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In this thesis I present the results of a periodicity study on the neutrino

data collected over the span of the first two phases of SNO, at both low (1

day−1 - 0.1 yr−1) and high (1 day−1 - 0.1 min−1) frequency ranges. The

high frequency study is the first of its kind, and is of particular interest in

that it opens a window into the detection of solar g-mode oscillations, which

have never been conclusively experimentally verified. In a data set with 7,646

neutrino candidates over a period of 698.29 live days, there was no detected

high-frequency periodic signal.

In addition to a wide-range, single-peak high-frequency search, I have per-

formed a directed-region frequency analysis, and a noise-motivated broad-band

vii



analysis. All searches indicate an absence of periodicity in the 8B solar neu-

trino signal as measured by SNO. I have also carried out an analysis of time

dependence in the context of a trigger-less burst search, with the motivation

of either observing neutrinos from an optically occluded supernova, or setting

an upper limit on the senstitivity of our detector for such an observation.

I include discussions of backgrounds to such a search that are specific to a

heavy-water Cherenkov detector such as SNO.
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Chapter 1

Neutrino Physics, Solar Physics,

and Solar Neutrino Physics

1.1 Overview

Neutrinos were first postulated to exist by W. Pauli in 1930[10] as a means of

explaining the results of β-decay experiments: conservation of energy required

the presence of this small, neutral particle to explain the continuous energy

spectrum of the electron in nuclear β-decay. Over twenty years later, in 1956,

neutrinos were experimentally observed by Reines and Cowan[11]. Reines (et

al.) detected electron anti-neutrinos (thought to be neutrinos at the time)

emitted from fission processes in a nearby nuclear reactor. At this point it was

known that neutrinos were not only associated with electrons (i.e. electron

neutrinos, νe) but also with the only other known lepton family member at the

time, the muon (i.e. muon neutrinos, νµ). It was not until the 1970’s that the
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third charged lepton, the tau, τ , was detected[12], and with it, the existence

of a third flavor of neutrino, the tau neutrino, ντ was inferred (and ultimately

detected in 2000).

Neutrinos play a central role in the Standard Model. However, the SM was

developed with the assumption that neutrinos are massless. In contradiction

to the Standard Model framework, it has been demonstrated by independent

experimental evidence from multiple sources (SNO, Super-Kamiokande, Kam-

LAND, MINOS)[13][14][15][16][12] that neutrinos, distinguished by their lep-

ton flavor, can oscillate from one flavor state to another. A neutrino is created

in a weak eigenstate but propagates in the mass basis; it is the difference be-

tween mass eigenstates (∆m2) which allows a neutrino that is produced in one

flavor state to be detected in a different flavor state after propagation. If the

neutrino were massless, there could be no difference in mass eigenstates (i.e.

∆m2 would be zero), and therefore oscillation would not be possible. There-

fore, the myriad results confirming neutrino oscillations also indicate physics

beyond the standard model.

1.2 Neutrinos in the Standard Model

As any system of structure must, the world of particle physics relies on a frame-

work of ’laws’, which has been dubbed The Standard Model. The Standard

Model is a predictive description of the interactions of particles and fields. In

Weinberg’s 1967 paper[17] laying out what is considered to be the most correct

incorporation of leptons into the Standard Model, an important assumption
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was made: due to the lack of experimental observation of chirally right-handed

neutrinos, one should develop the Standard Model with the assumption that

they (right-handed neutrinos) do not exist at all. Working with this assump-

tion, the Dirac mass term in the Standard Model Lagrangian must be zero,

since the neutrino mass component of the general Lagrangian is of the form 1

Lν = m
(
ψRψL + ψLψR

)
(1.1)

where ψL and ψR would be SU(2) doublets:

ψL =

 νL

eL

 and ψR =

 νR

eR


The above Lagrangian term therefore indicates that for the neutrino to

have mass, there must exist a right-handed neutrino, νR, in addition to the

already-detected left-handed neutrino. The right-handed neutrino has never

been experimentally observed (and in its current form in the SM, ψR is actually

a singlet of U(1): ψR = (eR)). However, the weak interaction couples only

to chirally left-handed particles, and as such the only method for physicists

to observe chirally right-handed neutrinos would be through the interaction

of the neutrino with the Higgs boson, which has been predicted but never

observed, since neutrinos only interact via the weak force and gravity. It is

1Here I am dealing with only the Dirac mass term; a Majorana picture differs in its
treatment of νL and νR; they are different ‘versions’ of the same particle. The mass term
in the Lagrangian for the Majorana treatment is of the form M(ψL

c
ψL + h.c.), but this

relation also requires the existence of a right-handed chiral state (if neutrinos have nonzero
mass) and as such, we are safe to use only the Dirac picture in this argument.
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therefore important that we recognize that although the Standard Model did

not predict that the neutrino have mass, it did not exclude the possibility.

1.3 The Standard Solar Model

Much like the standard model for particle physics, a standard solar model

(SSM) describes the fundamental processes at work in our sun, and allows for

predictions about physical conditions outside of our means of direct detection.

By taking into account measurable parameters like luminosity, size, mass and

spectral signature, the conditions throughout the sun can be modeled using

energy transport equations and standard conservation laws.The current SSM

begins with a zero-age sun given all ‘known’ inputs, and evolves the solar

model with the constraint that the evolved model match present-day observed

restrictions.

1.3.1 Our Sun: The Basics

The sun is a fairly standard main-sequence star, with a diameter of roughly

1.4× 106 km and a total mass of 2× 1030 kg. The sun is typically divided into

different regions, or zones, classified primarily by the physical processes that

are dominant in each region (radiative transfer, nuclear fusion, etc.) The main

zones of the sun are, starting from the innermost region and moving outward:

the core, out to ∼ 0.2RJ; the radiative zone, from ∼ 0.2RJ− ∼ 0.7RJ,

where heat energy from the core is transferred via radiation; the convective
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zone, from ∼ 0.7RJ out to the surface, where conditions are not hot enough

for radiation to occur, and therefore energy is transferred via convection; the

photosphere, or surface; and the corona, or solar atmosphere.

The temperature at the surface (5,800 K) differs tremendously from the

calculated temperature at the solar core (15,600,000 K) due to the different

conditions in the different regions. The core, of course, is where nuclear fusion

occurs, generating the energy and pressure which keeps the sun in hydrostatic

equilibrium. The SSM predicts that the dominant fusion process which occurs

in the sun, the pp chain, produces over 98% of solar energy[12]. The pp chain

is based on the conversion of hydrogen into helium:

4p →4 He+ 2e+ + 2νe (1.2)

While the pp chain is the most prolific of the nuclear reactions in the present

solar conditions, there are other higher-energy processes at work as well. The

reactions and relative prevalences are shown in Figure 1.1. SNO is primarily

sensitive to the higher-energy 8B neutrinos, and also has some sensitivity to

neutrinos produced in the hep chain. The different reactions’ neutrino fluxes

as a function of energy are shown in Figure 1.2, the result of the most recent

version (2005) of the Bahcall-Serenelli-Basu SSM[2].
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Figure 1.1: Solar nuclear fusion reactions and their relative branching ratios.
SNO is sensitive to neutrinos produced in both the hep and 8B chains. Taken
from [1]
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Figure 1.2: Predicted solar neutrino flux as a function of energy. SNO is
sensitive to neutrinos produced in both the hep and 8B chains. Figure taken
from [2]
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1.3.2 Inputs of a Standard Solar Model

There are a couple of key equations of stellar evolution and stellar structure

which can be used to infer a great deal about a star. In the case of our sun,

we have a larger pool of data to feed into our stellar evolution model, and as

such we are left with a very complicated set of inter-dependent constraints and

predictions. I will by no means show an exhaustive treatment of the generation

of a standard solar model; this section should serve only to briefly inform the

reader of the basic precepts which come into play when structuring the theory

of a system as complex as our sun.

The fundamental required condition for a stellar model concerns hydro-

static equilibrium; this is the governing principle for all stars, requiring that

any pressure differential (directed radially outward) must be exactly balanced

by an equivalent gravitational pressure (directed inward). This concept of

dynamical balance is what keeps a star ‘alive’ in a sense.

dp

dr
= −Gmρ

r2
(1.3)

where here r is the distance to the center of the sun, p is the pressure,

ρ is the density, m is the mass contained inside a radius r, and G is the

gravitational constant.

A second constraint is simply the relation that the mass within a given

radius should be obtainable by considering the radial density distribution of
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the sun:

m(r) =

∫ r

0

dr4πr2ρ(r) (1.4)

or in differential form,

dm

dr
= 4πρr2 (1.5)

Having considered already the basic dynamics involved in building a work-

ing solar model, we should now look at a basic thermodynamic constraint

which governs stellar structure; the relationship between radiative luminosity

and energy generation,

dL

dr
= 4πρr2ε (1.6)

Here L is the luminosity at a radius r and ε is the rate of energy generation per

unit mass. This is essentially a condition of conservation of energy, in a sense,

among successive layers of the sun; while the surface layers of the sun radiate

away energy in the forms of light and heat, they are fed an equal amount of

energy from layers beneath them. This is all ensuring a stability of the sun;

the sun would quickly become unstable if Equation 1.6 did not hold, and more

energy were radiated out from the sun than was produced inside it.

The solar structure is also, of course, highly dependent on the chemical

composition, and a standard, straightforward constraint on elemental abun-

dances is simply that X + Y + Z = 1, where X is the abundance by mass of

hydrogen, Y is the abundance of helium, and Z includes all elements heavier

than helium. We can relate the pressure, from 1.3, to mass density with the
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ideal gas law, giving an approximate equation of state:

Pg = NkBT (1.7)

P ' ρkBT

µmu

(1.8)

where kB is Boltzmann’s constant, µ is the mean molecular weight of the

sun and mu is the atomic mass unit.

These general equations are no more than a starting point for the devel-

opment of a standard solar model. To generate a working SSM, they must

be backed up with a great deal of additional details concerning the micro-

physics of the solar interior; equations of state, for example, relating nuclear

fusion rates with pressure, temperature, and opacity. Different solar models

use somewhat different formulations for equations of state, but the nuclear

reaction parameters remain fairly consistent among the different models, and

are generally based on the numbers given most recently in [2].

A lot of information about the solar structure is also gleaned from the efforts

of the helioseismology community. Much like terrestrial seismic waves can give

us information about the conditions and different regions of the inner earth,

the inner makeup of the sun can be exposed through the study of acoustic solar

waves. More will be said on this subject in Section 2.3, but it is important to

note that the knowledge and study of pressure waves, or p-waves, at the solar

surface have advanced our understanding of solar structure tremendously, and

results from helioseismic experiments invariably have a central role in the solar
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model calculations [18][19].

1.4 The Solar Neutrino Problem

Soon after Cowan and Reine’s reactor experiment, the idea of detecting neu-

trinos from solar fusion reactions became a reasonable pursuit. As has been

discussed in the previous section, and shown in Figure 1.2, the SSM predicts

that a significant number of electron neutrinos are produced in solar core reac-

tions. This prediction led to the experiment of Ray Davis, in 1968[20], which

set out to determine the actual flux of electron neutrinos from the sun. Quite

surprisingly, the results from Davis’ experiment showed a marked deficit of

electron neutrinos. In subsequent experiments aimed at measuring the solar

neutrino flux, such as SAGE and GALLEX, the results were similar: there

was a discrepancy between the numbers expected for the νe flux and the num-

bers being measured. This deficit came to be known as the Solar Neutrino

Problem, and was ultimately a pivotal reason that the theory of neutrino os-

cillations took hold (though they had been postulated as early as 1957 by B.

Pontecorvo[21]).

The Solar Neutrino Problem could have been caused by three primary

explanations:

1. The Standard Solar Model incorrectly modeled the interior of the sun,

and thus predicted more νes than were actually being produced,

2. The experiments detecting a deficit of solar νs were wrong, or
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3. There was some mechanism by which νes were being transformed into

νµs (or some other type of charge-less lepton).

Though none of these explanations was desirable, the first initially seemed

the most plausible. However, after much re-evaluation of realistic models, the

astrophysical community was only more certain that the SSM had accurately

predicted the fusion rates in and composition of the sun. The second pos-

sibility was not really seen as reasonable as it would have required multiple

independent experiments to be incorrect; a highly improbable solution to the

problem. The most plausible remaining explanation was the mechanism of

oscillation from one flavor state to another.

The solar sector was not alone in its neutrino deficit: the atmospheric

sector had a similar problem, but concerning muon neutrinos. In the atmo-

spheric sector, neutrinos are produced when energetic cosmic rays interact

with molecules in the atmosphere to create a sizable amount of νµs (and νµs)

in the processes:

p+14 N → π+ +X (1.9)

giving the end decay products:

π+ → µ+νµ (1.10)

µ+ → e+νeνµ (1.11)

With this process, there is a predicted ratio of two to one (muon neutrinos

to electron neutrinos). The actual observed ratio is more like 1.3:1, an obvious
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discrepancy[12]. Furthermore, it was found that νµs which had traversed the

earth (upward-going) on their way to being detected were disappearing at a

larger rate than those traversing shorter distances (downward-going), which

agreed with predictions from an oscillation model. Given the deficit of neutri-

nos in both the atmospheric and solar neutrino sectors, with both supporting

a difference in expected flux to measured flux, it is clear that strong evidence

points towards an oscillation theory.

In Figure 1.3, I show the results of a number of different experiments’ mea-

surements of the solar neutrino flux. The predicted values, indicated by the

black markers, disagree with the experimentally measured values, indicated

by the colored markers, except in the case of SNO’s neutral current (NC)

measurement. Because SNO’s NC measurement sampled all three flavors of

neutrinos equally, it is the only evidence which conclusively demonstrates the

appearance of other flavors of neutrinos in addition to the disappearance of the

νes. The combination of results from all experiments shown here demonstrates

the measurement of a discrepancy of νes coming from the sun, and also demon-

strates empirical evidence for the theory of oscillations in the appearance of

νµs and ντ s in the measured solar neutrino flux.

1.5 Neutrino Oscillation

Neutrino oscillations occur because neutrinos are created in flavor eigenstates,

but propagate in the mass basis. This is similar to the quark sector mixing,

in that the eigenstates of the free particle Hamiltonian differ from the flavor
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Figure 1.3: The current experimental contributions to the solution of the
Solar Neutrino Problem. With SNO’s neutral current results, the community
was able to demonstrate the agreement between the Standard Solar Model’s
predicted neutrino flux values and the total detected neutrino flux of all flavors
(as opposed to electron neutrinos only). Figure courtesy of J.R. Klein.
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eigenstates; the free particle Hamiltonian and the weak interaction Hamilto-

nian do not commute. While the flavor states couple to the weak interaction,

diagonalizing the weak interaction Hamiltonian,

Hweak


νe

νµ

ντ

 = λν


νe

νµ

ντ

 , (1.12)

another basis, the mass basis, is required to fully describe the system. The

mass states diagonalize the free particle Hamiltonian (Hfree = p2/2m):

Hfree


ν1

ν2

ν3

 = αν


ν1

ν2

ν3

 (1.13)

In the case of no oscillation, these two bases would be equivalent. How-

ever, in the case of oscillations there is no longer a direct one-to-one relation-

ship between the two bases. The phenomenon of oscillation requires a more

complicated descriptive picture, which is provided in the form of the Maki-

Nakagawa-Sakata-Pontecorvo, U, the unitary mixing matrix which relates the

flavor and mass states in the neutrino sector:
νe

νµ

ντ

 =


Ue1 Ue2 Ue3

Uν1 Uν2 Uν3

Uτ1 Uτ2 Uτ3




ν1

ν2

ν3

 (1.14)
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The theory of oscillations points to the existence of non-zero off-diagonal

elements of the MNSP mixing matrix, U, that connect these two groups of

states.The three-flavor neutrino mixing matrix, U can also be written in a

more ‘leading’ manner:

U =


1 0 0

0 c23 s23

0 −s23 c23

×


c13 0 s13 exp iδ

0 1 0

−s13 exp−iδ 0 c13

×


c12 s12 0

−s12 c12 0

0 0 1


(1.15)

where here, cij = cos θij, sij = sin θij, θij is the mixing angle and δ is the CP

violating phase. The division of Uinto three separate matrices is purposeful,

in that we now have grouped U into an atmospheric (U23), reactor (U13) and

solar (U12) piece. It should be noted here that though there are three known

lepton generations, neutrino mixing is commonly treated only in terms of the

first or last two groups, i.e. mixing between (νe,νµ) or between (νµ,ντ ). This

can be done without loss of generality due to the fact that ∆m23
2 � ∆m12

2

and θ13 is small; the two-flavor treatment of oscillations is physically equivalent

to a reduced parameter three-flavor approach.

1.5.1 The Mechanics of Oscillations

Reducing now to the use of a two-flavor mixing picture, the neutrino can be

represented by two wave packets (different flavors) traveling at different speeds.

These two propagating wave packets create an interference pattern with each

other which will vary with the speed of propagation (and thus a different ratio
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of flavors) at any given point. We can represent the flavor eigenstates by their

relationship (through the unitary mixing matrix, U) to the mass eigenstates:

 νe

νµ

 =

 cos θ − sin θ

sin θ cos θ


 ν1

ν2

 (1.16)

From the time-dependent Schrödinger equation, we can see the time evolution[21]

of the mass states2

 ν1 (~x, t)

ν2 (~x, t)

 =

 e−iE1t|ν1(0)〉

e−iE2t|ν2(0)〉

 (1.17)

which can be written in matrix form,

 ν1 (~x, t)

ν2 (~x, t)

 =

 e−iE1t 0

0 e−iE2t


 ν1(0)

ν2(0)

 (1.18)

Now, we have a method of expressing our flavor eigenstates as a func-

tion of the mass eigenstates, and a method of expressing the mass eigenstates

as a function of time, so we can determine what the evolution of the flavor

eigenstates would be, assuming they are propagating through a potential-free

medium (free-particle):

 νe (~x, t)

νµ (~x, t)

 = U

 e−iE1t 0

0 e−iE2t

U†

 νe (0)

νµ (0)

 (1.19)

2given that i.e. m1 6= m2
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=

 cos θ sin θ

− sin θ cos θ


 e−iE1t 0

0 e−iE2t


 cos θ − sin θ

sin θ cos θ


 νe (0)

νµ (0)


(1.20)

If we now take the mass of the neutrino, mi to be much less than the

momentum, p, we can expand the energy, Ei as:

Ei =
√
p2 +mi

2 ≈ p+mi
2/2p ≈ p+mi

2/2E (1.21)

which then allows us to write Equation 1.19 as:

 νe (~x, t)

νµ (~x, t)

 ≈ e−iptU

 e−im1
2t/2E 0

0 e−im2
2t/2E

U†

 νe (0)

νµ (0)

 (1.22)

and expanding the exponential we see:

 νe (~x, t)

νµ (~x, t)

 ≈ e−iptU

 1− im1
2t/2E 0

0 1− im2
2t/2E

U†

 νe (0)

νµ (0)


(1.23)

given the unitarity of U, we can write this as

| να (~x, t)〉 ≈ e−ipt
(
e
−im†mt/2E
αβ

)
| νβ〉 (1.24)
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This gives us a solution of the Schrödinger equation,

id/dt | να (~x, t)〉 ≈ (m†m/2E) | να〉 (1.25)

with the omission of the phase factor, e−ipt. We can further extend this

setup to determine propagation probabilities for remaining in any initial flavor

state.

