set

SNO analyses are all blinded. The full data set is not available until the analysis is in

its final state, at which point no more changes are allowed. This is a common practice

in particle physics, with the aim of preventing analysts from unconsciously biasing

their results. Instead, SNO relies on both an extensive amount of MC simulations

and a “1
3

data set”. The latter is a random selection of real data events, with one

third the statistics of the full data set. This allows for a test of the analysis machinery

on real data, without the danger of the final result being revealed, as the statistical

uncertainties are significantly larger. Table 9.1 shows the results from running this

analysis on the 1
3

data set. Results both including the LETA constraint, giving the full

three phase analysis, and not including this constraint, giving only the NCD phase

results, are shown. The LETA results improve the uncertainties dramatically for the

parameters correlated with LETA (explained in Section 8.2). Ideally, these results

would be compared against the other two competing analyses. However, that would

not be an apples-to-apples comparison in this case, as the other two analyses looked

at the 1
3

data set earlier in the process than we did. In the intervening time, several

of the systematics values changed as the result of other analyses wrapping up, and it

was not practical for any of the analyses to be rerun to extract comparable results.

Instead, we relied on the agreement in the simulated data sets of Section 8.7.

167

Parameter with LETA without LETA
BoronFlux 0.930+0.046

−0.052 0.985+0.098
−0.099

PMTEfficiency 0.999+0.030
−0.028 1.001+0.026

−0.027

NCDEfficiency 1.010+0.020
−0.028 1.000+0.024

−0.022

P0 0.303+0.028
−0.028 0.275+0.047

−0.040

P1 −0.002+0.012
−0.013 −0.010+0.024

−0.026

P2 (−2.1+4.6
−5.1)× 10−3 −0.005+0.012

−0.012

A0 0.064+0.056
−0.055 0.086+0.097

−0.100

A1 0.025+0.042
−0.048 0.068+0.103

−0.089

ExFlux 1.13+0.50
−0.48 1.06+0.48

−0.50

AEx −0.000+0.011
−0.010 −0.001+0.011

−0.011

D2OFlux 1.03+0.14
−0.16 1.00+0.16

−0.15

AD2O −0.01+0.11
−0.11 −0.01+0.12

−0.11

k2pd 1.02+0.15
−0.16 1.00+0.17

−0.17

k5pd 0.99+0.18
−0.17 1.00+0.17

−0.16

ncdpd 1.05+0.32
−0.31 1.00+0.37

−0.33

atmos 0.97+0.21
−0.18 0.99+0.20

−0.22

EnergyScaleCorr (2.7+2.6
−2.7)× 10−3 (−0.2+4.5

−3.9)× 10−3

EnergyScale (−1.9+8.4
−7.0)× 10−3 (2.7+8.2

−9.2)× 10−3

EnergyScaleADiurnal (0.4+3.8
−4.0)× 10−3 (0.1+3.7

−4.0)× 10−3

EnergyScaleADir (0.7+9.6
−10.)× 10−3 (0.5+10.

−9.8)× 10−3

EnergyRes 0.019+0.012
−0.016 0.019+0.014

−0.014

EnergyResADir 0.000+0.012
−0.011 0.001+0.011

−0.012

EnergyNonLin (0.6+4.6
−5.0)× 10−3 (−0.2+7.5

−7.0)× 10−3

EDepFidVol (−1.7+7.9
−6.0)× 10−3 (−0.6+8.7

−7.0)× 10−3

CosThetaRes 0.017+0.109
−0.099 0.02+0.12

−0.11

CosThetaResADir 0.016+0.052
−0.083 −0.011+0.068

−0.073

XShift 0.5+3.6
−4.3 0.7+3.9

−4.4

YShift −0.7+4.1
−3.7 −0.6+3.9

−3.7

ZShift 4.7+4.5
−4.2 5.1+3.8

−4.2

XYZScale (0.9+2.5
−6.9)× 10−3 (0.6+2.8

−7.0)× 10−3

XYZScaleADiurnal (0.1+1.4
−1.6)× 10−3 (−0.2+1.5

−1.4)× 10−3

XYZScaleADir (0.1+1.8
−1.9)× 10−3 (−0.1+1.8

−1.8)× 10−3

XYResConst 0.067+0.027
−0.030 0.065+0.028

−0.029

XYResLin (−4.7+6.0
−6.3)× 10−5 (−5.0+5.8

−6.1)× 10−5

XYResQuad (3.8+2.1
−1.9)× 10−7 (3.9+2.1

−1.9)× 10−7

ZScale (−0.1+1.7
−1.1)× 10−3 (−0.1+1.7

−1.2)× 10−3

ZResConst 0.077+0.022
−0.034 0.072+0.027

−0.031

ZResLin (1.09+0.90
−0.76)× 10−4 (1.10+0.87

−0.79)× 10−4

Winter −0.02+0.73
−0.67 0.01+0.99

−0.97

Table 9.1: Results from 1
3

data set. The “with LETA” column are results including
the LETA constraint, the “without LETA” are results with no LETA constraint, i.e.
results from just the NCD phase data.

168

Figure 9-1: The data (shown in black) compared to the best fit results (distorted
MC, in red). The components of the MC are shown, most notably CC in blue, NC in
green and ES in yellow. The figure on the left is the Day portion of the fit, the right
is the Night. This is the distribution in energy E, labeled “ke” in the graph.

Figure 9-2: The data (shown in black) compared to the best fit results (distorted
MC, in red). The components of the MC are shown, most notably CC in blue, NC in
green and ES in yellow. The figure on the left is the Day portion of the fit, the right
is the Night. This is the distribution in ρ3, labeled “r3” in the graph.

9.2 Full data set

Once we were confident that the simulated data and 1
3

data results made sense, we

were ready to run our analysis on the final data. Due to the blind analysis, our

analysis was “frozen” at this stage, so no changes to code or configuration files was

allowed. Step size tuning was done on simulated data before this point. The results of

the final signal extraction are shown in Table 9.2. The best fit results are compared

to the data in three 1-D projections: E in Figure 9-1, ρ3 in Figure 9-2 and cos(θsun) in

Figure 9-3. These figures are shown as an indication that the fit behaved reasonably,

but as 1-D projections do not accurately reflect the fitting process.

169

Figure 9-3: The data (shown in black) compared to the best fit results (distorted
MC, in red). The components of the MC are shown, most notably CC in blue, NC in
green and ES in yellow. The figure on the left is the Day portion of the fit, the right
is the Night. This is the distribution in cos(θsun), labeled “cstsun” in the graph.

At this stage, the three analysis results were compared again, shown in Table 9.3.

As is apparent, the agreement between the three methods is nearly perfect. Since the

coordination between analyses was mostly limited to shared input parameters and

Monte Carlo, we take this to mean that the analyses correctly extracted the physics

parameters.

To convert the results in to more physical units, we multiply by the input 8B

neutrino flux of 5.69× 106 cm−2s−1. This gives a measured total νx neutrino flux

of (5.26± 0.20)× 106 cm−2s−1. The νe flux is given by multiplying this by P0, giv-

ing approximately (1.65± 0.12)× 106 cm−2s−1. These are consistent with the NCD

phase results in [57]. The day/night asymmetry is measured to be

0.044+0.037
−0.031 + (−0.018± 0.028)(Eν − 10), where Eν is in MeV. This is consistent with

zero, and all earlier measurements, but is an improvement in uncertainty over earlier

phases of SNO. The cumulative results of the measurements of the total neutrino flux

and the Day/Night asymmetry (in the νe flux) are shown in Table 9.4 and graphically

in Figures 9-4 and 9-5. The values for asymmetry in table and graph are only the

constant term A0, as only LETA and this analysis allowed for energy dependence.