We then find, for two-generation mixing (for either Dirac or Majorana mass

pictures):

|να (~x, t)〉 =

 cos(∆m2

4E
)t− i sin(∆m2

4E
)t cos 2θ −i sin(∆m2

4E
)t sin 2θ

−i sin(∆m2

4E
)t sin 2θ cos(∆m2

4E
)t+ i sin(∆m2

4E
)t cos 2θ

 |νβ〉

(1.26)

With this description for the evolution of flavor eigenstates we can deduce

various properties of the neutrino’s state as a function of time as it travels

through vacuum. If we know initially that a neutrino is of the electron variety,

i.e. at time t = 0, we start with |νe (0)〉 = (1, 0)T , we find its transition rate

to be

〈νe (x, t) |νe〉 = cos(∆m2/4E)t− i sin(∆m2/4E)t cos 2θ (1.27)

and similarly, we see that the probability for the electron neutrino to still be

in that same flavor eigenstate after a time t has passed is
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Pνe→νe = |〈νe(x, t)|νe(x, 0)〉|2 = 1− sin2 2θ sin2(∆m2/4E)t (1.28)

Conversely, the probability for an electron neutrino to propagate to a νµ

state after some time t is

Pνe→νµ = |〈νµ(x, t)|νe(x, 0)〉|2 = sin2 2θ sin2(∆m2/4E)t (1.29)

This equation puts oscillation in the context of a mixing angle, θ, which

will tell us the degree to which mixing occurs among different flavors . If

we were to write the above equation, making the substitution[22] that t is

on the order of L, the distance between the source of the neutrinos and the

detector (since νis propagate very near the speed of light, c), we see that

the probabibility of transition is then dependent upon sin2(∆m2/4E)L. Here

we see the importance of the parameter of the distance between a neutrino

source, and a detector of neutrinos, L, where here L is the vacuum oscillation

length, in km, or L = 4πE/∆m2, as well as the energy of the neutrino, E, in

MeV, and the squared mass difference between the two mass eigenvalues, or

∆m2 = (m2
2 −m1

2)eV 2.
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1.6 The MSW Effect

The discussion up until now of neutrino oscillation has been focused solely on

vacuum oscillations, but an equally important treatment of oscillations comes

from considering the behavior of neutrinos as they pass through electron-dense

regions. The survival probability of electron neutrinos is dramatically affected

by the presence of matter; in the context of the sun, this matter effect is

dubbed the MSW effect, for its three creators, Mikheev and Smirnov[23], and

Wolfenstein [24].

When traveling in matter, electron neutrinos experience the potential for

enhanced oscillations due to the fact that in the presence of electrons, electron

neutrinos can interact via exchange of both W bosons and Z bosons – that is,

electron neutrinos can undergo charged current interactions as well as neutral

current interactions – while muon and tau neutrinos are restricted to neutral

current interactions only. The inclusion of the possible charged current inter-

action for the electron neutrino adds an effective potential term, Veff , to the

system’s Hamiltonian, where Veff =
√

2GFNe, and GF is the Fermi constant

and Ne the electron number density. Our Hamiltonian can now be written as

Hmatter = ∆m2/4E

 − cos 2θ + Veff sin 2θ

sin 2θ cos 2θ

 (1.30)

This, then, is the appropriate manner of time-evolving the neutrino wave
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function;

i
d

dt

 νe

νµ

 = Hmatter

 νe

νµ

 (1.31)

The working MSW Hamiltonian is then diagonalized as

 νe

νµ

 = Ũ

 ν̃1

ν̃2

 (1.32)

with

Ũ =

 cos θ̃ sin θ̃

− sin θ̃ cos θ̃

 (1.33)

and ν̃ is the energy eigenstate in matter. The new matter mixing angle, θ̃

is given by

cos 2θ̃ =
−A/∆m2 + cos 2θ√

(A/∆m2 − cos2θ)2 + sin22θ
(1.34)

sin 2θ̃ =
sin 2θ√

(A/∆m2 − cos2θ)2 + sin22θ
(1.35)

where

A = 2
√

2EGFNe (1.36)

In conditions of high electron density, Ne, such as those that exist at the

center of the sun, MSW effects are expected to greatly impact neutrino os-

cillations. MSW ‘resonance’ occurs at A/∆m2 = cos 2θ, indicating a critical
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electron density:

Ne = Ne,crit ≡
1

2
√

2GF

∆m2

E
cos 2θ (1.37)

For electron neutrinos propagating in a medium which satisfies the MSW con-

dition of resonance, oscillations are thus greatly enhanced.
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Chapter 2

Solar Periodicity

The sun is known to have inherent periodic behavior; in addition to the sim-

plistic ‘periodicity’ of the sun’s differential rotation, in which the equator com-

pletes one rotation cycle over a period of roughly 25 days, and the poles over

roughly 35 days, there is also the sunspot cycle, or solar magnetic activity

cycle, with an 11-year period (the period actually varies between 9.5 and 12.5

years). This 11-year sunspot cycle is related to the 22-year period cycle in

which the sun’s magnetic field reverses.

Though periodicities are known to exist in the sun, there is currently no

indication that any of the known periodicities could affect the solar neutrino

flux. As the nuclear fusion rates at the solar core are expected to be stable,

the existence of periodicity in the solar neutrino flux would likely point to new

physics.
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2.1 Searching for Periodicity in the Solar Neu-

trino Flux

One possible theory which has been put forward as motivation for searching

for a periodic signal in the solar neutrino sector is the phenomenon of Spin

Flavor Precession (SFP). SFP would require that the neutrino have a large

magnetic moment1, which would interact with solar magnetic fields, causing

the neutrino to flip into a right-handed helicity state. If the neutrino is a Dirac

particle, this would result in a sterile neutrino; if the neutrino is a Majorana

particle, this coupling to the solar magnetic fields could cause a simultaneous

flip in chirality and flavor, thus changing a νe to a νµ or ντ . This hypothetical

Spin Flavor Precession could be resonantly enhanced by matter (Resonant

Spin Flavor Precession, RSFP), which would result in an energy-dependent

supression of the neutrino flux. It would then be possible that the RSFP

mechanism (coupled to the rotating solar magnetic fields) would be detectable

as a periodicity in the solar neutrino flux.

In line with this motivation, claims of detection of periodicity in the solar

neutrino flux have been made [25], [26], [27], [28], [29], [30], [31], largely in

contradiction with the results of analyses done by the experimental collabo-

rators themselves [32] [33] [8]. The main proponent of the existence of this

periodicity, P. Sturrock, presented multiple analyses on the topic including

Lomb-Scargle periodogram and maximum likelihood methods. Among several

1“large” = several orders of magnitude more than the SM prediction
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claims of periodicity in the solar neutrino flux made by Sturrock, the most

persistent claim was of periodicity in the Super-K 5-day binned data set, at

a frequency of 9.43 yr−1, and with a strength of 7% amplitude. Sturrock also

claimed the existence of a signal at 13.6 yr−1 in the Gallex data.

Most recently, when faced with the results of Pandola [33], on behalf of the

GNO collaboration, which cited no evidence for periodicity in the combined

Gallex-GNO radiochemical data set, Sturrock claimed that the lack of a signal

was due to having lengthened the data set (thereby washing out evidence

paired with solar magnetic cycles), and searching in too broad of a frequency

band (i.e. taking into consideration too many frequencies) [34]. Sturrock then

claimed that in order to gain access to the periodic signal, one must only

look at the data for the period of time when Gallex was running, since this

was when evidence for rotational modulation of the solar magnetic fields was

concentrated. He also claims that the frequency band for such a search must

be less inclusive, in order to avoid the trials penalty (described in Chapter 5).

This is a fundamentally flawed argument, in that it amounts to ‘hand-picking’ a

data set, such that it produces the desired results. Unfortunately, this was also

his response when faced with the absence of a signal in SNO’s solar neutrino

data set [8]; in [29], Sturrock discards an entire phase of the SNO neutrino

data set in order to match data with his findings (and incidentally is still only

able to find ‘weak’ modulation in the restricted SNO data set).

KamLAND’s recent anti-neutrino experimental results [35] [36] probe a

similar region in L/E to SNO, and result in a precise ∆m2
12 measurement.
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This, paired with the almost-orthogonal sampling of mixing parameter space

by SNO (resulting in a precise θ12 measurement), allow for a highly-constrained

formulation of the best-fit mixing parameters, giving, with very high confi-

dence, evidence for the Large Mixing Angle(LMA)-MSW oscillation scenario

in the solar sector, and ruling out RSFP as a contributing mechanism. Al-

though Sturrock does concede [28] that the KAMLand results rule out RSFP

as a viable means of supression of the solar neutrino flux in the context of

the solution to the solar neutrino problem, he persists in claiming that RSFP

may still be the cause for the periodicities which he finds, just in a different

region of the sun than had been initially predicted, in a ‘subdominant’ RSFP

process.

Though Sturrock’s methods of analysis may in themselves be sound, in

that he appears to appropriately employ both the Lomb-Scargle and likelihood

analyses, his practice of searching for signals (and claiming to find them), with

a less-than-rigorous statistical interpretation, has led many in the community

to be doubtful of his claims. This has served as ample motivation for SNO

to carry out independent analyses of periodicity in our data set, as will be

detailed in the remainder of this thesis.
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2.2 A Low Frequency Search: Published SNO

Results

In light of the motivations laid out in Section 2.1, SNO has performed a

low-frequency periodicity search using three independent analyses: the Lomb-

Scargle periodogram and a maximum likelihood method, as well as the slightly

less conventional Rayleigh power test. Here I briefly explain the first two meth-

ods and give our published results from these methods. In Chapter 6 I will

fully describe the low-frequency Rayleigh power analysis, and the results from

that analysis on the SNO D2O-phase data.

2.2.1 Lomb-Scargle Periodogram

The Lomb-Scargle periodogram provides a means for searching for periodicity

in an unevenly sampled data set. The Lomb-Scargle method generates a power

P (f) for different frequencies, f , from the measured flux values y(ti) in N

independent time bins, as follows:

P (f) =

1

2σ2


[
N∑
i=1

wi(y(ti)− y) cos(2πf(ti − τ))]

2

N∑
i=1

wicos2(2πf(ti − τ))

+

[
N∑
i=1

wi(y(ti)− y) sin(2πf(ti − τ))]

2

N∑
i=1

wisin
2(2πf(ti − τ))


(2.1)
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with the phase factor, τ , satisfying tan(4πfτ) =

N∑
i=1

wi sin(4πfti

N∑
i=1

wi cos(4πfti)

. Here ti is

the livetime-weighted mean time for the ith bin, and y and σ2 are the weighted

mean and variance for all the bins. Each bin is weighted according to that

bin’s squared uncertainty (wi = 1/σi
2).

For this method, the SNO data is binned in 1-day increments, which reduces

the sensitivity of the Lomb-Scargle method for any frequencies higher than 0.5

days−1. If any bin was expected to have fewer than five events, that bin would

be combined with the next bin, to ensure that the expected number of events

in all bins was larger than 5 (to avoid biases coming from the fact that we

have assumed Gaussian statistics in our bins). To verify the robustness of the

Lomb-Scargle method in SNO, a variety of bin sizes (from 1-day to 5-day)

were substituted into the analysis, as well as a range of starting times of the

first bin and different values of the separation between sampled frequencies.

The results of the Lomb-Scargle periodogram were not statistically different

for any of the tested scenarios.

2.2.2 Unbinned Maximum Likelihood Method

The second main analysis in SNO’s published low-frequency periodicity search

was an unbinned maximum likelihood method. The likelihood method tests

the hypothesis that the events in the SNO data set are drawn from a periodic

rate distribution, φ(t), relative to the hypothesis that the events are drawn
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from a constant distribution (A = 0), and a ‘likelihood’ spectrum is generated

from this test. Here, φ(t) is defined by

φ(t) = N(1 + A cos (2πft+ δ) (2.2)

where A is the amplitude of the hypothetical periodicity, N is a normalization

constant, and δ is a phase offset. The PDF φ(t) only exists at times when SNO

was operating (i.e. within run boundaries); otherwise it is set to be zero. For

any given frequency, f , the maximum of the extended likelihood L(N,A, δ|f)

is found via

lnL(N,A, δ|f) = −
runs∑
j=1

∫ tf
j

tij

φ(t)dt+
events∑
k=1

ln(φ(tk)) (2.3)

In the first term, summed over all runs, the integral of φ(t) is evaluated be-

tween each run’s start and stop times, ti and tf ; this term accounts for Poisson

fluctuations in the signal amplitude. In the second term, the sum is over all

events in the data set. This method accounts for deadtime in the detector,

given that φ(t) is only non-zero for times that SNO was running. The param-

eters A and N are allowed to vary as free parameters (at very low frequencies,

A and N become degenerate). This method does not require binning of the

data set, allowing greater sensitivity than the Lomb-Scargle method at higher

frequencies, due to the 1-day binning used in the Lomb-Scargle approach.
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2.2.3 Results

SNO’s initial low-frequency periodicity study was performed over the range

of periods of 1 day to 10 years, a span which encompassed the periods of

all previous claims of ‘detected’ signals. The results from this study showed

no detectable periodicity in the solar neutrino flux on time scales between

periods of 10 years and of 1 day (roughly 0.0002/day to 1/day), or at the

specific period at which the most persistent experimental detection had been

claimed (9.43yr−1).

The most significant peak height for the combined D2O and Salt data sets

from the Lomb-Scargle periodogram has a power of 8.7, and is at a period

of 2.42 days (f =0.413 days−1). The most significant peak height for the

combined data sets from the maximum likelihood approach has a power of 8.8

at a period of 2.40 days (f=0.417 days−1). In Monte Carlo null-hypothesis

trials, powers were seen at this level or higher 27% of the time for the Lomb-

Scargle periodograms, and 35% of the time for the maximum likelihood power

spectra. SNO therefore claims to have detected no significant periodicity in

the solar neutrino flux at low frequencies.

2.3 Helioseismology and High-Frequency Os-

cillations

The sun, although thermally stable, has various modes of oscillation present

in its internal structure. These oscillations are present in many stars to vary-
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ing degrees, but in the sun, there is a rich spectrum of modes ranging from

pressure-mode (p-mode) oscillations, with pressure as the restoring force, to

gravity-mode (g-mode) oscillations, where buoyancy serves as the restoring

force.

The understanding necessary for the advancement of helioseismology emerged

in the 1970s[37][38], when granules on the surface of the sun were resolved to

be oscillating vertically, with a consistent speed of a few hundred meters per

second with a 5-minute period. These oscillations arise as a result of standing

sound waves in the deep convection zone of the sun: certain frequencies are

trapped in this region, and their complicated interference pattern is observed

via Doppler velocity measurements of the solar surface. These 5-minute period

waves are p-modes, thousands of which exist in the sun, at frequencies ranging

from hundreds to thousands of µHz.

I have mentioned that certain frequencies are trapped in the convection

zone. In any ‘edge’ of a layer of the sun, where a steep density gradient is

present, the boundary between layers will act as a reflective mirror, turning

sound waves back in, to propagate until they hit the next steep density or

temperature gradient. This refraction of waves depends on the speed of sound

in any given space; the speed of sound in a region will therefore tell us a great

deal about that region due to its dependence on surrounding physical param-

eters such as temperature (T ), density (ρ), pressure (P ), and composition of

the medium of propagation:
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s =

√
∂p

∂ρ
=

√
γkBT

µmu

∼

√
T

µ
(2.4)

where γ is the adiabatic index (the ratio of specific heats for constant pressure

vs constant volume) of the medium, and µ the mean molecular weight of the

sun, with mu representing the atomic mass unit.

It is largely through studying the behavior of propagation of different fre-

quencies of p-mode waves traveling through different regions of the sun that

the helioseismology community has been able to significantly enhance the cur-

rent understanding of the sun’s composition and physical properties.

For the purposes of this thesis, however, g-mode oscillations merit a slightly

more in-depth inspection than p-mode oscillations. Gravity mode oscillations

are strictly nonradial oscillations, which differ from the standard radial pulsa-

tions that come to mind when discussing stellar variability. Taking the model

that the sun is simply ‘ringing’ at different frequencies, these oscillations can

be described by the spherical harmonics Yl
m(θ, φ)e−iσt. Here, l indicates the

total number of nodes along a line of longitude on the solar disk. In the case

of non-radial oscillations, the spherical harmonic degree l is required to be

nonzero, l 6= 0, whereas the radial modes require that l = 0 [39]. The other

quantum number referenced here, m, describes the number of nodal lines that

cross the solar equator. The parameter m is of course related to l, with the

allowed range of m spanning from −l to +l. Examples of visualizations of

some of these modes are shown in Figure 2.1.

For g-mode oscillations to exist two critical conditions must be met: the
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Figure 2.1: Contour plots of the real part of spherical harmonics Yl
m. Positive

contours are represented by continuous lines and negative by dashed lines.
The equator is shown by “++++”. The cases illustrated are as follows: a)l =
1,m = 0, b)l = 1,m = 1, c)l = 2,m = 0, d)l = 2,m = 1, e)l = 2,m = 2,
f)l = 3,m = 0, g)l = 3,m = 1, h)l = 3,m = 2, i)l = 3,m = 3, j)l = 5,m = 5,
k)l = 10,m = 5, l)l = 10,m = 10. Taken from [3].
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frequency of oscillation must be lower than the minimum of the critical acoustic

frequency, Sl, and N2, the Brunt-Väisälä frequency. The critical acoustic

frequency is also known as the Lamb frequency, and is defined as:

Sl
2 =

l(l + 1)c̃2

r2
(2.5)

(here, c̃ is the speed of sound). Physically, the inverse of Sl represents the

time it would take for a sound wave to traverse one horizontal wavelength

(2πr/[l(l + 1)]1/2) along the circumference of a circle of radius r (concentric

with the solar center).

The second condition requires that the Brunt-Väisälä frequency must be

greater than zero, or N2 > 0, where N2 is given by:

N2 = g

(
1

Γ1

d ln p0

dr
− d ln ρ0

dr

)
(2.6)

where Γ1 is the adiabatic exponent, Γ1 = (d ln p/d ln ρ)ad, and p0 and ρ0 are

the pressure and density of the unperturbed (non-oscillating state).

The Brunt-Väisälä frequency can be best understood by considering the

case of a stratified fluid, with P , ρ, and Γ1 depending only on radial position,

r. If we imagine a small element of fluid at a radial position r0, which is

displaced to r0 + δr (as in Figure 2.2), we can take the buoyant force, per unit

volume, acting on this small fluid element to be

fB = −g∆ρ = ρgAδr (2.7)
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New Position!

Old Position!

P(r), !(r)! Fluid Element!

r0!

r0 +!r
!

Figure 2.2: Example of a fluid element in a stratified fluid being displaced by
an amount δr.

Here A is a parameter describing the radial component of the density dis-

turbance due to the element being moved;

∆ρ = −ρ
(

1

ρ

dρ

dr
− 1

Γ1P

dP

dr

)
δr (2.8)

= −ρAδr (2.9)

We can see in Equation 2.7 that if fB and δr have opposite signs, the fluid

element will be returned to its original position, r0, resulting in a convectively

stable condition. If, however, the buoyant force and direction of displacement

have the same sign, we are left with an instability, as the fluid will have no

restoring force. In this vein, we can understand local convective stability in

terms of A; for A < 0, we are in a range of convective stability and for A > 0,

we are in a range of instability. The Brunt-Väisälä frequency is related to

this parameter by N2 = −Ag, so it is clear that the conditions of convective
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Figure 2.3: Buoyancy frequency, N (solid line), and critical acoustic frequency,
Sl (dashed lines, labeled by the corresponding values of l), shown in terms
of their corresponding oscillatory frequencies, against fractional solar radius
(r/RJ). The heavy horizontal lines indicate the trapping regions for a g-mode
with frequency ν = 100µHz and for a p-mode with frequency ν = 2000µHz.
Taken from [3].

stability and instability will be similarly represented by the sign of N2.

So we have the condition that the frequency of oscillation, ν, for the g-

mode range is limited, ν < min(Sl, N). Due to the physical tendencies of both

Sl and N , the g-mode frequencies are thus restricted to the interior of the sun

(within approximately 0.2RJ of the core). A plot of the behavior of Sl and

N is shown in Figure 2.3, in terms of the corresponding cyclic frequencies.
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These restrictions put us in a frequency range with an upper limit of about

500-600 µHz[3], corresponding to a period length of roughly half an hour. This

is well within the scope of the Rayleigh Power test for high frequency signals,

as will be described in Chapter 7.
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Chapter 3

The Sudbury Neutrino

Observatory

3.1 The Detector

The Sudbury Neutrino Observatory was located inside INCO’s Creighton mine,

an active nickel mine just outside of Sudbury, Ontario. The detector (shown

in Figure 3.1) sat at a depth of 6,800 ft. below surface (6,020 meters water

equivalent), which allowed a significant reduction in the number of background

cosmic ray events which reach SNO compared to surface-level contamination.

The cavity housing the detector was 34m tall and 22m wide, and was sur-

rounded by magnetic ‘compensation coils’, used to offset the vertical compo-

nent of the earth’s magnetic field and thus increase the collection efficiency

of the photomultiplier tubes (PMTs). The magnetic field value of the com-

pensation coils sat at 19 µT , and the measured increase in photon detection
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efficiency with the coils enabled was roughly 10%. The PMTs used in SNO

were R1408 Hamamatsu tubes, each with a 20cm diameter, and operated at

roughly 2,000 V. Each PMT was also surrounded by a 27cm-diameter reflective

concentrator, designed to increase the effective photocathode coverage in the

detector; including reflectors, the photocathode coverage in SNO was roughly

55%.

The target volume of SNO was 1,000 metric tons of heavy water, or D2O,

encased in a 12m-diameter spherical acrylic vessel (AV) with 5.5 cm-thick

walls. The AV was suspended by nylon ropes, and was roughly concentric

within a spherical support called the PSUP, the PMT support structure. The

volume between the AV and the PSUP was filled with 1700 metric tons of

ultra-pure H2O, to help shield the D2O target from contamination by external

radioactivity from the PMTs and the PSUP. The PSUP was 18m in diameter,

and housed the 9,438 inward-looking PMTs, facing the D2O target as well as 91

outward-looking PMTs, or OWLs, facing the outer water volume. The OWLs

were designed to act as a cosmic ray muon detector, tagging events which

created light in the H2O volume. Surrounding the PSUP was 5,300 metric

tons of H2O to provide further shielding from radioactivity in the cavity walls.

More specific details concerning the SNO detector can be found in [4],[40].

3.2 Neutrino Interactions in SNO

The SNO detector is unique from other water Cherenkov detectors due to the

use of heavy water (D2O) as its target volume. Because of the D2O target
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Figure 3.1: Cutaway diagram of the SNO detector. Figure originally published
in [4].
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volume, SNO can detect neutrinos via not only the standard elastic scattering

(ES) interaction,

νe,(µ,τ) + e− → νe,(µ,τ) + e− (3.1)

but also the neutral current (NC), in which a neutral Z boson is exchanged

between the neutrino and deuteron,

νx + d→ n+ p+ νx (3.2)

and Charged current (CC) interactions, in which a charged W boson is ex-

changed between the neutrino and deuteron,

νe + d→ p+ p+ e− (3.3)

where νx represents all three flavors of neutrino – νe, νµ, ντ . SNO is also able

to detect electron antineutrinos via the Charged current (CC) reaction on

deuterons;

νe + d→ e+n+ n− 4.03MeV (3.4)

Over the course of its experimental lifetime, SNO has undergone three

different phases of neutrino detection. The first phase, referred to as the D2O

phase, consisted of the conditions which have already been described - namely

9,500 PMTs and a target volume of 1,000 metric tons of D2O. The D2O phase

lasted from November 1999 to May 2001. The second phase, often referred

to as the Salt phase, involved the addition of 2,000 kg of NaCl to the D2O
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volume in order to increase the capture efficiency of neutrons produced in the

NC interaction. Data for the second phase was taken between July 2001 until

August 2003. The final phase of SNO was termed the NCD phase, for ‘neutral

current detectors’ (a somewhat inaproppriate designation), and consisted of

reverting back to a pure D2O target volume while adding an array of 40 3He

proportional counters for an enhanced neutral capture efficiency, incorporating

a systematically different approach from the Salt phase. The analyses done

for this thesis involve data from the D2O and Salt phases of SNO only; for

more information on Phase III, consult [41].

3.3 Backgrounds in SNO

As SNO’s primary purpose was the detection of 8B solar neutrinos via Cherenkov

radiation, background removal is an essential part of SNO analyses. Although

SNO was housed in an extremely clean environment, and the collaboration

took significant steps to remove radioactive contaminants from the detector

materials and surroundings, there remained a low level of background con-

tamination, primarily due to the decay products of 238U and 232Th. The two

specific daughter decays which caused the greatest amount of trouble are 214Bi

and 208Tl. These two elements are unfortunate backgrounds for SNO, in that

their dominant decay products result in γ rays above the deuteron photo-

disintegration energy threshold of 2.2 MeV (for 214B, 2.4 MeV and for 208Tl,

2.6 MeV). This reaction obviously interfered with the solar neutrino NC sig-

nal. Another unfortunate artifact of the 238U and 232Th decay chains is low
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energy β − γ events, resulting in Cherenkov light that could lead to the mis-

reconstruction of these low-energy events to higher energies, above the solar

neutrino analysis thresholds. The expected background contamination of the

solar neutrino signal as a function of energy is shown in Figure 3.2.

Figure 3.2: Expected backgrounds from the 238U and 232Th decay chains, and
MC distribution of CC, ES, and NC signal, as a function of total energy.
Figure taken from [5].

Another source of backgrounds in SNO was cosmic rays. SNOLAB is situ-

ated very deep underground, as is shown in Figure 3.3; however, we still had

some contamination of our data set by cosmic ray muons, at the rate of 3 per
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hour. To remove these events from our data set, we relied on the previously

mentioned OWL tubes, which alerted us to Cherenkov radiation in the light

water, thereby giving a reliable ‘muon tag’. In SNO, any time an event had an

associated muon tag, the event was taken to be a muon, and the event itself

was removed from the data set, as well as all events occurring within a period

of time following the tagged event (20 sec with the current tagging scheme).

This ensured that not only would the muon itself be removed, but also all

‘muon follower’ events, such as spallation products.

3.4 Data Acquisition: Signal and Electronics

SNO was a water Cherenkov detector: neutrino interactions inside the AV were

detected via Cherenkov radiation emitted by the propagation of corresponding

relativistic charged leptons through the heavy water. If a photon created in

this Cherenkov process was incident on one of the 9,500 PMTs in SNO, it could

then release a photoelectron from the photocathode of the PMT (depending

on the quantum efficiency of the PMT), starting a cascade down the dynode

chain. The resultant pulse, roughly 12 ns wide and no more than a few mV

in amplitude, then travelled through a ∼30-meter long 75Ω RG59-like custom

coaxial cable from the PSUP up to the deck, where the cable was attached

to a PMT Interface Card (PMTIC). The PMTICs provided high voltage to

the PMTs, and also provided the connection to the Front End Cards (FECs,

or motherboards), where the signal was processed, digitized and temporarily

stored.
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Figure 3.3: Integrated muon flux as a function of depth, with several under-
ground laboratories’ depths overlaid. The relative size of each laboratory is
indicated by its corresponding circle’s size. Figure taken from [6].
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The PMT cables were grouped together, such that for every group of 32

cables there was 1 PMTIC. Each PMTIC had 4 HV relays, called paddle cards,

which allowed the HV to be enabled or disabled for 8 PMTs at a time. For

every PMTIC, there was a corresponding FEC, and for every FEC there were

4 daughterboards that received 8 PMT signals each from the PMTIC. Each

PMT signal was routed thorugh a separate channel in the electronics, and

the channels were organized in groups of 32 (8 channels per daughterboard, 4

daughterboards per motherboard) on the FEC, which we often refer to as a

card. The cards were all arranged in 1 of 19 crates, with 16 cards per crate.

This modular organization of the electronics is often internally referred to

using a Crate-Card-Channel scheme, with 32 channels grouped per card, and

16 cards grouped per crate.

Each crate had a Crate Trigger Card (CTC) which communicated with a

detector-wide trigger system (a more detailed treatment of the SNO trigger

system than is given in this thesis can be found in [42]). The SNO trigger sys-

tem was designed for ‘traffic control’, in a sense; the rate of PMT hits in SNO

due to low-energy backgrounds alone was enough to swamp any reasonably

sophisticated electronics readout setup. Collecting and then processing all of

the data was less desirable than filtering the data in real time, to rid the data

of obvious backgrounds in a low-level manner, and then processing a reduced

data set. The trigger system for SNO can therefore be thought of as the first

step in background removal for the data set, determining which events should

be processed or discarded. A key trigger used in SNO analysis data was the
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NHIT 100, which required that a certain number of PMTs (N) were hit within

a given time (100 ns); for the D2O phase, for instance, the requirement was

16 PMTs firing within a period of 100 ns of one another. Other triggers used

in the detector depended on the total charge deposited in the detector, or in

the case of the Pulsed Global Trigger (PulseGT), simply fired at a constant

rate (5Hz) with the purpose of sampling ambient detector activity with no

correlation to event occurrences.

Starting with each channel in the detector, the size of an incoming PMT

pulse determined whether that channel was registered as ‘hit’ or not. If a

particular channel’s signal had an amplitude larger than that channel’s dis-

criminator threshold (typically 1/4 of a photoelectron), the discriminator was

fired, and the PMT pulse would be integrated to give the charge, and vari-

ous channel-specific triggers would be sent to the CTC in the form of analog

sums. Each crate’s CTC would then feed that crate’s cards’ summed trigger

information to a Master Trigger Card (Analog), or MTC/A. The detector-

wide sum of all channels’ information was then compared to a pre-determined

threshold for each type of trigger, and if the signal was above threshold, it was

sent to the Master Trigger Card (Digital), or the MTC/D, to be stored, and a

Universal Time was assigned to each event using a 10 MHz GPS-synchronized

clock, with a backup time stamp from a local 50 MHz clock. The MTC/D

also sent out a global trigger (GT) to all crates which forced the collection of

each channel’s data for that particular event.

If the detector-wide trigger system was triggered, each pulse read in through
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the FECs would be processed; otherwise, the event would be ignored. After

crossing the discriminator threshold, the PMT pulse was integrated in a variety

of ways (short and long integration times, and low and high gains), and stored

until a detector-wide trigger arrived. The time at which the signal crossed the

discriminator threshold was also recorded using a Time-Amplitude Converter,

or TAC. This data was then digitized and put in memory to be read out by the

Builder, which combined each event’s PMTs’ data with relevant run header

information, to then be stored and analyzed as part of a run. Though SNO

often operated for continuous stretches of time, the data-taking was broken

up into runs, generally no longer than 24 hours duration.

3.5 Calibrations

In order to extract a physics result from the SNO detector, we must have

an understanding of how well the signals read out by the electronics relate

to actual physical quantities. The SNO Monte Carlo is built to represent as

accurately as possible the SNO detector conditions; in order to provide SNO-

specific physical parameters to the Monte Carlo, like optical constants and

energy scales, we need to have some sort of way to measure these quantities.

The detector response must be accurately built in to our Monte Carlo, and

similarly, we need a means of testing how well the Monte Carlo truly represents

SNO conditions.

For these purposes, we rely heavily on a rigorous calibration scheme in

SNO. To calibrate the basic charge and timing information which we get from
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the PMTs, we must calibrate the electronics and the phototube readouts. To

calibrate the detector response to various types of signal, we use a number of

calibration sources.

3.5.1 Calibration Sources

The acrylic vessel was built with a 1.46-m wide opening, called the ‘neck’,

through which calibration sources could be passed, and access to the internal

target volume was possible. A diagram of the calibration system is shown in

Figure 3.4. The majority of calibration sources were deployed via the setup

shown here, which allowed sources to be placed at multiple points along not

only the central z-axis (up and down), but also along the x and y axes (horizon-

tal plane). There were also 6 external guide tubes, which allowed deployment

of sources in the light water, external to the D2O target volume (only 2 are

shown in Figure 3.4).

The sources used for calibration of the SNO detector are itemized in Ta-

ble 3.5.1; more detail can be found in [43],[44], or [45].

3.5.2 Electronics Calibration: ECA

To calibrate the electronics, we performed two types of specific Electronic

Calibration runs, or ECA runs; one run to determine the charge “pedestal”

and one run to determine the “TAC slopes”‘. These ECA runs focused on

extracting the zero offsets, or pedestals, for channels when no signal is present.

This allowed us to formulate the electronics ‘baseline’ of the incoming charge
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Figure 3.4: Overview of the SNO Calibration System. Figure taken from [7].
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Table 3.1: Calibration sources used in SNO
Source Description Purpose

Laserball Triggered, isotropic, Main calibration for PMT timing,
multi-wavelength angular response, efficiency

laser source variations, attenuation lengths
16N Triggered, 16N Main calibration for PMT

6.13 MeV γ source collection efficiency and energy
systematic uncertainties

8Li Triggered, β source Confirm 16N calibrations
from decay of 8Li with for energy uncertainties and
endpoint ∼ 14 MeV event reconstruction

252Cf Nonn-triggered, 252Cf Determine neutron
neutron source capture efficiency

Acrylic sources, Non-triggered, U and Th Measure detector response
238U and 232Th sources in acrylic to low energy backgrounds
Radon spike Controlled injections of Rn Low energy background

into D2O or H2O calibration
AmBe “Triggered” source, Determine neutron

4.14 MeV γ and neutron capture efficiency
in coincidence Not used in D2O phase

pT Non-triggered γ source High energy calibration
p +3 H →4 He+ 19.8MeV γ Not used in Salt phase
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and time signals.

The charge pedestal measurement was done by sending a ‘pedestal’ signal

to each channel’s discriminator, forcing it to fire. The input signal would then

be integrating according to standard data-taking methods (low gain, high gain,

short time integration, long time integration). The timing profile measurement

fired the pedestals at 31 separate time intervals relative to the global trigger,

generating a slope of the Time-to-Amplitude-Converter, or TAC slope.

As the condition of the electronics changed on a regular (weekly) basis, with

crates being powered down for repairs, etc., these ECA runs were performed

on a bi-weekly basis throughout the running of SNO, as well as any time that

the detector underwent any type of power cycling or downtime.

3.5.3 PMT Calibration: PCA

The photomultiplier tube calibration, or PCA, is performed to keep track of

the individual PMTs’ different timing responses to an incoming signal. Each

PMT has a characteristic risetime, or ‘walk’, which determines the point at

which that PMT will cross its discriminator’s threshold. An example of this

‘walk’ is shown in Figure 3.5.

The walk is important in SNO for many reasons. As is evident in the

diagram, even if a signal arrives at two PMTs at the same moment in time, if

the amplitude of the pulse varies significantly between the two PMTs, the PMT

with the lower-amplitude pulse will register the event as occurring at a later

time relative to the PMT with a higher-amplitude pulse. This is troublesome
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Figure 3.5: Time Walk of PMT signals. Two PMTs with signals originating
at the same time, t0, will cross the discriminator threshold at different times,
t1 and t2, if their amplitudes are appreciably different. This causes a difference
to be registered between the times each PMT was hit, even if the two were
actually hit simultaneously.

for a detector like SNO, which depends heavily on the times registered by the

PMTs to reconstruct event positions.

The purpose of the PMT calibration is to correct for this walk, or risetime,

behavior. By measuring the magnitude of this charge-based variation for each

channel, we can correct for it. To measure the discriminator risetime differ-

ences, i.e. the relationship of charge deposit in a tube and the discriminator

firing time, the laserball source was deployed on a monthly basis during SNO’s

running time.
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Chapter 4

QRC: The Rate-Dependent

Charge Drift Correction

4.1 Charge in SNO

The ∼9,500 PMTs used in SNO all read out two important pieces of infor-

mation upon being hit: first, the precise time at which a PMT fired relative

to other PMTs in the detector; and second, the charge of a particular PMT’s

signal. The single-photoelectron spectrum of the SNO PMTs is well-known

and well-modeled, and therefore the measurement of charge from a PMT is

thought to be a good indicator of the number of photoelectrons released when

a photon hits the photocathode of the PMT. Charge is also used to correct

each PMT’s recorded hit time; as was described in Chapter 3, each PMT has

an associated ‘walk’ or risetime, such that for a given discriminator threshold,

a PMT with a smaller pulse will cross the threshold later than a PMT with a
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larger pulse. To provide optimal PMT timing, calibration PCA runs are car-

ried out with a diffuse laser source (the Laserball) to determine the correction

factor necessary for each PMT hit time as a function of its integrated charge.

In this way, the PMT charge is used to remove the PMT ‘walk’, or risetime

delay, allowing for more accurate timing.

4.2 The Problem of ‘Charge-Since-Last-Hit’

During the early running of the SNO detector, it was discovered that the

recorded PMT hit times appeared to shift, depending on the time since the

last hit on a channel: the longer a channel had gone without a hit, the bigger

the shift in its next recorded time. This ‘time-since-last-hit’ (TSLH) effect

was a significant problem, because it affected position reconstruction, which is

highly dependent on the relative times each PMT in an event was hit. A new

calibration was developed to correct this problem by shifting times according

to the gap between events in each channel in the detector[46].

While researching and developing a fix for the TSLH effect, SNO discovered

a separate but similar effect on the PMT charges: the charge pedestals ap-

peared to vary depending on detector rate. The dependence, though initially

dubbed ‘Charge-Since-Last-Hit’, or QSLH, in the same fashion as TSLH, was

ultimately found not to be a dependence on rate, as much as on the ‘hit rate’,

or the number of recorded hits in an crate or front end card per time [43].

It is believed that this charge pedestal drift is related to the loading of the

front end electronics: the more hits per unit time, the more front-end activ-
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ity, causing more current to be drawn through the system, which may affect

some of the front-end voltages. Though the exact origin of this rate-dependent

charge remains unknown, the knowledge of the effect’s cause is not necessary

to create a fix for it, as will be shown in this chapter.

Although a correction was found fairly quickly for the TSLH time drift,

multiple attempts at developing a correction for the rate-dependent charge

drift fell short. No straightforward calibration could be developed for the

charge drift because it required a dynamic measurement of the charge pedestals

under various loading conditions, including the history (recent, and on the

scale of minutes) of front-end activity. An early attempt at such a calbration

was made using an external pulser to generate pedestal-measuring events at

different rates and under differ loading conditions, with the intent of creating

a model from this information (for instance, information regarding pedestal

shift vs rate, or vs hits, or vs rate*hits). While the method was potentially

quite useful, the dynamic behavior of the rate-dependent charge drift, which

changes significantly over short periods of time, would have required many

of these types of pulser runs throughout different stages of the detector (in

addition to SNO’s standard electronics calibration runs which were done twice

weekly, as described in Chapter 1). Similarly, the statistics of the pulser events

were fairly low in this setup, and in the case of such a sensitive effect, more

precision was needed to actually implement a correction.

For much of SNO’s data analysis, therefore, the information contained

in the charge measurements was never used. For example, SNO’s primary
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energy reconstruction algorithm placed cuts on the charges of PMTs that it

included in its measure of energy, but these cuts had to be removed because

the rate-dependence of the pedestals created a rate-dependent energy scale. In

addition, the energy estimator could not use risetime-corrected PMT times,

because as described above and in Chapter 3, the risetime, or walk, correction

depended on the charge measurement. Lastly, cuts that could remove events

based on the measured charges on the PMTs were never developed, because

the charge measurement was considered so unreliable.

However, a new analysis aimed at lowering SNO’s energy threshold (called

‘LETA’ for Low Energy Threshold Analysis), required much lower backgrounds

and systematic uncertainties, and therefore needed to use the information

in the charge measurement. Furthermore, and more critically for the work

presented in this thesis, any rate dependence of the charge measurement could

lead to time-correlated effects that could create a background for a periodicity

study of the solar neutrino flux.

4.3 Crosstalk as an In-Situ Monitor

In order to correct for the rate dependence of the charge pedestal, an in-

situ monitor was needed to record the dynamic variation in the pedestals.

This was a daunting request: we needed something that provided a pedestal

measurement throughout the SNO data set, and yet did not interfere with

data-taking or add to the overall volume of data. Also, the correction would

ideally be retro-actively applicable; something that could be used to correct
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data which had already been taken.

Fortunately, such an in-situ monitor existed: the electronic crosstalk1 be-

tween neighboring channels that occurred when one of the channels recorded a

very large charge. As shown by M. Dunford[47], a crosstalk hit in a channel can

be isolated from other background/noise hits by three simple characteristics:

1. The charge on the tube in question must be “low”, or near the value of

the channel’s pedestal. Here, “low” charge means that the channel must

have a charge value less than 5 counts above pedestal.

2. The second condition is that the crate+card+channel configuration, within

each crate, must be adjacent to that of the potential ’crosstalk channel’

(the ’nearest neighbor’ effect).

3. A third criterion which must be met has to do with the timing of the

potential crosstalk channel. The signal in the crosstalk channel must

occur within a certain time window (12ns to 25ns) after the high-charge

signal to which it corresponds.

Using these three characteristics, Dunford created a ‘crosstalk tag’ which iden-

tified crosstalk hits in each event, so they could be discarded from the standard

SNO analyses.

For this study, however, the crosstalk hits are in no way a background to

be discarded: the crosstalk hits are extremely useful because they provide an

instantaneous, dynamic measure of a channel’s charge pedestal. Since crosstalk

1Not to be confused with optical crosstalk
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is a short-timescale (high-frequency), bipolar phenomenon, and SNO uses a

(comparatively) long integration gate of roughly 60ns, crosstalk hits will tend

to integrate to zero charge. This means that we are able to look at the variation

of the charge measured in crosstalk hits as a function of time, or rate, or any

other front-end activity-related parameter, and in so doing we can get a true

in-situ monitor of how the pedestals are drifting. Figure 4.1 shows a profile

histogram of the crosstalk pedestal in a standard data run (a ‘neutrino run’),

as a function of card hit rate. It is obvious from this plot that the pedestal

value changes as a result of a hit having occurred during low-rate or high-rate

(relatively speaking) activity within the run. This particular behavior is key

to understanding the rest of the approach described in this chapter.