170

Parameter Value
8B Scale 0.925± 0.035
P0 0.314+0.020

−0.018

P1 (5.9± 8.4)× 10−3

P2 (−1.0± 3.3)× 10−3

A0 0.044+0.037
−0.031

A1 −0.018± 0.028
PMTEfficiency 0.997± 0.027
NCDEfficiency 0.999± 0.023
ExFlux 0.89± 0.50
AEx −0.000± 0.011
D2OFlux 1.02± 0.17
AD2O 0.01± 0.12
k2pd Scale 0.99± 0.16
k5pd Scale 1.00± 0.17
ncdpd Scale 0.99+0.34

−0.31

atmos Scale 0.97± 0.19
EnergyScaleCorr (−0.5± 2.7)× 10−3

EnergyScale (3.5± 9.0)× 10−3

EnergyScaleADiurnal (1.1± 3.8)× 10−3

EnergyScaleADir (2.6+9.9
−8.9)× 10−3

EnergyRes 0.016± 0.013
EnergyResADir 0.000± 0.012
EnergyNonLin (0.6± 5.0)× 10−3

EDepFidVol (−3.8+6.4
−5.5)× 10−3

CosThetaRes 0.06± 0.11
CosThetaResADir −0.014± 0.069
XShift 0.9± 4.2
YShift −1.6+3.9

−3.3

ZShift 4.9+4.2
−3.7

XYZScale (0.7± 5.5)× 10−3

XYZScaleADiurnal (−0.1± 1.4)× 10−3

XYZScaleADir (−0.1± 1.8)× 10−3

XYResConst 0.072± 0.031
XYResLin (−5.4± 6.3)× 10−5

XYResQuad (3.6± 2.1)× 10−7

ZScale (0.0+1.6
−1.2)× 10−3

ZResConst 0.073± 0.028
ZResLin (1.13+0.88

−0.74)× 10−4

Winter 0.04± 0.77

Table 9.2: Results from the signal extraction for the full, final data from SNO.

171

Parameter RO PL SH
8B Scale 0.925± 0.035 0.921± 0.035 0.921± 0.036
P0 0.314+0.020

−0.018 0.319± 0.018 0.321± 0.020
P1 (5.9± 8.4)× 10−3 0.002± 0.008 0.005± 0.008
P2 (−1.0± 3.3)× 10−3 −0.001± 0.003 −0.002± 0.003
A0 0.044+0.037

−0.031 0.044± 0.034 0.048± 0.035
A1 −0.018± 0.028 −0.017± 0.027 −0.015± 0.028

Table 9.3: Comparison between final results for all three signal extraction methods.
“RO” is this analysis, “PL” is QSigEx by Pierre-Luc Drouin and “SH” is UASigEx by
Shahnoor Habib. Details of the other analyses are available in [49]. Only the primary
signal results are shown. The agreement between the analyses is excellent. Note that
the values for PL and SH are as of July 1, 2011, after box opening.

Phase 8B A0

D2O 6.42+1.57
−1.57

+0.55
−0.58 0.070± 0.049+0.013

−0.012

Salt 4.94+0.21
−0.21

+0.38
−0.34 0.037± 0.040

LETA 5.046+0.159
−0.152

+0.107
−0.123 0.027± 0.043

NCD 5.54+0.33
−0.31

+0.36
−0.34 N/A

3-Phase 5.26± 0.20 0.044+0.037
−0.031

Table 9.4: The extracted 8B total neutrino flux and Day/Night asymmetry in νe flux
for each phase of SNO. νe flux is not shown due to differences introduced by spectral
distortions making numbers not directly comparable. Note that only the constant
part of the asymmetry is shown, and that the asymmetry for NCD was subsumed
into the 3-Phase analysis. Units are 106 cm−2 s−1 for 8B, none for asymmetry (it is
a ratio).

172

Figure 9-4: The measured total (all flavor) 8B neutrino flux from the sun for each
phase of SNO.

Figure 9-5: The measured day/night asymmetry for each phase of SNO. Note that
A0 is used for the LETA and 3-Phase measurements, as the previous phases did not
allow for energy dependence.

173

Figure 9-6: tan2(θ21) v. ∆m2
21 contours for SNO 3-Phase results. This does not

include external measurements from other experiments, which remove the lower con-
tours on the left graph. Taken from [81].

9.3 Physics Interpretation

For the reasons outlined in Chapter 2, neutrino oscillations and the MSW effect con-

vert νe generated in the sun in to the measured proportions of νe and νµ,τ . We can

approximate the oscillations with the two neutrino model, so that the physical pa-

rameters that drive this process are the mass difference ∆m2
21 and the mixing angle

θ21. These are the physical parameters that SNO is designed to measure. Converting

the extracted signal parameters (8B flux, Pee and APee) to these physics parameters

is not simple, however. The MSW effect aspect requires modeling the neutrino’s pas-

sage both through the sun and the Earth, and must be done numerically. As this

is so complicated, an entire subgroup of SNO, called PhysInt, is dedicated to this

task. We do not attempt to reproduce this analysis, instead we quote their results

[81]. The graph of tan2(θ21) v. ∆m2
21, using only the results from SNO’s 3-Phase

analysis, is shown in Figure 9-6. The best fit values are tan2(θ21) = 0.420+0.034
−0.0.36 and

∆m2
21 = 6.06+2.20

−1.76 × 10−5eV2.

174

Chapter 10

Conclusion

We have measured the Day/Night effect at SNO, using the data from all three phases.

This is, in many ways, the final result of the entire SNO project, as it uses all of the

solar neutrino data measured by SNO. In doing this, we have reduced the uncertainties

on the measured values of the total neutrino flux from the sun and the day/night

asymmetry. In addition, we have attempted to measure the energy dependence of

both the survival probabilty and the day/night asymmetry, but have found both to be

consistent with zero. We are confident that we have extracted these values correctly,

as two other analyses within SNO perform the same extraction independently and

arrive at the same results.

From these refined measurements, SNO has improved its contribution to the mea-

surements of the neutrino mixing parameters ∆m2
21 and tan2(θ12). Understanding

the values of these parameters is very important to many upcoming experiments, as

most less well understood neutrino properties can only be measured if the oscillation

parameters are well understood. In addition, by improving our understanding of the

neutrino we press forward in our quest to understand the particles that make up our

universe and how they behave.

175

Appendix A

Code Usage for rottSigEx

A.1 Introduction

For the NCD phase of SNO, the first signal extraction used a Markov Chain Monte

Carlo (MCMC) method [63], then new to the SNO project. For the Day/Night aspect

of the NCD phase, we decided to use this method again, as it has many benefits. It

properly integrates “nuisance parameters” (systematics), is able to handle a large

number of parameters and is “embarrassingly parallel”, i.e. very easy to run across

multiple computers simultaneously. With so many parameters (more than 50 for the

full data set with all systematics and backgrounds), this is a crucial feature.

While we considered just taking the code used in [63] and updating it to suit

the needs of this project, we instead decided to re-write everything from scratch.

Two main reasons drove us to this decision: we wanted code that would be more

object-oriented and flexible, and we wanted code that was independent of the other,

competing signal extractions for the NCD day/night (one of which did take the code

from [63] and update it).

At its core, rottSigEx runs the Metropolis algorithm, discussed in Chapters 7 and 8.

The likelihood function evaluated is the Extended Likelihood, with the “parent” pdf

that the data is compared against generated by binning MC simulation events. Some

of the fit parameters are systematics, which are applied to the MC events at the

time of binning, so the resultant histogram is rebuilt at each step in the Metropolis

176

algorithm. The output is the posterior distribution for each of the parameters. This

can then be fit if one chooses; a program to fit gaussians to the results is supplied

with the main program.