4.4 Generation of the crosstalk-based correc-

tion

To generate the charge drift correction, we essentially use the charge measured

in crosstalk hits as an indicator of the degree to which the rate-dependent

charge drift is affecting any given run’s data. The advantage of using crosstalk

is not just that it provides a measurement that is close to the charge pedestal

itself, but also because it is a purely electronics effect. For the sake of argu-

ment, we could use the upper edge of a single photoelectron charge spectrum

(the ‘high half point’, or HHP) to measure the drift in charge, but any drift

measured this way could easily be caused by a variation in a PMT’s gain, and
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Figure 4.1: Sample crosstalk pedestal as a function of card hit rate
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not necessarily because of a local loading effect. Similarly, using the low edge

of the single photoelectron charge spectrum (the ‘low half point’, or LHP)

could show variations caused by changes in the channel threshold, again not

necessarily giving a true measurement of the drift itself.

Thus the amount by which the crosstalk charge spectrum is displaced from

the (ideal) peak value of zero should be a direct reflection of how much the

rate-dependent charge drift is shifting all other data in that run. This is

assuming, of course, that rate dependence is the dominant reason for this

pedestal shift. Taking this to be the case, we can divide the crosstalk charge

spectrum according to corresponding time within a run, and then relate each

charge value to the card hit rate for its time period.

At this point it is important to devote a bit of attention to this last state-

ment. The degree of ’differential-ness’ with rate here is somewhat arbitrary.

Though the charge drift is known to depend on detector rate, it also is seen

to be a loading effect, and so it depends on card hit rate and channel hit rate,

with varying degrees of correlation. In this study, we use card hit rate (hits

per second per card), as it appears to be more accurate in determining charge

rate dependence than simply using detector-wide hit rate. In addition, using

card hit rate allows us to create one correction per (approximate) card hit rate,

which is not so limiting (or cumbersome in its application) as using channel

hit rate (one correction per channel - 9500 total).

This can be more easily shown by looking at a collection of plots. The first

group, shown in Figures 4.2, and 4.3, is a cross-sampling of the same type of
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profile histogram as shown in Figure 4.1. It shows the distribution of crosstalk

pedestal charge value as a function of card hit rate for a group of 2 different

channels in the same card (and crate). It is fairly obvious from looking at

these plots together that there is no correlation between rate-dependence of

the pedestal value among different channels on the same card. In light of this,

different channels will therefore have to be assigned different corrections.

On the other hand, in Figures 4.4 and 4.5, the plots are grouped differently:

here, each histogram represents the same channel number, but each is from a

different run (and does not depend strongly on crate/card number).

From these figures it is evident that there is a strong correlation here,

among different runs, but with channel placement (location on a card) the

same. Due to this similarity of channel behavior from card to card, it appears

to be sensible to approach the charge drift problem as a function of card hit

rate, and to develop a correction that depends on channel location but not on

which card the channel is on.

4.5 Implementation of the Crosstalk-based Cor-

rection

4.5.1 Generation of the Correction

In order to generate the actual crosstalk-based correction, we have up until

this point considered each run individually, since there is a fairly noticeable

variation, run-to-run, in rate and thus in associated charge drift behavior. So
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Figure 4.2: Run 22444 Crosstalk Pedestal as a Function of Card hit rate,
Channel 3
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Figure 4.3: Run 22444 Crosstalk Pedestal as a Function of Card hit rate,
Channel 7
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Figure 5: Run 22444 Crosstalk Pedestal as a Function of Card hit rate,
Channel 6 (all cards)

Figure 6: Run 23222 Crosstalk Pedestal as a Function of Card hit rate,
Channel 6 (all cards)

This then allows us to group all event information in the run according to
the range of card hit rates in that run. This way we can fill an associated
titles-type correction file which stores information on period, card hit rate
(for each period), and average crosstalk pedestal as a function of card rate.

7

Figure 4.4: Run 22444 Crosstalk Pedestal as a Function of Card hit rate,
Channel 6 (all cards)
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Figure 5: Run 22444 Crosstalk Pedestal as a Function of Card hit rate,
Channel 6 (all cards)

Figure 6: Run 23222 Crosstalk Pedestal as a Function of Card hit rate,
Channel 6 (all cards)

This then allows us to group all event information in the run according to
the range of card hit rates in that run. This way we can fill an associated
titles-type correction file which stores information on period, card hit rate
(for each period), and average crosstalk pedestal as a function of card rate.

7

Figure 4.5: Run 23222 Crosstalk Pedestal as a Function of Card hit rate,
Channel 6 (all cards)
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the approach I describe should be understood as being applied run by run,

with a unique correction for each run.

Using the fact that we would like the crosstalk pedestal to have a cor-

rected charge value of roughly zero, generation of a crosstalk-based correction

is fairly straightforward. The overall procedure is outlined in the Flow Chart,

Figures 4.6 and 4.7. First, we run through a particular run, say Run 22444,

flagging the crosstalk bit and breaking the run into different periods, each of

x minutes length. We can then group each crosstalk pedestal according to its

associated period, and determine what the card hit rate was for each period as

well. This then allows us to group all event information in the run according

to the range of card hit rates in that run. This way we can fill an associated

titles-type array which stores information on period, card hit rate (for each

period), and average crosstalk pedestal as a function of card rate. This is

considered the corrections array, and is then read in during the second pass of

the charge drift correction.

4.5.2 Application of the Correction

At this point, we start the second stage of the correction, which consists of

applying the correction file that was generated in the first stage. The main

function of this ‘second pass’ is to group all events - not just crosstalk - into

their associated periods (still of length x minutes), and use the setup of the

correction array to pair each PMT hit with its associated average crosstalk

pedestal (as determined by card hit rate during that period). This average
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First Pass: Correction Generation
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Figure 4.6: Flow Chart: first pass of charge drift correction.

crosstalk pedestal is then used as a correction value for each hit, and is sub-

tracted from the charge of the particular PMT which fired. To reiterate; the

correction for each PMT is a dynamic value, which changes depending on what

the associated card hit rate is during a given time period for that particular

hit.

For example, say in the first pass through a given run, I have calculated

that for all channels, in the 7th period-division of the run, the average card hit

69



Second Pass: Correction Application
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Figure 4.7: Flow Chart: second pass of charge drift correction.
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rate for crate 1, card 1 was 2.3 hits/card/sec. For channel 14 in crate 1, card 1,

we calculate an average crosstalk pedestal for this period (and thus this card

hit rate) of +1.3 counts. We will then take all channel 14’s at this card hit

rate - throughout the run, in all periods - and calculate the average crosstalk

pedestal for that channel, at that card hit rate. This allows us to group our

information according to channel and local card hit rate, and then apply a

global ‘if (card hit rate = w) and (channel = y) then (crosstalk pedestal = z)’

statement. With this method we are able to apply our correction (subtract

crosstalk-pedestal value from the actual charge value) depending on what the

local rate behavior is.

So following the previous example, for ALL channel 14’s in the detector

(regardless of crate/card) with a card hit rate of 2.3 hits/card/sec, the asso-

ciated average crosstalk charge value is +1.5 counts. This means that in our

second pass, once we get to an event that occurs with an associated card hit

rate of 2.3 h/ca/s, and is read by any ‘channel 14’ in the detector, we will know

this corresponds to an average crosstalk pedestal of +1.5. This +1.5 counts is

treated as a shift in each channel’s charge pedestal, and is thus subtracted from

a channel’s charge recorded for the current hit. What I am left with, then, is

a rate-corrected charge (charge - 1.5 = corrected charge). The correction was

given the name ‘Charge-Rate Correction’, abbreviated by QRC.
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4.6 Results of the QRC Correction

4.6.1 Results of QRC on Crosstalk Data

The first approach at verifying that QRC has done what we intended it to do

was to apply the correction to the crosstalk data only. Though the mean of

the crosstalk peak would necessarily be more centered around zero, we wanted

to ensure that the rate dependence of the crosstalk pedestal decreased. In Fig-

ures 4.8 and 4.9 one can see that indeed, after applying the correction (channel

by channel) to crosstalk data alone, the pedestal value becomes significantly

less dependent upon rate, as we would hope.

4.6.2 Results of QRC on 16N Calibration Data

Given that the rate-dependent charge drift correction modifies the charge spec-

trum of crosstalk data for neutrino runs in the way we would expect, it is im-

portant to see if it affects all other data similarly. The same rate-dependence

plots were generated for all events within four different types of runs: neutrino

(already shown), low-rate, medium-rate, and high-rate 16N calibration runs.

Figures 4.10 through 4.15 show the effects of the charge drift correction on

16N crosstalk data. The correction itself appears to have varying degrees of

accuracy depending on rates, probably caused by the fact that we have not

created a separate correction for each channel, or perhaps because we cannot

use periods that are very short to develop the correction due to limited statis-

tics. We can see, for example, the central role that statistics have here; the
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Figure 4.8: Drift-corrected crosstalk pedestal as a function of card hit rate,
run 22444, channel 7
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Figure 4.9: Drift-corrected crosstalk pedestal as a function of card hit rate,
run 22444, channel 9
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value of the corrected crosstalk pedestal is almost invariably closer to zero for

points with higher statistics. This reinforces the need for a correction which

comes from a large pool of data for each run.

4.6.3 Results of QRC on Charge Spectra

Another telling test for the charge drift correction comes from investigat-

ing how the actual charge spectra for various types of runs are impacted.

Figure 4.16 represents the entire uncorrected charge spectrum for low-rate,

medium-rate, and high-rate 16N calibration data, and neutrino data. Fig-

ure 4.17 represents the rate-corrected version of this plot. One can see that

before the correction is applied, the four sets of data do not line up well, but

that after the correction is applied, there is very good agreement. This is, of

course, what we would optimistically expect; by taking the rate-dependence

out (or at least minimizing it), we should expect 16N calibration data, taken

at differing rates, and neutrino data (inherently very low-rate) to look much

more similar.

Figure 4.18 shows a distribution that follows directly from the previous

plots. Since the charge spectrum for all of the run types listed above is altered

by this correction, so should be the high half point (the upper edge) of the

single photoelectron spectrum. Taking a plot of high half point versus detector

rate[48] for all uncorrected data, and overlaying the high half points of this

new, corrected neutrino and 16N calibration data, shows that this correction

does compensate for rate dependence. There is a very visible re-grouping, over
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Figure 4.10: Low-rate uncorrected 16N calibration data. Crosstalk pedestal as
a function of card hit rate.
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Figure 4.11: Low-rate corrected 16N calibration data. Crosstalk pedestal as a
function of card hit rate.
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Figure 4.12: Medium-rate uncorrected 16N calibration data. Crosstalk
pedestal as a function of card hit rate.
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Figure 4.13: Medium-rate corrected 16N calibration data. Crosstalk pedestal
as a function of card hit rate.
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Figure 4.14: High-rate uncorrected 16N calibration data. Crosstalk pedestal
as a function of card hit rate.
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Figure 4.15: High-rate corrected 16N calibration data. Crosstalk pedestal as
a function of card hit rate.
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18 represents the entire uncorrected charge spectrum for low-rate, medium-
rate, and high-rate N16 data, and neutrino data. Figure 19 represents the
QSLH-corrected version of this plot. One can see that before the correction
is applied, the four sets of data do not line up well, but that after the cor-
rection is applied, there is very good agreement. This is, of course, what
we would optimistically expect; by taking the rate-dependence out (or at
least minimizing it), we should expect N16 data, taken at differing rates, and
neutrino data (inherently very low-rate) to look much more similar.
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Figure 18: Superposition of QHS Spectra for Low-rate, Medium-rate, and
High-Rate N16 data, and Neutrino data, with NO QSLH correction

Figure 20 shows a distribution that follows directly from the previous
plots. Since the QHS spectra for all of the run types listed above is altered
by this correction, so should be the high half point. Taking a plot of high
half point versus detector rate[4] for all uncorrected data, and overlaying the
high half points of this new, corrected neutrino and N16 data, shows that
this correction does compensate for rate dependence in a very comprehensive
way. There is a very visible re-grouping, over a range of one count (43 to
44), of this new data, whereas before there was a much broader span of the

16

Figure 4.16: Superposition of charge spectra for low-rate, medium-rate, and
high-rate 16N data, and neutrino data, with NO rate-dependent drift correc-
tion
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Figure 19: Superposition of QSLH-Corrected QHS Spectra for Low-rate,
Medium-rate, and High-Rate N16 data, and Neutrino data.

uncorrected high half points’ grouping (five counts).
Though these plots are reassuring, it is also important to determine how

this QSLH correction alters the time residuals for any given run. To test this,
we can look at both low-rate and high-rate N16 data and compare pre- and
post-correction time residuals. These comparisons are shown in Figures 21
and 22. There does not appear to be any great difference for either low-rate
or high-rate data.

However, to get a better understanding of how the correction actually
affects the fitted times, it is perhaps more enlightening to look at plots of the
number of PMTs fired within a window of + or - 10ns of the time residual
peak (Nwin) for these two runs. These Nwin values are shown in Figures
23 through 27. All Nwin ‘corrected’ values here are generated using time
which has already been PCA walk-corrected, and the time offset has been
accounted for.

17

Figure 4.17: Superposition of rate-corrected charge spectra for low-rate,
medium-rate, and high-Rate 16N data, and neutrino data.
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a range of one count (43 to 44), of this new data, whereas before there was a

much broader span of the uncorrected high half points’ grouping (five counts).

4.6.4 Results of QRC on Fitted Times

Though the preceding plots are reassuring, it is also important to determine

how this rate-dependent charge drift correction alters the time residuals for

any given run, since as we mention at the start of this chapter, the charge is

uesd to correct the PMT hit times (the ‘walk’ correction). The time residual

can be thought of simply as the difference between the actual time an event

from a calibration source triggers the detector (i.e. the true time of the event)

vs the time the detector reconstructs the event as having occurred. To test

this, we can look at both low-rate and high-rate 16N calibration data and

compare pre- and post-correction time residuals. These comparisons are shown

in Figures 4.19 and 4.20. There does not appear to be any great difference for

either low-rate or high-rate data.

However, to get a better understanding of how the correction actually af-

fects the fitted times, it is perhaps more enlightening to look at plots of the

number of PMTs fired within a window of ± 10ns of the time residual peak (a

window called ‘Nwin’) for these two runs, as this window plays an important

role in energy reconstruction for SNO. These Nwin values are shown in Fig-

ures 4.21 through 4.25. All Nwin ‘corrected’ values here are generated using

time which has already been risetime-corrected, and the time offset has been

accounted for.
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Figure 20: High Half Point for Salt data, versus Detector hit-rate. High half
points with and without QSLH Correction.

18

Figure 4.18: High half point for Salt-phase data, versus detector hit-rate. High
half points with and without rate-dependent charge drift correction.
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Figure 4.19: Time residuals for both corrected and uncorrected low-rate 16N
calibration data (run 22689, enlarged time window)
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Figure 4.20: Time residuals for both corrected and uncorrected high-rate 16N
calibration data (run 22687, enlarged time window)
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4.7 Note about using Risetime Corrections

Figure 4.25 shows that the actual value of Nwin after correcting for the rate-

dependent charge drift becomes slightly higher for low-rate 16N calibration

data, but decreases for high-rate 16N calibration data. This could be an argu-

ment against using this type of correction: why would we want to reduce the

number of PMTs that fall into this ‘good’ region? The explanation for this

comes from the fact that the basis for our correction is the idea that we should

shift crosstalk pedestal data to center around zero. However, to calibrate high-

rate 16N data (indeed, all data), we use high-rate PCA calibration data, which

could be leading us astray. The pedestals generated from the PCA calibration

data, which are used to generate the risetime corrections, will be shifted away

from zero: the PCA calibration runs are affected by the rate-dependent charge

drift like all other types of runs.

In order to better agree with the high-rate risetimt calibration data, our im-

plementation of the QRC correction has been modified to force the crosstalk

charge pedestal to better agree with the high-rate risetime-correction data.

Therefore, the crosstalk charge offset is now no longer set to force agreement

with a pedestal value of zero; instead the offset value is dynamically calculated

whenever SNO performs PCA risetime calibrations, and the values determined

from a QRC analysis of the PCA risetime data are stored in files to be ap-

plied to all data taken following that date, until the next PCA calibration is

performed.
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Figure 4.21: Nwin for low-rate 16N calibration data (run 22689), before and
after rate-dependent charge drift correction.
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Figure 4.22: Nwin for high-rate 16N calibration data (run 22687), before and
after rate-dependent charge drift correction.
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Figure 4.23: Nwin of rate-uncorrected high- and low-rate 16N calibration data
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High and Low rate 16N, QSLH-Corrected Nwin
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Figure 4.24: Nwin of rate-corrected high- and low-rate 16N calibration data
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Figure 4.25: Nwin of high-rate and low-rate 16N calibration data, both rate-
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Chapter 5

The Rayleigh Power Method

5.1 A Test for Periodicity

With a QRC-corrected data set, we are now able to rely on charge-corrected

times for a time-dependent periodicity analysis. There are a number of ap-

proaches one can take to search for periodicity in a data set. One can bin

events in time and construct a periodogram based on the behavior of each

bin’s collective qualities (like average flux) or one can force the data set to

remain unbinned. There are obvious benefits to requiring the data to remain

unbinned (truer representation of the data) but this technique poses a chal-

lenge when dealing with unevenly sampled data. In the case of SNO, the

detector had gaps in its livetime due to standard run-time issues (calibrations,

maintenance of the electronics, etc.). This caused the data set to have gaps in

it, due to SNO deadtime, and this must be accounted for in a time-dependent

analysis like a periodicity search.
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Initially, for the purposes of a ‘low-frequency’ periodicity search, SNO used

two primary methods of searching for periodicity in the solar neutrino flux: a

Lomb-Scargle analysis [49], which constructs a periodogram with 1-day-binned

SNO data, and an unbinned maximum likelihood approach [50], as detailed in

Chapter 6. A third method, called the Rayleigh power method, has also been

used to search for periodicity in the SNO data. The Rayleigh analysis is an

unbinned method for finding periodicity in a data set of discrete points. In

this respect, the Rayleigh power method is much like the maximum likelihood

approach, however the Rayleigh analysis also creates a ‘true’ power spectrum,

similar to the Lomb-Scargle method1. In using a Rayleigh power approach,

we perform steps similar to the previous analyses to generate power spectra

describing time dependence in the SNO data.

5.2 The Rayleigh Power

The Rayleigh power is often used in a directional statistics capacity, for in-

stance, mapping the migration of homing pigeons, or determining a favored

stopping point for a roulette wheel. However, it is not limited to systems con-

strained to a 360o circle. It can also be used for more general treatments of

periodicity, as described here.

The general approach of the Rayleigh power method for this thesis is as

follows: given a periodic signal, of frequency ν, we can sample the event times

1The maximum likelihood approach does not provide a power spectrum in the ‘true’ sense
of the word in that it doesn’t strictly obey Parseval’s Identity; it produces a ‘significance’
rather than a power
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at which a signal is detected, ti, and map these individual event times around

a unit circle. The angular mapping of the circle is, of course, determined

by the period we are sampling (i.e. 0 to 2π corresponds to 0 seconds to T

seconds, with T = 1
ν
). For each event occurring around the unit circle, we

assign a radial vector to designate the angular position of the event, starting

with θ = 0 up to θ = 2π, and allowing multiple revolutions around this circle,

depending on the frequency being sampled and the length of the data set.

Each radial vector around the unit circle can be broken into its two com-

ponents along the x- and y-axes: u(i) = cos θiêx + sin θiêy.

Summing over all individual vector events should tell us what ‘direction’

the resultant summed vector points towards, thus giving an angular director

of the resultant signal direction:

U2 = (Σi(cos θi))
2 + (Σi(sin θi))

2 (5.1)

We therefore determine the Rayleigh power, z, at this particular frequency

with the formula:

z = U2/N = 1/N
(
(Σi(cos θi))

2 + (Σi(sin θi))
2) (5.2)

where θi = 2πνti.