A.2 What’s in the box

In its current incarnation, rottSigEx compiles five executables:

• rottSigEx.exe is the principal program. This actually runs the MCMC

• metaConfig.exe is a conversion program to translate from the “meta” config file

format (more human readable) to the config file format used by rottSigEx.exe

• autoFit.exe fits Gaussians (with some options) to the results of a run of

rottSigEx.exe

• getAutoCorr.exe computes the autocorrelation of each parameter in the MCMC

results, useful for finding optimal step sizes

• drawResults.exe creates a set of plots showing binned data v. binned MC for

the parameters its given, useful for checking reasonableness of results

Of these, only rottSigEx.exe is actually necessary. We highly recommend using

metaConfig.exe as well, as the “native” config file format used by rottSigEx.exe is

very error-prone when written by hand. The other three are post-processing utilities,

included for convenience.

The code itself is C++ and compiles against CERN’s Root, available at

http://root.cern.ch [82]. If Root is installed properly, simply running make should

be sufficient to build the program. Unfortunately, due to speed requirements it may

be necessary for the user to add systematic functions, which must be present at

compile time (i.e. the code itself must be edited). This should be a minimal change,

and is detailed later.

177

A.3 rottSigEx.exe

This section details the usage of the main program. This description assumes that you

are writing meta files rather than directly writing config files. In addition, it assumes

a basic working knowledge of the Metropolis algorithm and the MC events → pdf

process. Since the code is still a work-in-progress, I’ll strive to highlight potential

pitfalls and known places where the error handling may not catch problems.

A.3.1 Objects

This term has two meanings here: objects in the sense of “Object-Oriented” (i.e.

C++ classes) and in the sense of things in the program you can manipulate. Here we

discuss the latter. The code has several “layers” of objects.

At the top is the MCMC itself. It keeps track of the MCMC status (step, parame-

ter values, likelihood value), the “pure” parameters (numbers that are varied, but not

associated with any other object; they are independent objects in this description),

and computes the Likelihood functions not associated with another object (these are

called LogLikelihoodFormulas, and are also independent objects). The MCMC also

handles I/O. Options can be passed to the MCMC directly to control its behavior,

called directives.

The MCMC contains a number of Pdfs, each of which serves one function: it takes

a list of the current parameter values, and hands back an Extended Likelihood. These

are then summed and added to those computed by the MCMC. Each Pdf corresponds

to and keeps track of a data set {~x}; the dimension of events ~xi determines the

dimension of the Pdf. Currently, 1-D and 3-D Pdfs are available. The binned pdf

created from the MC data is also stored here and has the same number of dimensions

as the data. Each dimesion has an Axis, which is an object in its own right. In

addition, the Pdf needs to know what branches are present in the MC events. If

multiple MC sets are used, they all need to have those branches. This may require

the creation of dummy branches.

Each Pdf contains a number of Fluxes and Systematics, and a number of Axes

178

equal to Pdfs dimension. Each Flux keeps track of a set of MC events and its normal-

ization. Each Systematic is a function applied to a subset of the Fluxes on an event-

by-event basis. These are the “lowest level”, containing no further (user-accessible)

parts.

A.3.2 Parameters, Names and Keys

At each step in the MCMC, each element of the set of parameters ~α is incremented.

This is still true for the code implementation, though a step width of zero (no step)

is allowed. However, ~α can be more complicated here - it is, in some sense, just a

collection of real numbers that are varied, that the user can combine in almost any

way he or she sees fit.

Parameters can be created explicitly as “pure” parameters (see section A.3.7), i.e.

parameters not associated with anything. Additionally, whenever a Flux, Systematic

or Background is created, a parameter with the same name is created automatically.

For Fluxes these automatic parameters have a special meaning (see sections A.3.9 for

details). These parameters can be combined using the AsymmFunc system described

in section A.3.11. Since the program keeps track of everything by its Name, each pa-

rameter must have a unique Name, including those that are automatically generated.

So each Flux, Sys, Bkgd and Parameter must be uniquely named.

In the meta file, everything is described by key pairs (which become unique when

expanded in to the Config file). Except for new, every command in the meta file

must be of the form Key=Value or Key = Value (these spaces are ignored), where

Value is either an integer, a floating point number (read in as a Double t) or a string

(which cannot have spaces in it); which one it is depends on the Key being used.

See sec A.3.4 examples of use, and the appropriate section below for valid Keys for a

particular object.

179

A.3.3 Program behavior

The program begins by reading in the config file and using that information to create

and set up all the appropriate objects, and set up the output file and TTree. It

then initializes all parameters and computes the Log Likelhood (LL) for these initial

parameter values, to create the “step zero” starting point for the MCMC.

The code then runs the Metropolis algorithm. At a given step, the code:

1. Creates a proposed value for each parameter by adding to it a draw from a

Gaussian of mean zero and width specified by the user (constant throughout

the program), giving ~̃α

2. Computes any parameters whose values are altered by an AsymmFunc

3. Computes the LL contribution from any LogLikelihoodFormulas and checks to

see if any pure Parameters are outside their minimum or maximum (if specified),

and computes their contraints’ contributions to the LL

4. Gives a Pdf the current list of parameter values and asks it for its contribution

to the LL. It does this for each Pdf in order of appearance in the meta file (this

order shouldn’t matter). Each Pdf:

(a) Checks to see if any parameters it “owns” are out of their bounds

(b) Rebuilds the MC pdf by:

i. Emptying the histogram

ii. Taking an MC event from a Flux

iii. Passing this MC event through each Sys that affects it, in the order

they appear in the meta file (order may matter here), giving the new

value for the event

iv. Filling this event into the histogram (only using those values which

correspond to Pdf dimensions), with a weight of

InternalUseWeight*FluxName/TimesExpected (see A.3.9)

v. Repeating this for each event in the Flux

180

vi. Repeating this for each Flux (in the order of appearance, though order

shouldn’t matter)

vii. Checking that no bins are zero or negative, and setting any that are

to a nominal value (currently 1e-10)

viii. Dividing each histogram bin by that bin’s volume (width, area, etc)

to “normalize” it to a proper un-normalized pdf

(c) Takes each data point ~xi, asks the MC pdf for its value at that point to

get p(~xi|~̃α) and computes the ELL

(d) Computes the LL contributions from constraints on any parameters it

“owns”

(e) Returns this LL

5. Compares computed LL with LL from previous step to decide if to accept step

(see Chapter 7)

6. If step is accepted, updates parameter list, if not, discards proposed parameters

7. Records current parameter list in TTree

8. Every 100th step, AutoSaves TTree

9. After all steps are taken, saves TTree to output file and exits

A.3.4 Basic meta file

The only control we have over the process in section A.3.3 is in setting up the system.

Via the mechanism of the config file, we can create parameters, set step sizes, control

the behvior of the MCMC to a certain degree, set up AsymmFuncs and LogLikeli-

hoodFormulas, command the creation of any combination of objects, etc. But then

the code runs its prescribed process. The config files themselves must have unique

keys for each command, accomplished via a numbering system. This turned out to

be difficult to keep track of, since mis-numbering caused odd behavior, so I created

181

the much more readable meta files. Running metaConfig.exe converts from meta

file to config file. Currently, the code only accepts config files.

Every meta file consists of some number of directives to the MCMC, to control

how many steps to take, where to save files, etc; the creation of at least one Pdf, and

at least on Flux inside that Pdf, plus a number of Axis objects equal to the dimension

of the Pdf. Most also have some Systematics as well, and a few pure Parameters. An

example of a simple metafile is:

MCMC_ChainLength=5000

MCMC_PrintFrequency=100

OutputFilename=results_test.root

new Pdf

Name=SimpleTest

Dimension=1

MCBranch=Energy

DataFile=fakeData.root

DataTree=data

new Axis

Name=Energy

Bin=0

Bin=0.1

Bin=0.3

Bin=0.7

Bin=1

new Sys

Name=AddConst

Init=0.1

Width=0.01

182

Mean=0.1

Sigma=0.05

new Flux

Name=Sim

File=fakeMC.root

Tree=mc

TimesExpected=5

Min=0

Init=1

Width=0.01

In general, a new object is created with the new command. metaConfig.exe

knows about the heirarchy of objects, so any Axis, Flux, etc. created will go in the

Pdf most recently created. Between one invocation of new and the next, commands

apply to the “active” object. So Name=AddConst above gives the Systematic the name

“AddConst”. Note that commands to the MCMC directly and the creation of pure

Parameters can occur anywhere and ignore heirarchy rules.