This is essentially a measure of the nonuniformity of a signal. Given a

signal with roughly isotropic distribution, one can construct a similar unit

circle and find the result U2 ∼ N , or z ∼ 1. For a highly nonuniform (i.e.
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periodic) signal, one would expect a much higher value of Rayleigh power,

with the maximum possible Rayleigh power being z = N . It is based on

this framework that one can find the Rayleigh power for a particular system,

working with the understanding that any variation from a nonuniform signal

will give us a Rayleigh power of z > 1. To construct a power spectrum, then,

we simply calculate the Rayleigh power for many ‘unit circles’ with different

periods.

The isolated probability that the Rayleigh power, z, will be greater than

any given value, K, for uniformly sampled data is [51]:

Probability(z > K) = e−K (5.3)

A simple representation of the Rayleigh power method is shown in Fig-

ure 5.1, where two different periods are being sampled (only considering the

sine component of the Rayleigh power here for illustrative purposes).

One can see from this rather simplistic model of the Rayleigh power how

a specific frequency can ‘match’ a data set well (blue circle) or not at all (red

circle). Here the blue circle represents a period of 18 hours, as is shown by

the circumference (0 to 2π corresponds to 0 to 18 hours), and the red circle’s

circumference similarly represents a period of 24 hours. As can be seen in the

toy model’s time distribution, the sine wave corresponding to the blue circle

(with a shorter period/higher frequency) better describes the time behavior of

the data, and this causes the Rayleigh power to be greater for the frequency

corresponding to the blue circle than that corresponding to the red circle.
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Figure 5.1: Cartoon representation of the y-component of the Rayleigh power
method for two different periods, tested against the same data set of four
events in time.
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Figure 5.2: Sample Rayleigh power spectrum.

5.2.1 The Rayleigh Power Spectrum

As was just described, one can calculate the Rayleigh power z for any frequency

ν of interest. The power spectrum itself is constructed simply by determining

the range of frequencies of interest, and calculating the individual Rayleigh

power for all values of frequencies included in this range. Depending on the

range of frequencies in question, a power spectrum is then generated by col-

lating all of the individually calculated Rayleigh powers as a function of their

input frequencies. A sample Rayleigh power spectrum is shown in Figure 5.2.

99



5.3 The Rayleigh Power for an Unevenly Sam-

pled Data Set

A Rayleigh analysis, at first glance, seems to have great advantage over the

previously mentioned approaches used in SNO: since the Rayleigh power is

no more than a simple combination of sines and cosines, the processing power

required to run this type of analysis is expected to be much lower than that re-

quired for the more traditional fit-dependent methods. However, the relatively

naive assumption that one will be able to simply compute the Rayleigh power,

z, and determine a given Rayleigh power’s significance by way of Equation 5.3

proves to be misleading and inaccurate for data sets such as SNO’s, which

have uneven sampling of a (presumably) continuous signal.

As it happens, for a data set which is discontinuous in time such as SNO’s,

it is necessary to reformulate our expectations of how to interpret the Rayleigh

power’s significance for a particular frequency. This is because the Rayleigh

power is sensitive to periodicity, or non-uniformity in time, in a data set, be

it due to the presence of a physical signal or due to the absence of events at

detector ‘down’ times. So a data set with zero true periodic behavior could

still give a (naive) statistical significance, following Equation 5.3, if the data

was recorded intermittently in time.

To account for this, we must modify our expression for the probability of

achieving a specific Rayleigh power in the presence of a non-uniform data set.

In an attempt to build this behavior into the expected probability for different
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strengths of Rayleigh power, SNO collaborator Scott Oser proposed an analytic

function for the Rayleigh power distribution based simply on a random walk

model[52]. The math behind the analytic form is initially straightforward.

Taking each event time, with its associated angle θi, and breaking this into its

two components, X(= cosωt) and Y (= sinωt), we can look at the event times

as a random walk in two dimensions, or two simultaneous walks in X and Y .

Now, using the central limit theorem, we can assume that the distribution

of these random walks in our data set is Gaussian. For each frequency, then,

the data set should have a characteristic mean and variance, according to this

distribution. With these parameters from each Gaussian, we can then find a

functional form for the total displacement in X and Y. For a simplistic model

of a purely no-signal data set, with uniform phase coverage, the equation for

the functional form would simply be:

f(X, Y ) =
1

2πσxσy
exp(−X2/2Nσx

2)exp(−Y 2/2Nσy
2) (5.4)

However, for a data set such as SNO’s, which has inherent ‘windowing’

(on/off times due to the inherent livetime/deadtime of the detector, as shown

in Figure 5.3) this basic theoretical form will not be sufficient to truly model

the expected deadtime-induced periodic behavior of the data. So with the

intent of incorporating detector-specific properties which necessarily affect the

overall phase coverage, I needed to develop a more complete version of this

functional form.
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Figure 5.3: SNO livetime/deadtime window function, for the D2O phase of
data-taking. Times when SNO was running and taking data are black, the
gaps are when SNO was not taking data or in non-neutrino running conditions.
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5.3.1 Phase Coverage

Again, first taking into consideration the simplistic situation of uniform phase

coverage, the values of our 2-D Gaussian would be straightforwardly defined as

follows. Considering our two Gaussian variables, x and y, and phase φ = ωt,

we define the mean, µ and the variance σ2 as

µx =
1

2π

∫ 2π

0

dφ cosφ = 0 (5.5)

µy =
1

2π

∫ 2π

0

dφ sinφ = 0 (5.6)

σx
2 =

1

2π

∫ 2π

0

dφcos2φ =
1

2
(5.7)

σy
2 =

1

2π

∫ 2π

0

dφsin2φ =
1

2
(5.8)

and the covariance between x and y, for uniform phase coverage, as

cov(x, y) =
1

2π

∫ 2π

0

dφ cosφ sinφ = 0 (5.9)

In the case of non-uniform phase coverage, however, which occurs when

there are breaks in the livetime of the detector (i.e. SNO’s inherent deadtime

window, shown in Figure 5.3 for the D2O phase), we get deviations from these

predicted values. Any non-uniformity in phase coverage must be accounted for

in our calculation of Gaussian parameters; if a signal is not allowed to occur
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for certain windows of time, the distribution of resultant Rayleigh vectors will

almost certainly no longer have a mean of zero, for instance, and this will

affect our calculation of the analytic form for the Rayleigh power.

To account for non-uniform phase coverage, we can include a phase-dependent

weighting factor, g(φ), to allow for the inclusion of information about SNO’s

deadtime window. The Gaussian parameters then become

µx =
1

2π

∫ 2π

0

dφg(φ) cosφ (5.10)

µy =
1

2π

∫ 2π

0

dφg(φ) sinφ (5.11)

σx
2 =

1

2π

∫ 2π

0

dφg(φ)cosφ− µx
2 (5.12)

σy
2 =

1

2π

∫ 2π

0

dφg(φ)sinφ− µy
2 (5.13)

and the covariance between x and y, for non-uniform phase coverage, is

now

cov(x, y) =
1

2π

∫ 2π

0

dφg(φ)(cosφ− µx)(sinφ− µy) (5.14)

with the assumption that g(φ) is normalized to unity. For SNO, an obvious

implementation of this weighting scheme comes in the form of weighting by

deadtime/livetime; remembering that our phase, φ, is simply ωt, we can now
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write out our parameters and calculate them in the context of SNO’s livetime.

For example, the mean will now be

µx =
1

T

runs∑
j=1

∫ tstop,j

tstart,j

dt cosωt (5.15)

where here, T is the total livetime, and we are summing over all runs in

the data set, integrating over the start and stop times for each run. It is in

this manner that we incorporate the non-uniform phase coverage of the SNO

data set in the calculation of our Gaussian parameters for use in the analytic

PDF for the Rayleigh analysis.

5.3.2 Calculation of the Full Analytic Form

The full functional form is built to incorporate SNO-specific variations in

livetime, and therefore gaps in phase coverage. With the inclusion of the

deadtime-determined ‘windowing’ function, the form ultimately depends on

the parameters which we have calculated from the Gaussian distribution of

the Rayleigh vectors: µx, µy, σx, σy, and cov(x, y). Once we have these values,

we can build them into the most general functional form, which is found by

calculating a χ2-type variable, and evaluating exp(−χ2/2).

χ2 (X, Y ) = (X −Nµx, Y −Nµy)Vxy
−1

 X −Nµx

Y −Nµy

 (5.16)
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= (X −Nµx, Y −Nµy)

 Nσx
2 Ncov(x, y)

Ncov(x, y) Nσy
2


−1  X −Nµx

Y −Nµy


(5.17)

To evaluate the above equation, we must first find the inverse of the co-

variance matrix:

Vxy
−1 =

 Nσx
2 Ncov(x, y)

Ncov(x, y) Nσy
2


−1

=
1

Nσx2σy2 −Ncov2(x, y)

 σy
2 −cov(x, y)

−cov(x, y) σx
2

 (5.18)

Carrying out the multiplication:

(X − µx, Y −Nµy)

 (X−Nµx)σy
2

Nσx
2σy

2−Ncov2(x,y)
− (Y−Nµy)cov(x,y)

Nσx
2σy

2−Ncov2(x,y)

− (X−Nµx)cov(x,y)
Nσx

2σy
2−Ncov2(x,y)

+ (Y−Nµy)σx
2

Nσx
2σy

2−Ncov2(x,y)


=

(X −Nµx)
2σy

2

Nσx2σy2 −Ncov2(x, y)
− (X −Nµx)(Y −Nµy)cov(x, y)

Nσx2σy2 −Ncov2(x, y)

− (X −Nµx)(Y −Nµy)cov(x, y)

Nσx2σy2 −Ncov2(x, y)
+

(Y −Nµy)
2σx

2

Nσx2σy2 −Ncov2(x, y)

So χ2 is now

χ2 =
(X −Nµx)

2σy
2 + (Y −Nµy)

2σx
2 − 2(X −Nµx)(Y −Nµy)cov(x, y)

Nσx2σy2 −Ncov2(x, y)

(5.19)

Now that we have an expression for χ2 we are able to calculate the value

for the PDF. However, we would like the PDF to be in terms of the polar
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coordinates z and ψ, rather than what we’ve been using up until now, X and

Y. To do this we must make the following substitutions:

X = U cosψ, Y = U sinψ, z = X2+Y 2

N
, and U2 = Nz.

We can now convert our equation for χ2 to be (first) expressed in terms of

U and ψ

χ2(U, ψ) =
(U cosψ −Nµx)

2σy
2 + (U sinψ −Nµy)

2σx
2

Nσx2σy2 −Ncov2(x, y)
(5.20)

−2(U cosψ −Nµx)(U sinψ −Nµy)cov(x, y)

Nσx2σy2 −Ncov2(x, y)

=
U2cos2ψσy

2 − 2NU cosψµxσy
2 +N2µx

2σy
2 + U2sin2ψσx

2 − 2NU sinψµyσx
2

Nσx2σy2 −Ncov2(x, y)

+
N2µy

2σx
2 − 2cov(x, y)(U2 cosψ sinψ −NUµx sinψ −NUµy cosψ +N2µxµy)

Nσx2σy2 −Ncov2(x, y)

then putting in terms of z and ψ:

χ2(z, ψ) =
1

Nσx2σy2 −Ncov2(x, y)

(
Nzcos2ψσy

2 − 2N
√
Nz cosψµxσy

2

+N2µx
2σy

2 +Nzsin2ψσx
2 − 2N

√
Nz sinψµyσx

2 +N2µy
2σx

2

− 2cov(x, y)(Nz cosψ sinψ −N
√
Nzµx sinψ −N

√
Nzµy cosψ +N2µxµy )
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=
1

Nσx2σy2 −Ncov2(x, y)
( (σy

2cos2ψ + σx
2sin2ψ − 2cov(x, y) cosψ sinψ))Nz

− 2((µxσy
2 + µycov(x, y)) cosψ + (µyσx

2 + µxcov(x, y)) sinψ)N
√
Nz

+ (µx
2σy

2 + µy
2σx

2 + µxµycov(x, y))N
2 )

As a side note, we should make sure to keep track of our integrands here;

when making the change of variables between (X, Y ) and (U, ψ) we gain a

factor of U: dXdY → UdUdψ and upon making the change from (U,ψ) to

(z,ψ) we obtain a factor of dU
dz

, or N
2
√
Nz

. Taking all of this together with the

relation U = Nz, we see that the overall value reduces to N/2 for the change

of variables, or dXdY → UdUdψ → N
2
dzdψ.

Now, in order to get the Rayleigh power PDF we simply need to integrate

e(−χ
2/2), which turns out to be easier said than done, given the complicated

form of our χ2. For simplicity, we will express the exponential argument in

three groups, α1, α2, and α3.

α1(ψ) = cos2ψσy
2 + sin2ψσx

2 − 2 cosψ sinψcov(x, y)

α2(ψ) = −2(cosψµxσy
2 + sinψµyσx

2 + (µx sinψ + µy cosψ)cov(x, y))

α3(ψ) = µx
2σy

2 + µy
2σx

2 + µxµycov(x, y)

And the PDF for the Rayleigh power becomes

f(z)dz =
1

C
dz

∫
e−(α1(ψ)/2)Nz−(α2(ψ)/2)N

√
Nz−(α3(ψ)/2)N2

dψ (5.21)
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where C is a normalization constant.

To obtain the actual distribution for each frequency, we integrate the above

function with respect to ψ. Since this is obviously not a simple feat, we rely on

numerical integration, finding values for µx, µy, σx, σy, and cov(x, y) for each

frequency sampled. We can then feed these values to the final integral to get

the full Rayleigh power probability distribution for each frequency in our data

set. So in effect, what started out as an analytic ‘fit’ is no longer fitting any

parameter aside from a normalization constant. This is a very strong point to

be made: the analytic form is now a prediction of what the Rayleigh power

distribution should be, and as will soon be shown, it is a remarkably accurate

prediction.

5.4 Aside: Simplified Analytic Form

Before proceeding, I should mention that the initial attempts at fitting the

Rayleigh power distribution with the analytic form did not employ the full

form as described above. There is an elegant simplification of Equation 5.21,

suggested by SNO collaborator Scott Oser, which relies on two assumptions.

The first assumption is that there should be no difference between the variance

in X and the variance in Y, or σx = σy. In theory, this seems to be a fair

assumption since we would not expect a bias of the variance in either direction.

The second assumption postulated that there should also be no covariance

between x and y, or cov(x, y) = 0. If these two (presumably reasonable)

assumptions are made, the analytic form simplifies considerably, and there is
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no longer a need for numerical integration, etc. As has been displayed in [52],

the form of the function for this simplified case is

f(z, ψ)dzdψ =
1

C
exp(

−z
2σ2

)exp(
−Nµ2

2σ2
)exp(

µ
√
Nz

σ2
cosψ)dzdψ (5.22)

This version of the form actually would in theory work as a fit: once integrated

(w.r.t. dψ) it can be expressed in the very general form

f(z)dz = zaexp(b+ cz + d
√
z)dz (5.23)

Obviously this formula would make things much easier to work with, but

unfortunately the assumptions that led to this form don’t actually work for

the SNO data set. An example of the simplified fit, applied to SNO MC, is

shown in Figure 5.4:

Though the covariance between x and y is approximately zero, and the

variances are approximately equal, these assumptions obviously don’t strictly

hold. Only one demonstration of the poorness of fit is shown here; it should be

noted that this is among the ‘best’ of the fits using the simplified analytic form.

For a study which ultimately requires strict agreement between the analytic

form and actual data distributions (for confidence level generation, etc., as

will be seen in later sections), this is enough to make the simplified analytic

fit useless for our purposes. It therefore turns out that the full analytic form

is necessary to get reasonable agreement between predictions and the actual

data.
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Simplified Analytic Form


Rayleigh Power


Figure 5.4: Example of Monte Carlo comparison with simplified analytic form.
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5.5 Generation of Rayleigh Power Monte Carlo

In order to model and understand the behavior of the Rayleigh power for

different frequencies, a first step should be to generate sample power spectra

with no signal present other than experimental deadtime. For SNO, this is

only possible with the creation of a deadtime window function, which incor-

porates all of the times that SNO was operating and taking data, as well as

the times when SNO was operating but not taking neutrino data (calibration

runs, maintenance runs, etc.), or shut down altogether (INCO strikes, power

outages, etc.). The window function is simply a binary ‘on/off’ function which

indicates as a function of time when SNO was or was not in neutrino data-

taking mode. An example of a SNO window function, taking into account

detector deadtimes and livetimes for the D2O phase is shown in Figure 5.3.

The Monte Carlo data sets are generated by randomly throwing events in

time, and only allowing events to occupy those times that are designated ‘ac-

ceptable’ by the SNO deadtime window function. With this accept-and-reject

method, we ultimately are left with a data set that has randomly generated

event times, only occurring during calendar times which coincide with actual

SNO run times. Aside from the built-in signal of the deadtime window func-

tion, the SNO no-signal Monte Carlo is thus completely random, and should

represent a truly signal-free SNO data set.

Once we have generated Monte Carlo data sets for our analyses, we can

evaluate them just as we evaluate data, and run the Rayleigh power analy-

sis on the Monte Carlo. By having fake data sets with absolutely no signal
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present other than the underlying SNO deadtime structure, we are equipped

with a versatile means of understanding and accounting for the behavior of

this inherent periodicity of SNO. A sample SNO Monte Carlo Rayleigh power

spectrum is shown in Figure 5.5.

5.6 Confidence Levels

With the existence of a predictive analytic form for the distribution of ‘null-

hypothesis’ Rayleigh powers at all sampled frequencies, we are now armed

with the ability to evaluate the statistical significance of the Rayleigh power

spectrum for SNO data. Because the analytic form predicts the behavior of the

Rayleigh power in the presence of zero external signal, it enables us to generate

confidence levels for Rayleigh powers at any sampled frequency. The method

of determining confidence levels for an individual frequency is as follows.

Assuming the analytic PDF correctly describes the expected distribution of

null-hypothesis Rayleigh powers for a given frequency, we can determine where

on this probability curve a Rayleigh power, z(f), describing the periodicity

of data at a frequency, f , will sit. For any particular frequency f , we can

then find the fractional confidence level of this ‘detected’ Rayleigh power,

z(f). We do this by integrating over the entire probability curve to find a

normalization factor, or norm, and then integrating the curve with the detected

Rayleigh power, z, as our upper limit, to find the fraction of the PDF which

lies below this particular Rayleigh power. We therefore find the confidence
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Rayleigh Power Spectrum for Combined Phase SNO Monte Carlo
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Figure 5.5: Sample combined-phase (D2O and Salt phases) no-signal Monte
Carlo Rayleigh power spectrum. The built-in structure which is present in the
power spectrum is due to inherent periodicities due to deadtime (‘windowing’)
in SNO’s data set.
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level by comparing the two results, such that for any given frequency,

CL(f) =

∫ z(f)

0
(PDF )dz∫

(PDF )dz
(5.24)

If z(f) is found to be on the higher end of the predicted distribution, we will

have a higher confidence level, and similarly if z(f) is on the lower end of the

predicted distribution, we should end up with a low confidence level. In this

way, we are able to decipher which of the many peaks in a data set’s Rayleigh

power spectrum are truly significant (i.e. not statistically likely to be a random

fluctuation), and which of the peaks are in agreement with expectations for

any particular frequency’s built-in structure.

5.7 The Trials Penalty

Now that we have a fully descriptive analytic form with which to model the

Rayleigh power behavior for different frequencies, we can determine the sta-

tistical significance of a power for individual frequencies through individual

peaks’ confidence levels. However, in determining the significance of Rayleigh

power peaks for the power spectrum as a whole, we run into a problem.

There is obviously a difference between the confidence level for all frequen-

cies sampled and the confidence level for one single frequency. For example,

the probability of seeing one peak with confidence level greater than 90% for

one frequency is much lower than the probability of seeing one peak with con-

fidence level greater than 90% in any of the frequencies sampled, due simply
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to the increased number of trials, or measurements, being done. This is com-

monly referred to as the trials penalty, in that the statistical significance of a

result must incorporate the number of trials, or rolls of the dice, which led to

that result. (For example: roll a pair of dice once, get double sixes, and you’re

slightly impressed. Roll the pair of dice 100 times, and get double sixes only

1 time out of 100, and you’re much more impressed).

Because of the trials problem, in order to determine the false alarm prob-

ability for an entire data set (the likelihood that a ‘discovery’ at a particular

CL threshold are just statistical deviations from the norm), we must include

in the CL calculation the number of independent frequencies which we are

scanning in our Rayleigh power analysis. Here the false alarm probability is

defined as being the chance that any given peak at a certain Rayleigh power

strength is a false alarm, or FAP = 1− CL.