Working through the sample file one line at a time (skipping repeats):

MCMC_ChainLength=5000 tells the MCMC to take 5000 total steps

MCMC_PrintFrequency=100 tells the MCMC to print its status to stdout at every

100th step, useful if something goes wrong

OutputFilename=results_test.root sets the output file. This defaults to the cur-

rent directory. This file will contain a single TTree named Tmcmc, this can be

overridden (see A.3.6)

new Pdf creates a new Pdf, at this stage with undefined characteristics

Name=SimpleTest gives the Pdf the name “SimpleTest”

Dimension=1 sets SimpleTest to be a 1-D Pdf

MCBranch=Energy tells SimpleTest that its Fluxes will contain the branch Energy. If

183

we wanted more branches (for example, if there was a branch “TrueEnergy” that was

the input simulation energy, useful for altering resolutions), we just add an additional

line MCBranch=TrueEnergy

DataFile=fakeData.root tells SimpleTest that its data is located in the file fake-

Data.root

DataTree=data tells SimpleTest to look for a TTree named data for its data

Bin=0 Tells the Energy Axis the location of bin boundaries. In this case, it has 4

bins, [0, 0.1), [0.1, 0.3), [0.3, 0.7) and [0.7, 1]

Init=0.1 tells the MCMC that the parameter AddConst takes the value 0.1 initially,

before stepping starts

Width=0.01 tells the MCMC that the parameter AddConst should be incremented

by a Gaussian draw with σ = 0.01 at each step

Mean=0.1 and Sigma=0.05 tell the pdf SimpleTest that the parameter AddConst has

a Gaussian constraint of mean 0.1 and σ = 0.05, which is added as a penalty term to

the Likelihood computed by SimpleTest

File=fakeMC.root tells the Flux Sim that the MC events for it are in the file

fakeMC.root

Tree=mc tells Sim to look for a TTree named mc for its events

TimesExpected=5 tells Sim that it has 5 times as many MC events as it expects for

data events, i.e. its simulation had “five experiments” worth of simulated events.

This acts as a normalization, more on that in A.3.9

Min=0 tells the MCMC that the parameter Sim has minimum 0. If it is ever below

this value, it returns Likelihood zero (i.e. it cannot take this step). Since we’re using

Log Likelihoods here, it actually returns a very large negative value (but not negative

infinity)

184

A.3.5 new

As mentioned, the new command creates a new object. Valid objects to create are:

Pdf, Sys, Flux, Axis, Parameter and LogLikelihoodFormula. They must obey the

heirarchy: to create a Flux, Sys, or Axis, a Pdf must already exist for it to “live

in”. At any given time, only the most recently created object is “active” and any

commands given apply to it. MCMC Directives ignore this rule and can be anywhere

in the file, but I’ve found it easiest to just include all of them at the beginning of the

file to prevent confusion later.

A.3.6 MCMC Directives

A number of commands can be given to the MCMC to change its behavior. A few

of these are necessary and showed up in the sample file. If a command isn’t present,

a default value is assumed, listed with that command below. A full listing of these

commands and their consequences is:

MCMC_ChainLength=integer sets the total length of the chain. DynamicSteps are

taken first, then normal steps. If this number is less than MCMC_DynamicSteps, it is

ignored. If it isn’t present, the MCMC defaults to 1000 steps.

MCMC_DynamicSteps=integer tells the MCMC to take steps where the step size is

allowed to vary, with the goal that the chain take 23.5% steps. This was implemented

for testing and is described in Section 7.5. Default is 0.

MCMC_PrintFrequency=integer controls how often the MCMC prints its status to

the screen, setting it to print every nth step. Useful for making sure the chain is still

going and checking on its status as it is running. Default is 1 (i.e. every step).

MCMC_SkipSteps=integer originally was going to control how many “burn-in” period

steps to skip when making graphs, but all of the graphing programs take that input

separately and ignore this now. Defaults to 0.

MCMC_UseAsymmetry=true/false tells the MCMC whether to check for Asymm-

Funcs. It must be set to true if AsymmFuncs are being used. See section A.3.11 for

185

more details. Default is false.

MCMC_SaveProposed=true/false tells the MCMC whether to save the proposed val-

ues for each step as well as the accepted. These are the values ~̃α generated by varying

the parameters. If the step is rejected, these values are lost if this set to false, but

the output files are half the size. Useful for debugging. Default is true.

MCMC_SaveUnvaried=true/false tells the MCMC whether to save the value of pa-

rameters with width ≤ 0, i.e. those that aren’t varied by the MCMC. Often useful

for debugging. Setting this to false gives smaller output files. Default is true.

RandomSeed=integer sets the seed for the TRandom3 that generates the random

numbers needed throughout the MCMC process. Default is 0, i.e. a random seed

based on the clock time, among other things.

OutputDirectory=string sets the directory to which MCMC writes output files.

Default is . (current directory).

OutputFilename=string sets the output filename. It is concatenated with the Out-

putDirectory internally, so putting the directory string as part of the file name has

the same result as setting OutputDirectory. Default is results.root.

OutputTreeName=string sets the name of the TTree created in the output file. De-

fault is Tmcmc.

A.3.7 Parameter

A “pure” parameter is one not associated with another object. It is simply a number

that is varied when the parameters are varied by the MCMC. It can be altered with

an AsymmFunc. To create one, use new Parameter. Required settings are Name,

Init and Width. Name must be unique. If Width is ≤ 0, this Parameter will not be

varied (though AsymmFunc can still change its value). Valid Keys are:

Name=string sets the name. Must be unique. If this isn’t present, an error message

is generated and setup fails.

Init=double sets the initial value. Error and setup failure if not present.

186

Width=double sets σ for the Gaussian drawn from at the incrementing step for this

variable. If Width is ≤ 0, parameter is not incremented. Error and setup failure if

not present.

Mean=double creates a Gaussian constraint for this parameter. Sets µ of this con-

straint to Mean. If this is present and Sigma is not, an error is generated and setup

fails. If neither is present, no constraint. See Sigma for more details.

Sigma=double creates a Gaussian constraint for this parameter. Sets σ of this con-

straint to Sigma. This constraint gives LL contribution −(α− µ)2

2σ2
. If this is present

and Mean is not, an error is generated and setup fails. If neither is present, no con-

straint.

Min=double sets the minimum value for the parameter. If its value goes below Min,

the returned LL is −1e200, effectively − inf, so no step is taken. If this is not present,

no minimum.

Max=double sets the maximum value for the parameter. If its value goes above Max,

the returned LL is −1e200, effectively − inf, so no step is taken. If this is not present,

no maximum.

AsymmFunc=string creates an Asymm function for this parameter. See section A.3.11.

If this is not present, no AsymmFunc.

AsymmPar=string sets a parameter for the Asymm Func. See section A.3.11. If this

is present and AsymmFunc isn’t, an error is returned and setup fails.

A.3.8 Pdf

A Pdf is a basic building block of the system. It contains a data set and the corre-

sponding histogram for the binned probability distribution for that data. Its dimen-

sion must be specified and a number of Axis objects equal to that dimension must be

created. The data must be stored in a TTree in a .root file, and only the branches

that have the same name as an Axis will be used. All events in the data set must

be in the range of the bins defined in the Axis. If this isn’t the case, the behavior

187

is undefined (and is likely to be a program crash, or at least very strange behavior),

since this will involve requesting binned pdf values outside the range where they are

defined. Any number of MCBranches can be defined, these describe the branches that

the MC events in the various Fluxes will have. This will cause all Fluxes to have the

same branches, and only those branches will be used. Each Axis name must have a

corresponding MCBranch and each set of MC events must have branches with the

same names as the Axis objects. Valid Keys are:

Name=string sets the name. Must be unique. If this isn’t present, an error message

is generated and setup fails.

Dimension=integer sets the dimension of the Pdf. A number of Axis variables equal

to this Dimension must be created in the Pdf. Only dimensions 1 and 3 are currently

available. If this isn’t present, an error message is generated and setup fails.

DataFile=string sets the location of the file containing the data events. Can include

a directory string, assumes current working directory otherwise. The file must contain

the TTree named in DataTree. If this isn’t present, an error message is generated

and setup fails.

DataTree=string sets the name of the TTree containing the data events, in the file

DataFile. Must contain branches with the same names as the Axis objects. If this

isn’t present, an error message is generated and setup fails.

MCBranch=string tells the Pdf to look for a branch of this name in the TTrees con-

taining the MC events in the Flux objects. To have the Pdf look for more than one

branch (necessary for 3D Pdfs, useful for any Pdf), simply call this for each branch.

They will be numbered (in the order called) internally. Must be called at least a

number of times equal to the Dimension of the Pdf.

A.3.9 Flux

A Flux object must live in a Pdf object, so a Pdf must be created (with new) before

a Flux is created. Each Flux contains one set of MC events. When this is created, a

188

parameter with the same Name as the Flux is created. During the filling of the MC

binned pdf, the Flux hands events to the Pdf, and they are filled in to the Pdf with

weight Name*InternalUseWeight/TimesExpected. InternalUseWeight is an inter-

nally created MC branch that is used for reweighting procedures, see section A.3.10

for more details. The TimesExpected nominally is used to keep track of how many

“experiments worth” of MC you have, i.e. if the MC contains 500 times the events

you expect for that particular signal in your data, a TimesExpected of 500 gives a

nominal value of 1 to the automatic parameter. Another option is TimesExpected set

to the number of events in your analysis window, then the nominal value of the au-

tomatic variable is the number of data events. These MC events are not restricted to

being in the range specified by the Axis objects; events outside the range are ignored.

This is imporant for any Systematic that changes the effective analysis window (say

by adding a constant to the energy or position) - if this happens, there need to be MC

events in the new region or the log likelihood will not give the correct value. Fluxes

can also have a FluxNumber assigned, which is a distinguishing feature used by the

Sys to decide which Flux to act on (so if you have a systematic that you want to act

on this Flux and not others, give it a distinct FluxNumber). Any number of Pdfs can

share the same FluxNumber. Valid Keys are:

Name=string sets the name. Must be unique. If this isn’t present, an error message

is generated and setup fails.

Init=double sets the initial value of the automatic parameter. Error and setup fail-

ure if not present.

Width=double sets σ for the Gaussian drawn from at the incrementing step for the

automatic parameter. If Width is ≤ 0, parameter is not incremented. Error and setup

failure if not present.

Mean=double creates a Gaussian constraint for the automatic parameter. Sets µ of

this constraint to Mean. If this is present and Sigma is not, an error is generated and

setup fails. If neither is present, no constraint. See Sigma for more details.

Sigma=double creates a Gaussian constraint for the automatic parameter. Sets σ of

189

this constraint to Sigma. This constraint gives LL contribution −(α− µ)2

2σ2
. If this is

present and Mean is not, an error is generated and setup fails. If neither is present,

no constraint.

Min=double sets the minimum value for the automatic parameter. If its value goes

below Min, the returned LL is −1e200, effectively − inf, so no step is taken. If this is

not present, no minimum.

Max=double sets the maximum value for the automatic parameter. If its value goes

above Max, the returned LL is −1e200, effectively − inf, so no step is taken. If this is

not present, no maximum.

AsymmFunc=string creates an Asymm function for the automatic parameter. See

section A.3.11. If this is not present, no AsymmFunc.

AsymmPar=string sets a parameter for the Asymm Func. See section A.3.11. If this

is present and AsymmFunc isn’t, an error is returned and setup fails. File sets the

location of the file containing the MC events. Can include a directory string, assumes

current working directory otherwise. The file must contain the TTree named in Tree.

If this isn’t present, an error message is generated and setup fails.

Tree=string sets the name of the TTree containing the MC events, in the file File.

Must contain branches with the same names as the MCBranches of the Pdf this Flux

is in. If this isn’t present, an error message is generated and setup fails.

TimesExpected=double weights each MC event when the binned pdf is filled with

(automatic variable)*InternalUseWeight/TimesExpected. If this isn’t present, an

error message is generated and setup fails.

FluxNumber=integer sets the FluxNumber of the Flux. This allows for Sys to be selec-

tive in which Fluxes they act on, as one of the settings for Sys is which FluxNumbers

to affect. Fluxes can share the same Flux number. Default is -1.

190

A.3.10 Sys

The Sys are functions that are applied to the MC events before they are filled in to

the binned pdf. They can be selectively applied to some Fluxes and not others, and

only apply to Fluxes in the Pdf in which the Sys object resides. A Sys can use any

number of MC branches and parameters in its evaluation, but can only alter (target)

one MC branch. So each Sys is a function taking some number of real values and

returning a single real value. In addition to the MC Branches listed in Pdf, there is

an additional, internal branch created named InternalUseWeight. It is set to 1, but

can be targeted with the Sys to change this value. InternalUseWeight is directly

multiplied by any other weighting for the MC events, so that it effectively acts a

relative weight for MC events. Since multiple Sys may (and usually do) apply to the

same Flux (and hence to the same MC event), the Sys function returns not the new

value of the branch, but the change in that value due to this Sys’s action, so that

each Sys can see the values as they appear in the Flux. The option to look at the

branch values including all changes up to that point (the Sys are applied in the order

they appear in the meta file) is also available, but then the order matters. To make

a Sys apply to only a select subset of the Fluxes, it can be set to only act on certain

FluxNumbers. When a Sys is created, a parameter of the same name is automatically

created. This parameter does not have to be used in the Sys, but must be unique as

it identifies the Sys to the code.

Unfortunately, much of the Sys behavior must still be hard-coded in to the system.

This is due to a combination of speed requirements (the Sys are evaluated for every

MC event, so they are called a lot) and a code upgrade that never got implemented. In

fact, the meta file can only control the behavior of the automatic parameter generated

when Sys is created. All other control is done by directly altering the source files

Sys.cxx and FunctionDefs.h. This must be done with care, as error checking inside

the code is not very thorough.

First, Sys.cxx. In this file, there is a member function Sys::LookupName. In this

function is a very long chain of else-if statements. This is what needs to be edited.