In order to extend the false alarm probability for one frequency to the entire

sampled set (all frequencies) we simply take the complement of the product of

seeing a peak above CL for any one frequency, or: FAPbin = 1−CLbin becomes

FAPtotal = 1− (CLbin)
f , where f is the number of independent frequencies we

are sampling (an empirically-determined value for SNO’s periodicity studies).

As is evident in this expression for FAPtotal, the overall false alarm probability

is a much lower value than the FAP for one sampled frequency. If, for instance,

we want to find the probability that any peak be above the 90% confidence

level, (or in other words, the confidence level for a data set spanning 9,998

frequencies is 90%), then the corresponding confidence level for each frequency
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is actually 99.962% (and similarly, the FAP for each sampled frequency would

now be 0.038% rather than 10%).

We can easily see that to attain the level of precision needed to assign con-

fidence levels at the 99% and 3σ level, one would need to produce tremendous

amounts of zero-periodicity Monte Carlo data to determine what the actual

frequency-specific confidence levels are. Because of this trials problem, the

Rayleigh power test goes from being an unusually fast and straightforward

method of analyzing periodic signals to being a very cumbersome, CPU-heavy

analysis due to the potential need for production of hundreds of thousands of

Monte Carlo runs.

By correctly modeling the behavior of Rayleigh powers for all sampled fre-

quencies in a data set, one can avoid relying strictly on null-hypothesis Monte

Carlo to get around the trials problem. We will still need a high degree of

accuracy to be able to determine trials-weighted frequency-specific confidence

levels, but having a predictive analytic form for each frequency that we sample

greatly reduces the amount of time (both calendar time and CPU time) needed

to produce a true description of what occurs at the tails of our Rayleigh power

distributions.
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5.8 Results of Full Analytic Form on Monte

Carlo

In order to test the basic premise that our random-walk-inspired analytic form

correctly models a data set with deadtimes in it, I constructed a set of Monte

Carlo with a very straightforward ‘window function’ built in, which models

reasonable, simplistic on/off times of 6 days with incoming signal, 1 day with-

out (a weekly periodicity). The Monte Carlo described here is loosely based

on SNO’s calendar livetime, in that its length has been determined by the

length of the D2O data set (with start and stop times dictated by the first and

last dates of data taking during the D2O phase), however, the actual weekly

structure of the window function involved here has no information from SNO

(and therefore no additional inherent signal).

5.8.1 Results

The first test of how well the analytic form describes our data set is a com-

parison between the predicted distribution (full analytic form) and the actual

distribution as given by Monte Carlo. The purpose of running this check is to

verify that for frequencies which have no signal, the analytic form accurately

predicts Rayleigh power behavior in that frequency. Similarly, we can test any

deviation from the analytic form for the frequency where a signal is present.

We would expect no deviation at the signal-specific frequency, since the inher-

ent frequency in the data set is fed, via the window function, to the analytic
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formula. So in order to check agreement between the analytic prediction and

the actual Rayleigh power distributions, we can simply look at comparisons,

frequency to frequency, as are shown in the following figures.

These results are quite encouraging; the agreement between the actual

Monte Carlo Rayleigh powers and the analytic form predictions is remarkable.

With this ammunition, we can proceed with confidence to a more complicated

SNO-based Monte Carlo and analytic form.
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to check agreement between the analytic prediction and the actual Rayleigh Power
distributions, we can simply look at comparisons, frequency bin to frequency bin, as
are shown in the following figures.

Figure 1: Fake Window Monte Carlo comparison with Analytic Form. Frequency bin
1426, corresponding to the fake window signal frequency of 0.14287/day, or 1/7 days.
As expected, there is good agreement between predicted Rayleigh Power behavior for
this frequency and actual Monte Carlo Rayleigh Power Distribution

8

Figure 5.6: Fake Window Monte Carlo comparison with analytic form. Fre-
quency bin 1426, corresponding to the fake window signal frequency of
0.14287/day, or 1/7 days. As expected, there is good agreement between
predicted Rayleigh power behavior for this frequency and actual Monte Carlo
Rayleigh power distribution
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Figure 2: Fake Window Monte Carlo comparison with Analytic Form, log scale. Fre-
quency bin 1426, corresponding to the fake window signal frequency of 0.14287/day,
or 1/7 days.

Figure 3: Fake Window Monte Carlo comparison with Analytic Form. Frequency bin
3456, corresponding to frequency of 0.34587/day

9

Figure 5.7: Fake Window Monte Carlo comparison with analytic form, log
scale. Frequency bin 1426, corresponding to the fake window signal frequency
of 0.14287/day, or 1/7 days.
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Figure 2: Fake Window Monte Carlo comparison with Analytic Form, log scale. Fre-
quency bin 1426, corresponding to the fake window signal frequency of 0.14287/day,
or 1/7 days.

Figure 3: Fake Window Monte Carlo comparison with Analytic Form. Frequency bin
3456, corresponding to frequency of 0.34587/day

9

Figure 5.8: Fake Window Monte Carlo comparison with analytic form. Fre-
quency bin 3456, corresponding to frequency of 0.34587/day
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Figure 4: Fake Window Monte Carlo comparison with Analytic Form, log scale.
Frequency bin 3456, corresponding to frequency of 0.34587/day

The agreement between the actual Monte Carlo Rayleigh Powers and the An-
alytic Form predictions is remarkable. With this ammunition, we can now move on to
looking at comparisons between the more complicated SNO-based Monte Carlo and
the Analytic Form.

5.2 SNO Monte Carlo

The second group of comparisons that we will look at is the SNO-based Monte Carlo.
‘SNO-based’ here just means that the window function which is fed to the analytic
form is based on the SNO published runtimes for D2O. This will therefore include all
of SNO’s inherent livetime periodicities, and should have a significantly different set
of power distributions. As can be seen in the following figures, even with the inclusion
of all of SNO’s built-in, detector-specific periodicities, we get very good agreement
between the Full Analytic Form and the Rayleigh Power distributions for the Monte
Carlo in different frequency bins.

6 Confidence Levels

From the preceding figures we can easily see that the Analytic Form serves as an ade-
quate prediction of the Rayleigh Power behavior for different frequency bins. This al-
lows us to interpret these predictions in the form of confidence levels for each frequency

10

Figure 5.9: Fake Window Monte Carlo comparison with analytic form, log
scale. Frequency bin 3456, corresponding to frequency of 0.34587/day
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Chapter 6

Low-Frequency Periodicity

Search

As has been mentioned in Section 2.1, there have been claims of detection of a

periodicity in the solar neutrino flux [25], [26], [27], [28], [29], [30], [31], as well

as claims to the contrary [32], [33]. As a critical contribution to the periodicity

argument, SNO performed our own search for low-frequency periodicity in the

solar neutrino flux, and found no statistically significant signal [8]. A Lomb-

Scargle periodogram was constructed from the binned SNO data for both the

D2O and Salt phases of data-taking. An unbinned approach was used as well,

which employed the maximum likelihood method to construct a ‘likelihood

spectrum’ of the data. With these two methods, and a ‘cross-check’ unbinned

analysis using the Rayleigh power method, SNO was able to survey the region

of interest with enough independence between analyses to ensure an unbiased

outcome.
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6.1 Low-Frequency Rayleigh Power Methods

Although the published low-frequency periodicity analysis was based primarily

on the two methods discussed in Section 2.2, the idea of using the Rayleigh

power test as a cross-check for these two methods was proposed and undertaken

in the hopes of having a third analysis for verification purposes (the methods

used in a Rayleigh power analysis have been detailed in Chapter 5). However,

an initial analysis of standard SNO Monte Carlo sets resulted in Rayleigh

power spectra with a great deal of built-in structure. As was discovered after

some time, this structure is due to the ‘windowing’ of the SNO data set,

which was described in Section 5.3. The presence of windowing structure

in the Rayleigh power spectrum ultimately led us to develop the analytic

form and analysis which has been outlined in Chapter 5, and recognize the

potential applications of the Rayleigh power to new frequency regimes, which

will be covered in Chapter 7. Though the work required to extract the correct

formula for the Rayleigh power distribution was more involved than had been

anticipated for a ‘cursory’ cross-check analysis, the application of the Rayleigh

power method in the low-frequency regime gave us a platform for testing our

methods before embarking on the far trickier high-frequency analysis.
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6.1.1 Creation of SNO Low-Frequency No-Signal Monte

Carlo

As has been detailed in Section 5.5, SNO Monte Carlo are generated using

an accept-and-reject method, based on the SNO deadtime window. For the

low-frequency search, several thousands of null-hypothesis Monte Carlo were

generated, with no signal present, to address the statistical significance of any

peaks found in the data’s Rayleigh power spectrum. This method of statistical

interpretation will be detailed in the following sections.

6.2 Analytic form for Low-Frequency Search

The analytic form described in the previous chapter (Chapter 5) is now to

be used in the context of SNO for the low-frequency analysis, specifically, by

incorporating the SNO deadtimes in the integration of the analytic PDF. As

was detailed in Chapter 5, the Rayleigh power analytic form is based on the

Gaussian parameters describing the ‘random walk’ of events. By structuring

our Gaussian parameters with the input of the SNO deadtime window function,

as shown in Equation 5.15, we build an analytic form with the foundation of

the inherent SNO low-frequency deadtime. In doing this, we expect that the

analytic form will have the exact same behavior for any sampled frequency as a

collection of no-signal SNO-based Monte Carlo data sets, only if the predictive

form that we are using has truly incorporated the necessary phase restrictions.

In the following figures, Figures 6.1- 6.4, I show the distributions of thou-
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sands of no-signal SNO Monte Carlo for various sampled frequencies, and the

corresponding analytic PDF superimposed on top of these distributions. It

is remarkable that even with the inclusion of all of SNO’s built-in, detector-

specific periodicities (as given by the low-frequency deadtime window func-

tion), we get very good agreement between the full analytic form and the

Rayleigh power distributions for the Monte Carlo in different frequency bins.

6.3 Confidence Levels

From the figures in the preceding section (Section 6.2) we can easily see that the

analytic form serves as an adequate prediction of the Rayleigh power behavior

for different frequency bins. This allows us to interpret these predictions in

the form of confidence levels for each frequency bin, as previously described

in Section 5.6. Though we have analytically determined a formula for the

calculation of confidence levels which includes a fix for the trials problem, this

formula depends on the number of independent frequencies, f, which we have

not been able to make a prediction for. For the low-frequency analysis, we

have relied on an empirical value for f, determined by checking our confidence

level predictions against an actual Monte Carlo-based (‘brute force’) count

of how many fake data sets pass a confidence level cut versus how many we

expect to pass given a trial value of f. This number turns out to be roughly

275 (markedly different from the 9,998 we started off with!),and with this

information we can effectively predict the confidence levels for the D2O-phase

data set in the given frequency range. The trials-weighted confidence levels
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Figure 6.1: SNO Monte Carlo comparison with analytic form. Frequency bin
7, corresponding to frequency of 0.00097/day, or 11.2 nHz.
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Figure 6.2: SNO Monte Carlo comparison with analytic form, log scale. Fre-
quency bin 7, corresponding to frequency of 0.00097/day, or 11.2 nHz
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Figure 6.3: SNO Monte Carlo comparison with analytic form. Frequency bin
2537, corresponding to frequency of 0.25397/day, or 2.94 µHz
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Figure 6.4: SNO Monte Carlo comparison with analytic form, log scale. Fre-
quency bin 2537, corresponding to frequency of 0.25397/day, or 2.94 µHz
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for the D2O phase are shown in Figure 6.5

6.4 Low-Frequency Rayleigh Power Results

Now that we have created the tools to interpret the Rayleigh power spectrum,

in light of the inherent SNO deadtime structure which is present at all sampled

frequencies, we can use this information to perform a retroactive check of the

Rayleigh power values found for the SNO data set in the D2O phase. By

comparing the trials-weighted confidence levels of all frequencies to the SNO

D2O-phase Rayleigh power spectrum, we can attempt to verify the results of

the other two methods used in the low-freqeuncy periodicity search, to ensure

that we do indeed see no significant periodic signal. Not surprisingly, we see

no peaks above a 90% confidence level, and this is in good agreement with our

previously published results[8].
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Rayleigh Power Confidence Levels in the SNO D2O Phase
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Figure 6.5: Confidence levels for Rayleigh power in the SNO D2O phase.
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Rayleigh Power Spectrum, SNO D2O Phase
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Figure 6.6: SNO D2O-phase data with 90% confidence level imposed. It is
clear from the power spectrum that there are no peaks in the D2O-phase data
which surpass the 90% confidence level, therefore the Rayleigh power analysis
is in agreement with the other two analyses used by SNO for the low-frequency
periodicity search.
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Chapter 7

High-Frequency Periodicity

Search

In this chapter I will detail the markedly different approach of the Rayleigh

analysis as it is used for the ‘high’-frequency regime, ranging over frequencies

of 1/day to 144/day (or 1/10 min). The high-frequency periodicity search

has been largely motivated by the possibility of observing effects on the solar

neutrino flux by gravity-mode oscillations at the solar core. Due to the magni-

tude of the region to be searched, the need for minimal backgrounds, and the

amount of precision needed to carry out a statistically significant interpreta-

tion of the results, this task has not been previously attempted by any other

experiment.
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7.1 Motivation for a High-Frequency Period-

icity Search

For a search of periodicity in the solar neutrino flux at low frequencies, three

separate analyses have already been carried out, and a periodicity paper has

been published [8], as was discussed in Chapter 6. The idea for a separate

periodicity analysis at a higher frequency range (> 1/day) was proposed with

the motivation that a search at these frequencies might introduce the possi-

bility of detecting predicted gravity-mode, or g-mode, oscillations’ effects on

the solar neutrino flux. The solar oscillation modes have been introduced in

Section 2.3. The most relevant modes of oscillation for high-frequency studies

of the solar neutrino flux are expected to be the g-mode oscillations. These

oscillations are inherently difficult to detect on Earth, largely because they are

confined to the inner region of the sun, in contrast to the more well-understood

pressure, or ‘p-mode’, oscillations which are present as acoustic waves both in

the interior and outer envelope of the sun. However, this property is precisely

what makes the g-mode search interesting to SNO, since the solar core is the

region in which neutrino production occurs. If g-mode oscillations significantly

affect the electron densities or chemical abundances at the solar core, there

exists a possibility of seeing the oscillations’ effects on the solar neutrino flux

by way of the MSW effect, and possibly (though highly doubtful according

to the heliosmic community) by way of small fluctuations in the core tem-

perature. Regardless of the predicted mechanism, the Rayleigh power opens
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up possibilities of detecting higher-frequency regions due to its fast processing

time.

As they are confined to the interior of the sun (they are evanescent in the

convection zone), g-mode oscillations have proven to be elusive subjects to

study with helioseismology instruments dedicated to observing effects from

g-modes at the solar surface. Nevertheless, the GOLF experiment, aboard

the SOHO satellite, has undertaken the study of g-modes via Doppler veloc-

ity measurements at the solar surface [53], and has made claims for having

detected signatures in the power spectrum density (PSD), presumably caused

by g-modes [54] [55]. More detail about the specific detected signal will be

covered in Chapter 9, but in light of claims from GOLF after over a decade of

running and analysis, it appears that g-modes are beginning to enter into the

realm of detection.

7.2 SNO at High Frequency

7.2.1 Deadtime Window

As has been described in Chapters 5 and 6, the Rayleigh power suffers from

a dependence on inherent deadtime in the data set being considered. One

of the main considerations, therefore, in going from a low-frequency Rayleigh

power analysis to a high-frequency analysis is the deadtime window function to

be used in determining the expected Rayleigh power distribution for different

frequencies. For the low-frequency Rayleigh power analysis, we explained the
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need for the deadtime window function, which is essentially a binary on/off

assignment that specifies the exact calendar times when SNO would be online

and able to detect a signal, i.e. the detector is on and in ‘neutrino’ running

(not calibration or ‘junk’ runs), as well as the times when SNO would be offline

or unable to detect events, i.e. the detector is off, or calibrations are occurring.

For the high-frequency analysis, we again have to create a deadtime win-

dow, but we now are including not only low-frequency deadtimes (on the order

of days, weeks, and months), but also all the deadtimes which are on the order

of the periods which we would like to sample (seconds, minutes and hours).

These higher-frequency deadtimes are a result of the ‘data cleaining’ process

SNO uses to rid our data set of non-neutrino backgrounds, as outlined in

Chapter 1, and designates short windows of time (on the order of msec and

sec) which follow typical background-like events in an effort to clean the data

of such events, such as muons, muon followers, malfunctioning PMTs, etc. It

should be noted that our high-frequency window function is built to model

periods of deadtime, and as such the most relevant information for this study

is not the size of the gaps in the window so much as the length of time between

the gaps.

The high-frequency deadtime window was generated by scanning through

the D2O and Salt phase neutrino data sets, and recording all the times (as

measured by the 10MHz GPS-synchronized clock) when specific bits of the

data-cleaning, or background-removal, mask were flagged. For this study, any

short time-scale cuts which were performed on the data set and resulted in
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the reduction of deadtime of the data set, be it on the order of milliseconds or

minutes, were included in the creation of the high-frequency deadtime window.

The specific cuts which affect the deadtime window are

1. Muon cut: designed to tag muon events in the detector

2. Muon Follower Short cut: tags all events following a muon within 20 sec

3. Nhit Burst: designed to cut bursts - defined as 6 events above 40 NHIT

(NHIT = Number of PMTs HIT) within 4 sec

4. Missed Muon Follower Short cut: designed to tag neutron followers from

atmospheric neutrinos, muon events that were missed by the muon tag,

and all other processes that result in neutrons in SNO without a visible

precursor. Removes any event within 250 msec of an event with NHIT

≥ 60.

The deadtime window function therefore includes the gaps in phase cov-

erage for the Rayleigh power analysis due to the various background removal

cuts which result in a msec-scale or longer deadtime, in addition to the lower-

frequency livetime gaps. For each ‘gap’ in the SNO livetime due to a cut, run

boundary, etc., there is a corresponding gap in the livetime window (thus cre-

ating the ‘deadtime’ window function). By including this information in our

generation of SNO Monte Carlo files, we are able to model the substructure

which is detected with the Rayleigh power test.
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7.2.2 Challenges of a High Frequency Search

The trials penalty has already been described in some detail in Chapter 5, and

is a significant impediment to a large-scale analysis due to the copious amounts

of Monte Carlo which must be generated to offset it. The larger the number of

frequencies being sampled, the (presumably) greater the number of indepen-

dent frequencies which must be accounted for. With this comes the necessity

for a greater precision for trials-weighted confidence levels, and therefore the

greater the number of Monte Carlo which must be run. This was a frustration

for the low-frequency periodicity search, but for the high-frequency search it

was initially seen as a deal-breaker; the number of frequencies which must be

scanned for a conclusive ‘high-frequency’ search is formidable in comparison to

the already unwieldy number used in the low-frequency analysis. Because the

motivation for the search is largely based on g-mode oscillations, which are at

the moment very poorly understood in our sun, the range which must be cov-

ered in terms of frequency is quite broad, as there is a great deal of uncertainty

about the particular frequencies of interest regarding solar g-modes.

Not only must the frequency range for the high-frequency search be a great

deal wider than the range for the low-frequency search, we also must use

adequately small spacing between frequencies so as to ensure that we do not

miss a signal by sampling at too-large intervals. This will be discussed shortly.

In spite of these clear challenges, the Rayleigh test still serves as the most

promising approach for such an analysis, as the computing power and time

required to evaluate a high-frequency Rayleigh power spectrum still outper-
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form other ‘fit-heavy’ methods such as the previously mentioned Maximum

Likelihood and Lomb-Scargle approaches 1.

7.2.3 Unique Abilities of SNO

Having enumerated the challenges facing SNO in this search (and really, any

experiment directing its efforts to this frequency regime), we should also pay

special attention to the unique abilities held by SNO for such an analysis. Since

SNO has such inherently low backgrounds, and effective background-rejection

methods, we have a great deal of confidence that events in our neutrino data

set are accurately representing solar neutrino behavior. In other words, if we

were to find periodicity in our data set, we can be very confident that it is

a periodicity in solar neutrino flux rather than a periodicity introduced by

contamination of radioactive backgrounds.

Also, SNO’s real-time detection of events allows us to have a direct rep-

resentation of any temporal signal of solar neutrinos. The precision of our

10MHz clock (±1ns) is such that for the purposes of a high-frequency peri-

odicity study, there is no appreciable uncertainty on the relative or absolute

event times recorded in the SNO detector.