191

An example is:

} else if (nameToGet == "ZRemap_Day"){

sysFunc = new ZRemap();

found &= LookupNameChecker("ZShift",mcmcParNames,’p’)

found &= LookupNameChecker("ZScale_Day",mcmcParNames,’p’);

found &= LookupNameChecker("ZResConst",mcmcParNames,’p’);

found &= LookupNameChecker("ZResLin",mcmcParNames,’p’);

found &= LookupNameChecker("z",branchNames,’d’);

found &= LookupNameChecker("truez",branchNames,’d’);

dataTarget = SearchStringVector(branchNames,"z");

AddFluxAffected(0);

AddFluxAffected(1);

AddFluxAffected(-1);

useMultiply=false;

useOriginalData = true;

}

Each one begins with if (nameToGet == "string"). The “string” here (ZRemap_Day

in the example) is the name of a Sys. This is read in from the config file and matched,

so only the Sys with this name follows the behavior set here, meaning that each Sys

must have a corresponding entry in this else-if table. Part of The Upgrade That Never

Was was to make this more flexible. The next line is sysFunc = new FunctionName(),

where the FunctionName is the name of a class defined in FunctionDefs.h, see the

next paragraph for details. The next set of lines,

found &= LookupNameChecker("ParName",parNamesList,’type’), sets the values

that go in to the Sys function. Each invocation adds a parameter or MC branch

(with name “ParName”), in the order they are called. The next entry, mcmcParNames

or branchNames, selects parameters from the parameter list {~α} or from the list of

MC branches, respectively. The branchNames list includes the automatically gener-

ated InternalUseWeight, used for re-weighting. The final argument, ’type’, must

192

be ’p’ for mcmcParNames and ’d’ for branchNames. This doesn’t affect the ac-

tual functioning of the Sys; it is used to help make the resultant error messages

more clear. It is critically important that all the mcmcPars are listed before the

MC branches, otherwise the Sys will behave in an ill-determined way. The next

line, dataTarget = SearchStringVector(branchNames,"name"), selects which MC

branch the Sys will alter. Only one selection can be made. Also, there is absolutely

no error checking on this, so the name must be spelled correctly, otherwise there is

likely to be a seg fault. Any branch, plus InternalUseWeight, can be targeted. The

AddFluxAffected function tells the Sys which FluxNumbers it should affect. Each

call adds a FluxNumber to affect to the Sys’s list. If this isn’t called at all, it defaults

to affecting all FluxNumbers. Note that a flux with no FluxNumber specified has

FluxNumber −1. The line useMultiply tells the Sys to add its value to the target

branch (if false) or multiply the target branch by the Sys’s value (if true). The latter

is necessary when re-weighting, as the default weight is 1. The line useOriginalData

tells the Sys to use the values the MC event’s branches had before any other Sys has

been applied (if true), or after all Sys up to that point have been applied (if false).

This latter point is important: the order matters. Sys are called in the order they

are listed in the meta file.

In FunctionDefs.h, the functional form of the Sys is specified. This is done by cre-

ating a class that inherits from the class RealFunction (defined in RealFunction.h

and RealFunction.cxx). This function needs to know how many parameters it is

looking for, which must match the number listed in the corresponding selection in

Sys.cxx. Note that a function defined here is not restricted to a single Sys entry;

if there are multiple Sys that use the same function form, it is best to use a single

function for them. An example definition is:

class MultiplyConst : public RealFunction {

public:

MultiplyConst() {

nPars = 2;

parameters = new Double_t[nPars];

193

}

Double_t Eval(const Double_t x) {

return (parameters[0]*parameters[1]);

}

};

Only two things need to be defined: the constructor and the function Eval. The

nPars term defines how many parameters the function takes. The function Eval

actually defines the systematic function. This can call any function in TMath (from

Root) and can use TRandom3 (from Root), though random number draws are very

slow and should be used only if necessary. Note that the way that Sys works needs

this function to return the change in the target value, if useMultiply=false. In the

above case, if this is the only Sys, the resulting value will be xnew = xMC + a0xMC

(where a0 is parameters[0]). Eval takes an argument x, but this is a leftover from

an earlier version and shouldn’t be used. The parameters array has the values of

the mcmcPars and the mcBranches from Sys.cxx. The order is the order selected in

Sys.cxx, with mcmcPars first and mcBranches second (the order mcmcPars first and

mcBranches second is hard-coded, hence why they need to be called in that order in

Sys). A mis-match between nPars and the number of parameters in Sys will result

in undefined behavior, and could cause a seg fault.

In the meta file, the behavior of the automatic parameter sharing the name of

the Sys can be controlled, with the same controls as the Parameters of section A.3.7.

Valid Keys are:

Name=string sets the name. Must be unique. If this isn’t present, an error message

is generated and setup fails.

Init=double sets the initial value. Error and setup failure if not present.

Width=double sets σ for the Gaussian drawn from at the incrementing step for this

variable. If Width is ≤ 0, parameter is not incremented. Error and setup failure if

not present.

194

Mean=double creates a Gaussian constraint for this parameter. Sets µ of this con-

straint to Mean. If this is present and Sigma is not, an error is generated and setup

fails. If neither is present, no constraint. See Sigma for more details.

Sigma=double creates a Gaussian constraint for this parameter. Sets σ of this con-

straint to Sigma. This constraint gives LL contribution −(α− µ)2

2σ2
. If this is present

and Mean is not, an error is generated and setup fails. If neither is present, no con-

straint.

Min=double sets the minimum value for the parameter. If its value goes below Min,

the returned LL is −1e200, effectively − inf, so no step is taken. If this is not present,

no minimum.

Max=double sets the maximum value for the parameter. If its value goes above Max,

the returned LL is −1e200, effectively − inf, so no step is taken. If this is not present,

no maximum.

AsymmFunc=string creates an Asymm function for this parameter. See section A.3.11.

If this is not present, no AsymmFunc.

AsymmPar=string sets a parameter for the Asymm Func. See section A.3.11. If this

is present and AsymmFunc isn’t, an error is returned and setup fails.

A.3.11 AsymmFunc

The AsymmFunc system is used to alter the values of parameters in user-specified

ways, rather than just the random draw used to vary them. The basic idea is that

AsymmFunc defines a function, using the notation of Root’s TF1, which is added to the

parameter’s value. The reason for adding rather than replacing is an artifact of how

this is implemented: it uses the machinery of Sys. The AsymmPar then specify what

parameters to use in the function. An example use is:

new Parameter

Name=NCFlux

Init=0

195

Width=-1

AsymmFunc=[0]*[1]-[2]

AsymmPar=BoronFlux

AsymmPar=PMTEfficiency

AsymmPar=NCFlux

This takes the Parameter NCFlux and sets its value to be

NCFlux + BoronFlux*PMTEfficiency - NCFlux = BoronFlux*PMTEfficiency

In this case, the NCFlux parameter isn’t varied because its value is irrelevant - it is

entirely replaced by the combination. This doesn’t have to be the case, of course.

The notation of AsymmFunc is that each number in a set of square brackets is a

parameter (of TF1); there cannot be spaces in the function definition (due to parsing

issues). Any parameter defined in the meta file is valid to use, and the function itself

can use any combination of basic C++ operation and functions defined in TMath.

Random numbers are not available here, which should not be a strong constraint

as the parameters are randomly varied. The AsymmPar correspond to the parameters

[i], numbered in order of appearance starting with 0. There is limited error checking

on the parameter numbers: the system should give an error if too high of a parameter

number is requested in the AsymmFunc, but will not if a number is missing. This can

be problematic for long functions, especially when they are changed; exercise caution.

A.4 metaConfig.exe

This section can be safely skipped by most users. It details what happens during the

conversion process from the human-readable meta file to the less-readable (but still

human readable, just much harder to follow) config file.

The config file format used by rottSigEx.exe is parsed and read-in by the class

described by ConfigFile.h. This is the only code reused from [63], as it was down-

loaded from elsewhere to start with. The basic premise is that the config file consists

of Key-Value pairs, similar to the meta file. The major differences are that each Key

196

must be unique, the order that the keys appear in does not matter at all, and the

existence of objects is kept track of by a numbering system.

The metaConfig.exe system is fairly simple: it keeps a running total of each kind

of object present. When the first Pdf is created with new, the Pdf counter is set to

0. Until new is called again, the system then adds Pdf 0 to the beginning of each

command, so that

Name = FirstPdf

is converted into

Pdf 0 Name=FirstPdf

A special case here is MCBranch, which has its own numbering system, so that every

time it is called it is incremented. As an example

MCBranch= energy

MCBranch=x

is converted into

Pdf 0 MCBranch 00=energy

Pdf 0 MCBranch 01=x

When new is called again for an object inside a Pdf, such as Axis, that counter begins

incrementing. Then a command is appended with Pdf 0 Axis 0 , assuming this is

both the first Pdf and the first Axis. Bin is again a special case with its own counting

system, but this time the format is slightly different, as

Bin=1

becomes

Pdf 0 Axis 0 Bin00=1

All of counters under a particular object are reset when new is called for that object,

so if new Pdf is called, the first call of MCBranch=y will give

Pdf 1 MCBranch 00=y

This pattern is repeated for every object with sub-objects. Those that interact

directly with the MCMC, however, are kept track of separately. The MCMC directives

are just copied, as they take the same form in both the config and meta files. The

Parameter counter is never reset, calling new Parameter anywhere in the meta file

197

increments it.