1For comparison, back-of-the-envelope estimates demonstrate that the ‘un-optimized’
Rayleigh analysis code is faster than the Maximum Likelihood method by more than three
orders of magnitude. Optimizing the code further improved the runtime by another two
orders of magnitude.
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7.3 High-Frequency Rayleigh Power

As has been detailed in previous chapters, the Rayleigh analysis is an unbinned

method for finding periodicity in a data set of discrete points. The general

approach for constructing a Rayleigh power is to sample a signal by recording

event times, ti, and use the relation θi = 2πνti to construct the Rayleigh power

of any sampled frequency, where the Rayleigh power, z, is (again) defined as

1/N((Σi(cos θi))
2 + (Σi(sin θi))

2).

Though the expected behavior of the Rayleigh power for any given fre-

quency in the presence of zero signal would be exponential, we have found that

with the deadtime substructure of SNO, the behavior of Rayleigh powers at all

sampled frequencies varies tremendously, from Gaussian-like to exponential-

like (and everything in between). Examples of this are shown in the following

plots (Figures 7.1- 7.3); the Rayleigh powers are calculated for hundreds of

Monte Carlo files (which draw their events from a distribution which is lim-

ited by the deadtime window alone), and the distribution of Rayleigh powers

for two separate frequencies are shown.

Because of this markedly non-exponential behavior of the Rayleigh power

for different sampled frequencies, we must determine exactly what signal the

Rayleigh power test measures when there is no physics signal present in a

data set, or in other words, determine what ‘baseline’ is present in the SNO

data set. In a similar way as was carried out for the low-frequency search, we

can do this by generating the SNO high-frequency deadtime window, and the

resulting SNO Monte Carlo and analytic PDF, both of which are dependent
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Rayleigh Power Distribution for Combined Phase Monte Carlo
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Figure 7.1: Sample distribution of Rayleigh powers for signal-free combined-
phase Monte Carlo with sampled frequency = 1.0 day−1.
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Rayleigh Power Distribution for Combined Phase Monte Carlo
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Figure 7.2: Sample distribution of Rayleigh powers for signal-free combined-
phase Monte Carlo with sampled frequency = 1.00134 day−1.
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Rayleigh Power Distribution for Combined Phase Monte Carlo
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Figure 7.3: Sample distribution of Rayleigh powers for signal-free combined-
phase Monte Carlo with sampled frequency = 1.04639 day−1.
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on the registered SNO deadtime.

7.3.1 Creation of High-Frequency SNO Periodicity Monte

Carlo

With the high-frequency deadtime window function already created, the gen-

eration of SNO Monte Carlo for the high frequency regime is fairly straightfor-

ward. For purposes of evaluating the confidence levels in the high frequency

regime, we must of course have access to null-hypothesis, or zero-signal Monte

Carlo data sets. In addition to the zero-signal Monte Carlo sets, we also must

create Monte Carlo with a periodic signal built into the data set, with the

intent of determining the sensitivities at which the Rayleigh power analysis is

capable of detecting such a signal. The methods of constructing both types of

Monte Carlo are outlined here.

As was the case in the low-frequency Rayleigh analysis, I have generated

all Monte Carlo data sets using an ‘accept-and-reject’ method, in which event

times are randomly generated, and only those occurring within imposed ‘dead-

time’ restrictions (as per the SNO deadtime window function) are accepted in

the final event list.

For ‘signal-free’ Monte Carlo files, the window function is the only restric-

tion present for event acceptance versus event rejection. For the combined-

phase analysis, I generate the Monte Carlo separately for the D2O and Salt

phases, and then concatenate the two files to form one ‘combined-phase’ Monte

Carlo. This allows us to correctly model the rates and deadtime of the SNO
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detector in the two separate phases.

The method for generating the ‘signal’ SNO Monte Carlo files is identical

to that for the signal-free Monte Carlo files, except that a sinusoidal wave is

added on to the (previously flat) window function, therefore making events

more likely to occur during times when the sine wave’s amplitude is positive,

and less likely to occur during times when the sine wave’s amplitude is negative

(relative to the signal-free baseline). To include a sinusoidal signal in the

combined-phase Monte Carlo, one must pay special attention to the phase of

the sinusoidal wave being incorporated; since the combined-phase Monte Carlo

are generated separately, one must force the starting point for the sine wave

in the Salt phase to be the same as that in the D2O phase so that there is

no disagreement in the phase of the sine wave for a combined-phase Monte

Carlo file. We can choose at will the input frequencies and input sinusoidal

amplitudes which we would like to study, and can therefore simulate a wide

range of simulated signal strengths to analyze with the Rayleigh power test.

7.3.2 Creation of Rayleigh Power Files from Monte Carlo

Once the Monte Carlo data sets are created, both with and without built-

in periodic signals, we can perform a Rayleigh power analysis on them, as

described in Section 5.2. Sample power spectra of fake data both without a

signal and with a signal are shown in Figure 7.4 and 7.5.

In Figure 7.5, a periodic signal with an amplitude of 14% modulation has

been put into the Monte Carlo at a frequency of 8.63 day−1, or 99.2 µHz. The
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Sample No-Signal Rayleigh Power, SNO Combined Phases
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Figure 7.4: Power spectrum of combined-phase Monte Carlo with no input
periodic signal.
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Sample Signal Rayleigh Power, SNO Combined Phases, Amp=14pct
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Figure 7.5: Rayleigh power spectrum of combined-phase Monte Carlo with a
14%-amplitude periodic signal at frequency=8.633 day−1, or 99.2 µHz.
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presence of this peak is clearly discernible in the power spectrum of the Monte

Carlo. The presence of multiple peaks is also visible in Figure 7.4, the power

spectrum of the Monte Carlo which has no signal built into it, but includes

the inherent SNO deadtime window function. One can see the clear periodic

behavior of the SNO detector here. Interesting to note is the obvious peak at 1

day−1, or 11.57 µHz; this is indicative of a periodicity in the SNO deadtime on

the order of once per day, which could be due to any number of SNO activities.

Nightly blasting, causing a gap in livetime (by default, SNO does not include

data taken at times when blasting could trigger a false burst in the data set),

could be to blame. The practice of starting a new run daily at 7:00 am upon

shift changeover could be to blame; any ‘blip’ in livetime, if periodic, would be

detected here. This is an interesting peak to consider, but for the purposes of

our study, the cause is of no consequence; since the power spectra for Monte

Carlo with no input signal show this same feature, we are assured that this

peak is due to SNO’s deadtime-specific periodicities, and not a physics signal.

7.3.3 Frequency Range for High Frequency Search

As the main motivation for performing a search for high frequency variations

in the solar neutrino flux comes from the expected g-mode oscillation time

scales, we have a guiding hand to help us determine what frequency range in

which to search. We also would like to ensure that the Rayleigh power test

would be capable of detecting high frequency signals. Though the Rayleigh

power test was used successfully for the low frequency periodicity search in
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SNO, we wanted to assure ourselves that the test would behave similarly in

a high frequency regime, with periods roughly approaching the time scales of

SNO’s background removal cuts in the data set. Stated plainly, we wanted

to determine if there was a maximum frequency which the Rayleigh power

was capable of detecting in SNO. To ensure that we were not overlooking

any limitations in our methods, I performed a scaling test to verify that the

Rayleigh power test retained its sensitivity for signal detection at very high

frequencies. Shown in Figures 7.6 and 7.7 are power spectra for increasingly

high frequencies. I created Monte Carlo data sets with built-in signals ranging

from 1 day−1 to 10sec−1 (far higher than the predicted g-mode frequencies),

with a signal amplitude of 100% of the non-periodic allowed amplitude. As

is clear from the strengths detected with the power spectra, signals with high

frequencies in this regime are not limited by the Rayleigh power analysis. Since

we have ruled out a built-in maximum detectable frequency, we have chosen

our upper limit based loosely on the safe inclusion of the highest limits for

g-mode oscillation frequencies (roughly 43.2 day−1, or 500 µHz [3]).

7.3.4 Frequency Sampling Size

The spacing used between sampled frequencies for the Rayleigh power spectra

is not arbitrarily chosen. The specific spacing used for this analysis was cho-

sen with the intention of maximizing oversampling so as to not risk missing

a potential signal, and minimizing redundancy so as to avoid demanding ex-

cessive job processing times. This perfect balance between being too coarsely
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RPWR for Fake (Gap-Win) SNO D2O Data, Signal Freq=1440/day
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Figure 7.6: Rayleigh power spectrum of D2O Monte Carlo with input fre-
quency=1/minute, with signal amplitude=100%.
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RPWR for Fake (Gap-Win) SNO D2O Data, Signal Freq=86400/day
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Figure 7.7: Rayleigh power spectrum of D2O Monte Carlo with input fre-
quency=1/second, with signal amplitude=100%.
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sampled and too finely sampled would ideally be determined by the number of

independent frequencies in the data set. This is not a number which is readily

extracted from the SNO data, since there is a surprisingly large number of

unpredicted correlations between different frequencies, as has been seen in the

low frequency periodicity search, described in Chapter 6. However, since the

high frequency studies span a much larger region in frequency space (more

than 100 times larger than the low frequency region), and as such demand a

large amount of CPU time, we are not afforded the luxury of running with

excessively fine sampling by default, as was the case with the low frequency

periodicity search. We must determine the appropriate number of frequencies

to sample before performing the search.

While trying to determine if there is an optimal frequency separation, δν,

for the high frequency periodicity search, we primarily focused on the impact

of a few overarching questions:

1. Will the separation of events in time in the data set be a determining

factor; if the separation is larger than the inverse of our chosen δν do we

run into trouble?

2. Is there an absolute maximum component frequency which might restrict

our allowed sampling frequency value (possibly analogous to the Nyquist

rate)?

3. Should the length in time of the data set have any impact on the smallest

allowed spacing in frequency?
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The first idea, that the smallest absolute spacing between two events in

our data set might affect our sampling ability, turns out to be misleading.

As in many other analyses, since the Rayleigh power test takes a data set

and ‘wraps’ it many times around the unit circle, the absolute time difference

between two events turns out to be irrelevant, and only the final spacing in

phase is of consequence. A toy demonstration of this is if the time of the

first event, t1, occurs at time 09:20:45 on day 1, and the second event, t2,

occurs at time 09:20:46 on day 2 (24 hours and one second later), it can

easily be seen that these two events will sit near one another in phase if the

period (or the circumference of the Rayleigh power unit circle) corresponds

to T(0 : 2π) = 1hr, for instance, which is large compared to their relative

separation of 1 second (or alternately, 2πn+ 1 second, where n = 24).

The second item taken into consideration was the possibility that we should

treat the SNO data as a continuous-time signal, in which case we would be

able to infer from the maximum component frequency what the sampling fre-

quency should be, analogous to the Nyquist rate for a system. As was demon-

strated above, in Section 7.3.3, there is no detected maximum frequency for

the Rayleigh analysis. This is related to the first item in the above list, since

the highest possible frequency which we would have sensitivity to would largely

depend on the spacing of all of the events in the data set in terms of relative

phase, not on the spacing of the events in the standard ‘absolute’ time. The

presence of a ‘cutoff’ frequency for the Rayleigh analysis was not observed.

Additionally, and perhaps more importantly, the treatment of the SNO data

155



set as a continuous system is likely not the correct way to formulate the prob-

lem. Since SNO data is really just discrete samples of a presumably continuous

signal, it is clear in retrospect that this method would not have been perfectly

applicable even in the presence of a maximum frequency.

The third approach we explored to determine optimal frequency separation

for our high frequency studies was focused solely on the length of time of

our data set. This is illustrated in Figure 7.8; two sine waves which have

only slightly different frequencies of oscillation will begin propagation in a

highly correlated state. These two sine waves will be expected to become

fully uncorrelated only after some length of time, T, which will depend on the

separation of frequencies, δν, between the two oscillations. If the length of

time over which we allow two sine (or cosine) waves, separated in frequency

by δν, to oscillate (the length of the data set) is short compared to the length

of time it would take for the two waves to become completely uncorrelated,

then we would expect strong correlations between neighboring frequencies.

However, as the length of the data set approaches the length of time it would

take for two sine (or cosine) waves to decohere, the weaker the correlations

will become.

Since the Rayleigh power is simply a combination of sines and cosines, we

would expect to be able to see evidence of this relationship in the correlations

between frequencies and the length of the data set which we are analyzing.

We essentially want to know if there exists a ‘beat’ frequency for two Rayleigh

powers separated in frequency by δν, as this will tell us at what spacing be-
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Figure 7.8: Example of the behavior of multiple sine waves sampling neigh-
boring frequencies.
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tween two frequencies we must be able to live with.

To test this theory, I generated two fake data sets; one spanning a length

of calendar time of four days, and another spanning a length of calendar time

of 40 days. In Figures 7.9 through 7.12, I show the results of applying the

Rayleigh power analysis to these two fake data sets, with the same separation

in frequency, δν, for both analyses. It is clear that the data set with shorter

calendar time has much larger correlations between neighboring frequencies, as

was expected with our ‘beat’ hypothesis. As the length of time which the data

set spans is increased (from 4 to 40 days), the amount of correlation between

neighboring frequencies decreases.

This is an encouraging result, and it prompts a more quantitative approach

to solving the problem of what separation of frequencies is necessary for there

to be zero correlation between one frequency, ν, and its neighbor, ν+ δν given

a certain length data set, T. Looking at this another way, if we assume the

presence of ‘beats’ between two Rayleigh powers over some period of time, T,

we can determine the minimum spacing between frequencies necessary for the

beat wave to complete one cycle in this time period. We would like to find the

δν necessary such that the calendar length of our SNO data set allows for one

beat of two sine (cosine) waves separated by δν, i.e. the frequency separation

necessary for two Rayleigh powers of neighboring frequencies to be completely

uncorrelated over the length of time that SNO is running.

It should be emphasized here that what is important is not the SNO-specific

deadtime window (including cuts, etc.), but the total length of calendar time
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Figure 7.9: 4-day data set. Correlations between frequencies for Rayleigh
power spectrum of Monte Carlo with input frequency=11.99 day−1.
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Figure 7.10: 4-day data set. Zoomed view, correlations between frequencies
for Rayleigh power spectrum of MC with input freq=11.99 day−1.
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Figure 7.11: 40-day data set. Correlations between frequencies for Rayleigh
power spectrum of Monte Carlo with input frequency=11.99 day−1.
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Figure 7.12: 40-day data set. Zoomed view, correlations between frequencies
for Rayleigh power spectrum of MC with input freq=11.99 day−1.
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over which two neighboring sine waves would have to evolve to be able to fully

de-correlate. As the periodic structure of the sine waves will not be changed

by the gaps in SNO’s detection livetime, we are not required to include that

information in our evaluation; what is important is the large-scale sampling

time of SNO.

We can represent the degree of correlation by the dot product, where max-

imally correlated neighbors’ sine waves will have a dot product of 1, and com-

pletely uncorrelated (orthogonal in phase) sine or cosine waves will give a dot

product of 0. With this approach, we can determine what frequency separa-

tion is necessary for the products of two neighboring sine waves to integrate

to zero over a certain calendar time, T.

By using the integral representation of the dot product between two sine

waves and two cosine waves, we develop an approximate equation for the

expected de-correlation for two neighboring Rayleigh powers;

∫ T

0

sin(2πνt) sin(2π(ν + δν)ti)dt+

∫ T

0

cos(2πνt) cos(2π(ν + δν)ti)dt = 0

(7.1)

Simplifying, we end up with

sin(2πδνt)|Tt0 = 0 (7.2)

which gives us the separation that we are searching for, δν. Since t0, the start

of data-taking, and T , the end of data-taking, are determined for us by SNO’s

calendar running time, we can now very easily find the particular value which
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is necessary for our specific run-time requirements. For the combined-phase

SNO data set, that value is: δν = 0.00035817day−1, given T =1396 days, with

t0=0. For the D2O data set, which spans only 574 days, we find the value

necessary for no correlations between frequencies is δνD2O = 0.000871day−1.

This shows the behavior which we would expect; for a shorter length data set,

larger spacing between frequencies is required to avoid correlations. Another

way of demonstrating this is shown in Figure 7.13; using the specific value

for δν which we have just calculated (here, for instance, looking at the D2O

phase), we plot the transition from maximal correlation to minimal correlation,

which occurs (as expected) after the length of time over which SNO ran (for

the D2O phase). Again: we are showing that by using a specific separation in

frequency, δν, for the argument of two neighboring sine waves, the length of

time over which the two sine waves become completely de-correlated is exactly

the calendar length of time over which SNO took data.

This is no more than a consistency check; the time necessary for two sine

waves of slightly different frequencies to evolve to show zero correlation with

one another should only equal the length of the data set if we have chosen

the correct value for the separation between the neighboring frequencies. As

is evidenced in Figure 7.13, this is indeed the case.

Since the value which we have found, δν, is the specific separation in

frequency which is necessary to avoid correlations between neighboring fre-

quencies, we know the maximum acceptable spacing for our search (i.e. the

minimum number of frequencies we can inspect over the range which we have
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Figure 7.13: Degree of correlation between two neighboring sine waves, sepa-
rated by the specific value δνD2O =, as a function of time, for the D2O phase.
As is expected, for the length of the D2O data set (TD2O=594 days), and the
δν value found for this particular length of time, the minimal correlation is
reached at t = TD2O. (The curves inside the structure are simply artifacts of
plotting with reduced data points, for purposes of plotting; original (filled-in,
pixel-heavy) figure can be provided upon request).
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chosen). If we use spacing sizes any larger than this, we risk washing out a sig-

nal with sampling separations that are too large. We want to ensure that there

are correlations between neighboring frequencies (rather than avoid them) so

as to not miss a potential signal by misaligning our sampled frequencies; we

want to oversample the frequency space to guarantee that we will not miss a

signal.

Ideally we would like to use spacings which are only a small fraction of the

δν value which we have found, but this is not feasible given the limitations we

are faced with, namely the necessity for speedy analysis and processing. In

Figure 7.14, the Rayleigh power for a particular signal frequency is shown, with

different spacings indicated on top of the trial sampling frequency separations

(the spacing used to create the figure was orders of magnitude smaller than the

value found, δν). It is evident that with different fractions of the ‘maximum’

allowable spacing, we would be able to oversample a given signal to different

degrees. As we have stated, CPU time is a central determining factor, and as

such, we have compromised with a value of δν equal to 1/4 the value found

for the combined-phase data set length (δν = δνCOMB/4). This leaves us with

1.6 million frequencies to sample, with a separation of 0.000089 day−1 for the

combined-phase frequency region.
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Figure 7.14: Zoomed-in view of a signal peak in the Rayleigh power spectrum,
with different frequency sampling-size values superimposed on top of the over-
sampled power spectrum.
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7.4 Confidence Level Generation for the High-

Frequency Search

We have seen that the Rayleigh power behaves differently for different frequen-

cies in the presence of SNO’s deadtime window function; for some frequencies,

the distribution of Rayleigh powers is exponential, and for others the distribu-

tion appears more Gaussian due to the inherent ‘periodicity’ of the detector’s

on and off times. This fact makes a simple interpretation of the results of

the Rayleigh power test difficult, as there initially appears to be no explicit

‘predictable’ value for the significance of a detected signal, since the level of

significance of a given value for a peak will depend on the typical value of

the Rayleigh power for signal-free Monte Carlo at that frequency. This was

taken into consideration when performing the Rayleigh power analysis in the

low frequency regime, detailed in Chapter 6, and will be treated similarly in

the generation of confidence levels for the high frequency regime, with a pre-

dictive analytic form describing the expected distributions of Rayleigh powers

for individual frequencies.

Another consideration which must be taken into account is that for a search

which spans such a large range of frequencies, we are hurt by the trials issue, in

that the more frequencies we consider, the more chances we have to get a peak

which is larger than the frequency-specific confidence level (the probability for

statistical fluctuations up to a ‘significant’ level is increased as our statistics

are increased). This is dealt with in a manner which is different from the
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method used for the low frequency analysis, and which avoids the problems

encountered in the earlier analysis.