One word of caution is that the metaConfig.exe program does very little error

checking. It will return errors if it encounters something it can’t translate into a

config file, such as creating a Axis without first creating a Pdf. It will also return an

error if it encounters a command it doesn’t recognize - both in the sense of commands

that don’t conform to the pattern key=value, and in the sense of calling something

like new Banana, as it does not recognize an Banana class. Anything else that fits the

valid patterns will be allowed. It is thus essential to run a test run of any config file

through rottSigEx.exe to make sure setup completes properly.

A.5 Other Programs

The other three programs included, autoFit.exe, drawResults.exe and getAutoCorr.exe,

are simple enough that the built-in help is sufficient. This can be accessed by running

either the the program with no arguments or with the argument --help.

198

Bibliography

[1] P. C. de Holanda and A. Yu Smirnov. Lma msw solution of the solar neutrino
problem and first kamland results. JCAP, 0302:001, 2003.

[2] Wolfgang Pauli. On the earlier and more recent history of the neutrino. In Klaus
Winter, editor, Neutrino Physics, pages 1–25. Cambridge University Press, 1991.

[3] J. Chadwick. Verh. d. deutschen Phys. Ges., 16:383, 1914.

[4] C. D. Ellis and W. A. Wooster. Proc. R. Soc. A, 117:109, 1927.

[5] L. Meitner and W. Orthmann. Z. Phys., 60:143, 1930.

[6] Frederick Reines and Clyde L. Cowan. The neutrino. Nature, 178:446–449,
September 1956.

[7] Raymond Davis. Attempt to detect the antineutrinos from a nuclear reactor by
the cl37(ν, e−)a37 reaction. Phys. Rev., 97(3):766–769, Feb 1955.

[8] G. Danby et al. Observation of high-energy neutrino reactions and the existence
of two kinds of neutrinos. Phys. Rev. Lett., 9(1):36–44, Jul 1962.

[9] K. Kodama et al. Final tau-neutrino results from the donut experiment. Phys.
Rev. D, 78(5):052002, Sep 2008.

[10] A. Heister et al. Single and multi-photon production in e+e− collisions
at
√
s up to 209 gev. The European Physical Journal C, 28:1–13, 2003.

DOI:10.1140/epjc/s2002-01129-7.

[11] K. Nakamura et al. JPG, 37, 2010. http://pdg.lbl.gov.

[12] C. S. Wu, E. Ambler, R. W. Hayward, D. D. Hoppes, and R. P. Hudson. Exper-
imental test of parity conservation in beta decay. Phys. Rev., 105(4):1413–1415,
Feb 1957.

[13] F.J. Hasert et al. Search for elastic muon-neutrino electron scattering. Physics
Letters B, 46(1):121 – 124, 1973.

[14] Christian Iliadis. Nuclear Physics of Stars. Wiley-Vch, 2007.

199

[15] John N. Bahcall, M. H. Pinsonneault, and Sarbani Basu. Solar models: Cur-
rent epoch and time dependencies, neutrinos and helioseismological properties.
Astrophysical Journal, 555:990–1012, 2001.

[16] John N. Bahcall, Aldo M. Serenelli, and Sarbani Basu. New solar opacities, abun-
dances, helioseismology, and neutrino fluxes. Astrophysical Journal, 621:L85–
L88, 2005.

[17] H. A. Bethe. Energy production in stars. Physical Review, 55:434–456, 1939.

[18] L. C. Stonehill, J. A. Formaggio, and R. G. H. Robertson. Solar neutrinos from
cno electron capture. Phys. Rev. C, 69(1):015801, Jan 2004.

[19] Raymond Davis, Don S. Harmer, and Kenneth C. Hoffman. Search for neutrinos
from the sun. Phys. Rev. Lett., 20(21):1205–1209, May 1968.

[20] Bruce T. Cleveland et al. Measurement of the solar electron neutrino flux with
the homestake chlorine detector. The Astrophysical Journal, 496(1):505, 1998.

[21] J. N. Abdurashitov et al. Measurement of the solar neutrino capture rate with
gallium metal. Phys. Rev. C, 60(5):055801, Oct 1999.

[22] W. Hampel et al. Gallex solar neutrino observations: results for gallex iv. Physics
Letters B, 447(1-2):127 – 133, 1999.

[23] M. Altmann et al. Gno solar neutrino observations: results for gno i. Physics
Letters B, 490(1-2):16 – 26, 2000.

[24] S. Fukuda et al. Solar b8 and hep neutrino measurements from 1258 days of
super-kamiokande data. Phys. Rev. Lett., 86(25):5651–5655, Jun 2001.

[25] John N. Bahcall. Solar models and solar neutrinos: Current status. Phys. Scripta,
T121:46–50, Dec 2004. arXiv:hep-ph/0412068v1.

[26] B. Pontecorvo. Neutrino experiments and the question of lepton charge con-
servation. Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 53(5):1717–1725,
1967.

[27] V. Gribov and B. Pontecorvo. Neutrino astronomy and lepton charge. Physics
Letters B, 28(7):493 – 496, 1969.

[28] Ziro Maki, Masami Nakagawa, and Shoichi Sakata. Remarks on the unified model
of elementary particles. Progress of Theoretical Physics, 28(5):870–880, 1962.

[29] David J. Griffiths. Introduction to Elementary Particles. Wiley-Vch, 2008.

[30] Francis Halzen and Alan D. Martin. Quarks and Leptons: An Introductory
Course in Modern Particle Physics. John Wiley and Sons, 1984.

200

[31] Rabindra N. Mohapatra and Palash B. Pal. Massive Neutrinos in Physics and
Astrophysics. World Scientific, 2004.

[32] Alan H. Guth, Lisa Randall, and Mario Serna. Day-night and energy dependence
of MSW solar neutrinos for maximal mixing. Journal of High Energy Physics,
1999(08):018, 1999.

[33] L. Wolfenstein. Neutrino oscillations in matter. Physical Review D, 17(9):2369–
2374, May 1978.

[34] S. P. Mikheyev and A. Yu. Smirnov. Resonant amplification of ν oscillations in
matter and solar-neutrino spectroscopy. Il Nuovo Cimento, 9 C(1):17–26, 1986.

[35] Alessandro Strumia and Francesco Vissani. Neutrino masses and mixings and
. . . . http://arXiv.org/abs/hep-ph/0606054.

[36] E. Kh. Akhmedov. Neutrino physics. Trieste Summer School in Particle Physics
lectures, 1999. arXiv:hep-ph/0001264.

[37] Mattias Blennow, Tommy Ohlsson, and H̊akan Snellman. Day-night effect in
solar neutrino oscillations with three flavors. Phys. Rev. D, 69(7):073006, Apr
2004.

[38] Adam M. Dziewonski and Don L. Anderson. Preliminary reference earth model.
Physics of The Earth and Planetary Interiors, 25(4):297 – 356, 1981.

[39] Kathryn Miknaitis. A Search for Matter Enhanced Neutrino Oscillations through
Measurements of Day and Night Solar Neutrino Fluxes at the Sudbury Neutrino
Observatory. PhD thesis, University of Washington, Seattle, Washington, 2005.

[40] Evgeny Kh. Akhmedov, Maria A. Tórtola, and José W. F. Valle. A simple
analytic three-flavor description of the day-night effect in the solar neutrino flux.
Journal of High Energy Physics, JHEP05, May 2004.

[41] Herbert H. Chen. Direct approach to resolve the solar-neutrino problem. Phys.
Rev. Lett., 55(14):1534–1536, Sep 1985.

[42] Q. R. Ahmad et al. Measurement of the rate of νe + d→ p+ p+ e− interactions
produced by B8 solar neutrinos at the Sudbury Neutrino Observatory. Phys.
Rev. Lett., 87(7):071301, Jul 2001.

[43] Q. R. Ahmad et al. Direct evidence for neutrino flavor transformation from
neutral-current interactions in the sudbury neutrino observatory. Phys. Rev.
Lett., 89(1):011301, Jun 2002.

[44] J. Boger et al. The sudbury neutrino observatory. Nuclear Instruments and
Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors
and Associated Equipment, 449(1-2):172 – 207, 2000.

201

[45] B. Aharmim et al. Measurement of the νe and total 8B solar neutrino fluxes with
the Sudbury Neutrino Observatory Phase-III data set. To Be Published, 2011.

[46] John N. Bahcall. Neutrino-electron scattering and solar neutrino experiments.
Reviews of Modern Physics, 59:505–521, 1987.

[47] S. Nakamura, T. Sato, V. Gudkov, and K. Kubodera. Neutrino reactions on the
deuteron. Phys. Rev. C, 63(3):034617, Feb 2001.

[48] B. Beltran et al. A Monte Carlo simulation of the Sudbury Neutrino Observatory
proportional counters. New J. Phys., To appear, 2011. arXiv:1104.2573v1.

[49] 3-Phase working group. 3-phase unidoc. 2011.

[50] B. Aharmim et al. Determination of the νe and total B8 solar neutrino fluxes
using the Sudbury Neutrino Observatory Phase I data set. Phys. Rev. C,
75(4):045502, Apr 2007.

[51] B. Aharmim et al. Low-energy-threshold analysis of the Phase I and Phase II
data sets of the Sudbury Neutrino Observatory. Phys. Rev. C, 81(5):055504,
May 2010.

[52] W. Winter et al. Measurement of the 8b neutrino spectrum. Nuclear Physics A,
721:C553 – C555, 2003.

[53] G. O. Gann et al. Leta unidoc. SNO Internal Document. http://manhattan.

sno.laurentian.ca/sno/ananoteb.nsf/URL/MANN-7R5LC8.

[54] Q. R. Ahmad et al. Measurement of the rate of νe+ d→ p+ p+ e− interactions
produced by b8 solar neutrinos at the Sudbury Neutrino Observatory. Phys. Rev.
Lett., 87(7):071301, Jul 2001.

[55] Q. R. Ahmad et al. Direct evidence for neutrino flavor transformation from
neutral-current interactions in the sudbury neutrino observatory. Phys. Rev.
Lett., 89(1):011301, Jun 2002.

[56] S. N. Ahmed et al. Measurement of the total active b8 solar neutrino flux at the
sudbury neutrino observatory with enhanced neutral current sensitivity. Phys.
Rev. Lett., 92(18):181301, May 2004.

[57] B. Aharmim et al. Independent Measurement of the Total Active B8 Solar
Neutrino Flux Using an Array of He3 Proportional Counters at the Sudbury
Neutrino Observatory. Phys. Rev. Lett., 101(11):111301, Sep 2008.

[58] Q. R. Ahmad et al. Measurement of day and night neutrino energy spec-
tra at SNO and constraints on neutrino mixing parameters. Phys. Rev. Lett.,
89(1):011302, Jun 2002.

202

[59] B. Aharmim et al. Electron energy spectra, fluxes, and day-night asymmetries
of 8b solar neutrinos from measurements with nacl dissolved in the heavy-water
detector at the sudbury neutrino observatory. Phys. Rev. C, 72(5):055502, Nov
2005.

[60] Scott Oser. Summary of ncd-phase day-night systematics. http://manhattan.

sno.laurentian.ca/sno/ananoteb.nsf/URL/MANN-7UZ56U, 2009.

[61] Jeff Secrest. Energy systematics for the phase III. http://manhattan.sno.

laurentian.ca/sno/ananoteb.nsf/URL/MANN-7CPS49, 2008.

[62] Alain Bellerive. Energy Non-Linearity - NCD Phase. http://manhattan.sno.

laurentian.ca/sno/ananoteb.nsf/URL/MANN-87E4K5, 2010.

[63] Blair Jamieson. SNO NCD phase signal extraction on unblinded data
with integration over systematic nuisance parameters by Markov-chain
Monte Carlo. http://manhattan.sno.laurentian.ca/sno/ananoteb.nsf/

URL/MANN-7NCU9S, 2008.

[64] Alain Bellerive. PMT Radial Scale - NCD Phase. http://manhattan.sno.

laurentian.ca/sno/ananoteb.nsf/URL/MANN-8573HE, 2010.

[65] Pierre-Luc Drouin. Implementation of FTN systematic uncertainties in
NCD phase signal extraction. http://manhattan.sno.laurentian.ca/sno/

ananoteb.nsf/URL/MANN-7CLTE5, 2008.

[66] Blair Jamieson. NCD phase day-night systematic uncertainties from 16N
data. SNO Internal Document, September 2007. http://manhattan.sno.

laurentian.ca/sno/ananoteb.nsf/URL/MANN-76XT65.

[67] Alan Poon. Day-night asymmetry study of the Berkeley Blob position in phase
III, April 2009. http://manhattan.sno.laurentian.ca/sno/ananoteb.nsf/

URL/MANN-7R7NEX.

[68] Helen O’Keefe. Results from diurnal studies of radioactive backgrounds during
the NCD phase of SNO, April 2009. http://manhattan.sno.laurentian.ca/

sno/ananoteb.nsf/URL/MANN-7QWHMF.

[69] Kevin Graham. Directional uncertainties for NSP. http://manhattan.sno.

laurentian.ca/sno/ananoteb.nsf/URL/MANN-5VUQEH, April 2004.

[70] Blair Jamieson. N16 study data. Private communication, February 2008.

[71] F. James. MINUIT reference manual. http://wwwasdoc.web.cern.ch/

wwwasdoc/minuit/minmain.html.

[72] Phil Gregory. Bayesian Logical Data Analysis for the Physical Sciences. Cam-
bridge University Press, 2005.

203

[73] E. T. Jaynes and G. Larry Brelthorst. Probability Theory: The Logic of Science.
Cambridge University Press, 2003.

[74] Radford M. Neal. Probabilistic inference using markov chain monte carlo meth-
ods. Technical Report CRG-TR-93-1, University of Toronto, 1993.

[75] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller.
Equation of State Calculations by Fast Computing Machines. Journal Of Chem-
ical Physics, 21:1087–1092, June 1953.

[76] Yves F. Atchad and Jeffrey S. Rosenthal. On adaptive markov chain monte carlo
algorithms. Bernoulli, 11(5):pp. 815–828, 2005.

[77] Scott Oser. Implementing the ultimate 3-Phase SNO analysis as a meta-
analysis. http://manhattan.sno.laurentian.ca/sno/ananoteb.nsf/URL/

MANN-7PLUFN, 2009.

[78] N S Martin R, Oblath and Tolich N. Pulse-Shape Analysis for the Third Phase of
the Sudbury Neutrino Observatory. XXIV International Conference on Neutrino
Physics and Astrophysics, Athens, Greece, 2010.

[79] Richard J. Wagner. http://www-personal.umich.edu/ wagnerr/ConfigFile.html.

[80] Stan Seibert. Constraints and correlations: Is your pull normal? SNO Inter-
nal Document, 2008. http://manhattan.sno.laurentian.ca/sno/ananoteb.

nsf/URL/MANN-7BRSWV.

[81] Nuno Barros. Neutrino oscillation analysis documentation. SNO Internal Docu-
ment, June 2011.

[82] CERN. Root homepage. http://root.cern.ch.

204