7.4.1 Analytic Form of the Rayleigh power

The derivation and testing of the analytic form for the Rayleigh power was

already described in great detail in Chapter 5, but for completeness, I will

briefly outline it again here. In this study, the behavior of the Rayleigh power

was modelled after a random walk in two dimensions, as discussed earlier, in

Chapter 5. From this starting point, and with the full treatment of the two

dimensions’ variances and covariances, we arrive at an analytical predictive

form for the behavior of the Rayleigh power at each frequency sampled, as is

outlined in Chapter 5. Because this analytical form is built from our knowledge

of the boundaries imposed by the SNO deadtime (in the form of our window

function), it is truly a predictive form, up to a normalization constant, and as

such allows us to attain the degree of accuracy required for the determination

of confidence levels for such a large range.

The results from the analytic form and its numerical integration, shown

in Figures 7.15 and 7.16, initially allowed us to calculate the confidence level

for each frequency in the high-frequency range without including information

due to rate difference effects between the two phases of running (D2O and

Salt phases). Having calculated the expected distribution for each frequency

with no signal present, we can determine where a given Rayleigh power sits on

that distribution, and from this we are determine the confidence level of each
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Figure 7.15: Monte Carlo (black) and analytic form (red) without phase-
specific rate dependence included, for sampled frequency = 1 day−1.

Rayleigh power for a given data set.

7.4.2 Rate Differences: Effects on the Analytic Form

While the previous discussion demonstrates the agreement between the predic-

tive analytic form and the actual distribution of Monte Carlo Rayleigh power

values with the deadtime window function taken into account, we have until
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Figure 7.16: Monte Carlo (black) and analytic form (red) without phase-
specific rate dependence included, for sampled frequency = 743 day−1.
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now neglected to include effects due to the difference in event rate between the

D2O and Salt phases in the analytic form. At first glance, the rate difference

was thought to be unimportant for the purposes of this study, the reasoning

being that the Rayleigh power test is impacted not by the universal increase

in the number of events for the entire Salt phase, but instead by the relative

position of events around the unit circle, and the resulting directional vec-

tor of the sum of the individual events. As this is dependent solely on the

events’ occurence relative to the frequency being sampled (i.e. the position

of each event around the unit circle will depend on the circumference of the

circle being sampled), the rate was thought to be of no consequence on the

Rayleigh power value. Though to an extent this is a good approximation, for

our purposes it is not accurate enough, as will soon be seen.

What was found in exploring this difference in rates between the two phases,

and its impact on the analytic function’s behavior for different frequencies,

was that although by itself a rate change would not be expected to affect

the Rayleigh power behavior at high frequencies, when there is a change in

rate paired with a difference in the deadtime window function (the acceptance

window for event times), an increase in rate causes the deadtime window for

the higher-rate time period to be disproportionately sampled. In other words,

what is important is not that the rate itself changes, but instead that the

deadtime (or phase coverage) is different as the rate is changed. If the deadtime

windows were identical between the D2O and Salt phases (or if there were no

deadtime window at all), the difference in rates would not have mattered for
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our high-frequency analysis. However, since for SNO the deadtime window

will always vary with time , we do need to include the presence of this rate

difference between the two phases. This has also been evidenced in retrospect

by observing the differences in the behavior of the Rayleigh power spectra for

Monte Carlo including phase-specific rates vs Monte Carlo assuming constant

rates between phases.

In Figure 7.17, I show the non-rate-inclusive analytic form in relation to the

new rate-inclusive Monte Carlo. We can see that if we were to assume that the

previous non-rate-weighted analytic form would still accurately describe the

new rate-inclusive Monte Carlo, though we would have been roughly correct for

most frequencies, for frequencies like that shown in Figure 7.17 we could have

easily claimed false detection of a signal due to mismodelling of the signal-free

Rayleigh power distribution.

So the question, then, is how must we include this effect in our analytic

form? The method which we have settled on comes from the initial understand-

ing of the Rayleigh power in terms of a two-dimensional random walk. If we

consider the D2O and Salt phases to each be independent random walks, with

unique means and variances resulting from their respective deadtime windows,

then we can weight the two phases’ means by their respective contributions

to the total. The number of steps taken, or in our case the number of events

having occurred, during each phase will determine the extent of sampling of

the deadtime window, and therefore we must accordingly include this in our

analytic description of the Rayleigh power behavior.
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Figure 7.17: Demonstration of the poorness of fit of the analytic form with
no phase-dependent rate information included, compared to the rate-inclusive
Monte Carlo Rayleigh power distribution.
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The basic setup of the analytic form will be exactly the same as it was before

taking the rate effects into account, with the exception that now, instead of

weighting global means, variances, and covariances by the total number of

events (i.e. equivalent weighting of both deadtime window functions) we will

now include relative N-weighting and phase-specific parameter calculations.

In other words, any term which initially had a standard weighting of ‘N’ will

now be divided according to phase, and weighted with the appropriate phase-

specific ‘N’ factor:

Nµx,y → ND2O(µx,y)D2O
+NSalt(µx,y)Salt

Similarly for any term involving variance or covariance:

Nσx,y
2 → ND2O(σx,y

2)D2O
+NSalt(σx,y

2)Salt

and

Ncov(x, y) → ND2O(cov(x, y))D2O
+NSalt(cov(x, y))Salt

So now, making the above substitutions to include phase-specific N-weighting,

the unexpanded χ2 used to calculate the analytic form of the Rayleigh power

is:

χ2(X, Y ) =
(
X − [ND2O(µx)D2O

+NSalt(µx)Salt], Y − [ND2O(µy)D2O
+NSalt(µy)Salt]

)
 (ND2O(σx

2)D2O
+NSalt(σx

2)Salt) (ND2O(cov(x, y))D2O
+NSalt(cov(x, y))Salt)

(ND2O(cov(x, y))D2O
+NSalt(cov(x, y))Salt) (ND2O(σy

2)D2O
+NSalt(σy

2)Salt)


−1
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 X − [ND2O(µx)D2O
+NSalt(µx)Salt]

Y − [ND2O(µy)D2O
+NSalt(µy)Salt]

 (7.3)

From the above expression for χ2 we can then determine the full analytic

form, including the change in rate between the D2O and Salt phases and the

relative deadtime window functions, with the relation

f(z, ψ)dz =
1

C

∫
e(−χ

2/2) (7.4)

By numerically evaluating all parameters for each phase, we have modified the

analytic form to produce a rate-change-inclusive prediction for the combined-

phase Rayleigh Power. The results of these changes in the analytic form and

the agreement with Monte Carlo are displayed in Figures 7.18 through 7.20.

In Figures 7.18- 7.20, we can see the agreement between rate-weighted

Monte Carlo Rayleigh power distributions and the N-weighted analytic pre-

dictive form for standard exponential-style distributions and gaussian-style

distributions, as well as an ‘in-between’ distribution which is not quite gaus-

sian or exponential. As was anticipated, Figure 7.20 shows a marked change

from conditions where rate differences were not accounted for in either the

Monte Carlo or the analytic form, to the conditions where the rate differences

were accounted for in both the Monte Carlo and the analytic form. It is very

encouraging to see that the rate-inclusive analytic form agrees well with the

rate-inclusive Monte Carlo, and we are now safe to rely on the analytic form as

a predictive method of generating confidence levels for the different frequencies
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Figure 7.18: Agreement between rate-inclusive combined-phase Monte Carlo
and N-weighted analytic form for the distribution of Rayleigh powers at sam-
pled frequency = 1.000089 day−1.
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Figure 7.19: Agreement between rate-inclusive combined-phase Monte Carlo
and N-weighted analytic form for the distribution of Rayleigh powers at sam-
pled frequency = 1.046359 day−1.
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New N-wted Analytic Form, New Rt-wted MC, Nu Bin 8
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Figure 7.20: Agreement between rate-inclusive combined-phase Monte Carlo
and N-weighted analytic form for the distribution of Rayleigh powers at sam-
pled frequency = 1.000626 day−1.
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in our analysis.

7.4.3 Calculation of Data-Wide Confidence Levels

The N-weighted analytic form allows us to calculate the confidence level for

each individual frequency in our high-frequency region by predicting the dis-

tribution of signal-free Rayleigh powers for each frequency sampled, and then

allowing us to determine where on that distribution different Rayleigh powers

sit. Powers on the higher end of the distribution naturally have a higher prob-

ability of being statistically significant, and by this reasoning, we can calculate

each frequency’s confidence levels by computing a fractional integral (integrate

over entire distribution, then determine what Rayleigh power corresponds to

90%, for example, of the total distribution integral, and for this specific fre-

quency, this is the Rayleigh power corresponding to 90% Confidence Level.

For questions about this method, refer again to Chapter 5).

However, to find Confidence Levels for the entire range of the high-frequency

search (including all individual frequencies, or ‘data-wide’) we must account

for the problem of the trials penalty. This was also a problem in the low-

frequency analysis; the trials penalty refers simply to the fact that the chance

of any one sampled frequency having a Rayleigh power with a statistical fluctu-

ation above a confidence level of 90% (for example) increases as we increase the

number of frequencies which are included in our study. In the low frequency

periodicity search, I used a brute-force method of calculating the data-wide vs

frequency-specific CL (Chapter 6). This is necessary because the true calcu-
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lation of a data-wide CL depends on the number of independent frequencies

in the range being sampled, n, a number which is not easily extracted from

the SNO data set for either the low or high frequency range. This brute-force

method was time-consuming and not very elegant, and did not seem to be

an appealing solution to apply to the much larger range of frequencies being

treated for the high-frequency search.

In order to avoid using this method for the high-frequency analysis, I used

a method of drawing a ‘data-wide’ confidence level from a distribution of

maximum confidence levels. The idea for this approach is to generate 10,000

Monte Carlo data sets with no signal built into them, and run the Rayleigh

power analysis on these 10,000 files. For each power spectrum, I determine

the Rayleigh power with the maximum frequency-specific confidence level and

record the value of this maximum confidence level. I then build a distribution

of these maximum confidence levels, until I have 10,000 total max CL values.

My data-wide confidence level is then pulled from this distribution; a 90%

data-wide confidence level would correspond to the actual frequency-specific

confidence level that sits at a point where 90% of this Max-CL distribution

falls below it, and 10% sits above it. In this way, we have in a sense built

the trials penalty into our confidence level determination. The distribution of

maximum confidence levels and the cut off for a data-wide confidence level are

shown in Figure 7.21.

This method of creating a ‘confidence level of confidence levels’ makes life

easier, in the sense that the trials penalty is implicitly taken into account.
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Distribution of Maximum CL values from Signal-Free MC
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Figure 7.21: Distribution of Maximum Confidence Levels from Rayleigh anal-
ysis of 10,000 Signal-free Monte Carlo. By building this distribution of max-
imum confidence levels, we can determine a ‘confidence level of confidence
levels’ and account for the trials penalty in our generation of the data-wide
confidence level. The frequency-specific confidence level corresponding to the
data-wide confidence level of 90% is shown with the superimposed red line.
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There are, however, some drawbacks to this method, the most serious of which

being the way that this method treats a power spectrum with multiple ‘high’

peaks. If the physical signal is of a non-sinusoidal form, potentially producing

many peaks in one power spectrum, this method will not allow for detection,

since it scans all the Monte Carlo power spectra for only the one highest peak

in the power spectrum, not a combination of multiplets with high confidence-

level Rayleigh power values. Therefore, if the actual signal’s power is spread

amongst several frequencies, this could be statistically significant, but this

‘CL-of-CLs’ method would not interpret it as such.

It should be noted that in Figure 7.21, the red line indicates the trials-

weighted confidence level value that each individual frequency’s corresponding

Rayleigh power must have to ensure a data-wide confidence level of 90%. This

is obviously a much higher value for each frequency than 0.90; the frequency-

specific CL=90% value is closer to 0.9999999, due to the inclusion of the

trials penalty in this calculation. So although we still are only requiring 90%

confidence level for the entire data set (i.e. 1 out of every 10 ‘simulated SNO’s’

would give us a peak higher than this line due to statistical fluctuations), we are

requiring a much higher confidence level for each individual sampled frequency

(only something like 1 out of every 10 million frequencies would give us a peak

higher than this frequency-specific line due to statistical fluctuations).
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7.5 Results of Rayleigh analysis with SNO Data

With the successful inclusion of the trials penalty in our generation of the data-

wide confidence levels for the high frequency region, we now have a meaningful

way of determining which, if any, peaks in the SNO combined-phase data are

significant. In Figure 7.22, the results from the Rayleigh analysis of the entire

data set is shown with the Confidence Level=90% line indicating the Rayleigh

power for each individual sampled frequency which would have been necessary

to have a detection of a periodic signal at the 90% level. For this analysis,

we used the same event list which was used in the Low Frequency periodicity

study. The event list therefore consisted of 2,924 events in the D2O phase,

where an effective kinetic energy threshold of Teff > 5 MeV was used, and

4,722 events in the Salt phase, where the effective kinetic energy threshold was

Teff > 5.5 MeV. In both phases a fiducial volume of R < 550cm was used, and

burst cuts were applied to remove muons and muon followers from the data

set. For a more detailed explanation of the specific burst cuts used, consult

[8].

The highest peak in the data set for this all-inclusive high frequency region

was at a frequency of 103.384 day−1, with a confidence level of only 1.95%.

Though this may seem alarmingly small at first glance, we must remember that

we are, in essence, sampling a probability distribution here; our confidence level

analysis tells us what the expected distribution of many SNO data sets would

look like, and the physical (real) SNO data simply sits on the low end of this

distribution.
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Figure 7.22: Rayleigh power spectrum of SNO combined-phase (Salt+D2O)
data (black), with the CL=90% curve showing the levels which would be nec-
essary for a detection at the 90% confidence level (red). This plot shows no
statistically significant peaks in the SNO combined-phase data set.
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The second-highest peak in the data set sat at a frequency of 58.735 day−1,

with a confidence level of 1.75%. These two zoomed-in regions are shown in

Figures 7.23 and 7.24.

There is obvious substructure in these power spectra, specifically in the

lower frequency regions. This is expected, due to the behavior of the Rayleigh

power in the presence of SNO’s deadtime windows. The largest built-in struc-

tures exist at lower frequencies (typically with periods no smaller than the hour

scale), which is consistent with what one might expect; the largest periodicities

in the SNO deadtime window come from day-to-day (or week-to-week) activ-

ities, such as shift changes, calibration schedules, etc. The dying-off of this

substructure at higher frequencies (higher than 12 day−1) is in good standing

with our knowledge of any predicted non-physics elements of periodicity in the

SNO data set, as there are no predicted high-frequency inherent periodicities

in the SNO data set. The region with highest inherent substructure is shown

in Figure 7.25.

As we have found no statistically significant signal in our analysis of the

combined-phase data set, we would like to be able to set a limit to understand

what the lack of detection might be able to tell us about the existence of a

high-frequency periodicity in the solar neutrino flux. To do this, we must

determine what sensitivity SNO might have to such a signal.

186



Figure 7.23: Zoomed-in region of Rayleigh power spectrum for highest-
significance peak in the combined-phase data set, which was detected at fre-
quency=103.384 day−1, with a confidence level of 1.95%.
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Figure 7.24: Zoomed-in region of Rayleigh power spectrum for the second-
highest-significance peak in the combined-phase data set, which was detected
at frequency=58.735 day−1, with a confidence level of 1.75%.
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Figure 7.25: Zoomed-in region of Rayleigh power spectrum for the lower fre-
quencies. There is evident substructure in the power spectrum, due to inherent
deadtime-based periodicities detected with the Rayleigh power test.
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7.6 SNO’s Sensitivity to a High-Frequency Pe-

riodic Signal

The determination of SNO’s sensitivity to a high-frequency sinusoidal signal

is done by performing the Rayleigh power analysis on Monte Carlo files with

signal built into them, and finding at what strength of signal we are no longer

able to detect the presence of periodicity in our data set. I should emphasize

that this is not directly telling us anything about the ‘size’ of the g-mode

oscillations, but instead is telling us what magnitude of periodicity in the 8B

neutrino flux we might be able to detect. The actual question of the magnitude

of g-mode oscillations in relation to their resulting effects on the neutrino flux

is a complicated one, and has been explored by Bahcall and Kumar in [56]

and Burgess et al. in [57], as well as Bamert, Burgess and Michaud from [58],

and more indirectly by Burgess and Michaud from [58], and more indirectly

by Couvidat, Turck-Chieze and Kosovichev in [59].

As has already been described, the Signal Monte Carlo files are generated

in an acceptance/rejection routine which allows a sinusoidal amplitude to be

built into the SNO deadtime window function. The Rayleigh power analysis

is carried out on these Signal Monte Carlo, and the resulting power spectra

are filtered through ‘signal-detection’ code which uses the confidence levels

which we’ve determined (based on the signal-free Monte Carlo) to evaluate

the relative ‘strength’ of the peaks detected.

The code I use to determine the level of signal which is necessary for the
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Figure 7.26: SNO’s Sensitivities to a High-Frequency Periodic Signal in the
combined-phase data sets (D2O and Salt) for the Full High Frequency Search
Region. The two lines shown are the calculated sensitivity at which we detect
a signal 50% of the time, with 99% confidence level, and 90% of the time, with
99% confidence level, and the yellow and cyan bands represent the respective
measurement uncertainties.

Rayleigh power to detect it scans through all the power spectra and calculates

what fraction of data sets have a signal which sits above the 99%-detection

level. Figure 7.26 shows the sensitivity curves for 99% detection in 50% of the

files, and in 90% of the files. As can be seen, to discover a signal in the full

high frequency region at a confidence level of 99%, its amplitude must be at

least 9.45% for us to detect it 50% of the time, and at least 11.53% for us to

detect it 90% of the time.
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Chapter 8

A Search for High-Frequency

Solar ‘Noise’

8.1 A High-Frequency ‘Noise’ Signal

Searching for a single peak in the frequency domain is the most direct (and

optimistic) approach one can use to find periodic behavior in a data set. How-

ever, a physical signal may ultimately manifest itself in the form of a multiplet

of peaks, spread amongst several frequencies. The methods used in this thesis

would likely not be sensitive to such a signal, as our confidence levels and thus

our sensitivity estimates have been based on the single-peak approach (requir-

ing a more restrictive statistical interpretation). However, another possible

manifestation of a high-frequency periodic signal in the sun is a ‘signal’ in the

form of noise.

A recent paper by C. Burgess[57] addresses the possibility of the presence
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of noise in the solar interior, in the form of matter density fluctuations caused

by the effect of magnetic fields in the solar radiative zone on g-modes. Burgess

claims the possible existence of resonances at radii where the frequencies of

magnetic Alfven modes cross those of g-modes, resulting in spikes in the so-

lar density profile at various radii (depending on strengths of magnetic fields

present), and thus a predicted ‘noise’, which could in theory affect the solar

neutrino propagation through the radiative zone.

Although no evidence has been found to support Burgess’ proposed model,

in light of his postulation of noise in the sun, we were prompted to consider

not just a search for one single significant peak, but to look if there is a dis-

tribution of peaks due to noise. The presence of noise in the solar interior

would almost certainly not create a strong enough signal for any particular

frequency to register a statistically significant Rayleigh power, but if the noise

were distributed over many different frequencies, it is likely that the distribu-

tion of Rayleigh powers, and their respective confidence levels, would have a

slightly larger mean than the case of no signal. This is the goal of the search

described here: to determine if ‘noisy’ density fluctuations are present in the

solar interior, in a form which affects the solar neutrino propagation.

8.2 Rayleigh Power Test with Noise Model

The Rayleigh power method as described in this thesis (in Chapters 5, 6, and

7) would not be sensitive to a noise signal in its current setup. As was just

mentioned, the statistical tools with which we interpret our Rayleigh power
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spectra (our generation of trials-weighted confidence levels) have been built

with the intention of detection of a single-peak signal. However, with very

slight modification of our approach, we can use the Rayleigh power test as a

method for analyzing

The method of search previously described for the high-frequency regime

(Chapter 7) focused on the detection of a significant Rayleigh power peak for

one frequency out of 1.6 million possible. Due to the number of frequencies

searched, and the trials issue therefore associated with this search, the neces-

sary frequency-specific confidence level which must be passed for a peak to be

statistically significant is far more restrictive than the stand-alone confidence

level for one individual peak, as was explained in Chapter 5. Because of the

limitations due to the trials issue, any periodic signal which might be present

in the sun would necessarily have to have a relatively strong Rayleigh power,

and be restricted to (or at least strongly represented at) one frequency only,

for it to be detected with the method outlined so far. In light of the Burgess

paper, however, we now craft our search around a model in which the periodic

signal is present in the form of noise, rather than a single-frequency sinusoidal

variation.

The idea that the presence of noise could distort the Rayleigh power spec-

trum just slightly, and therefore not be detected by the previously carried out

searches, is a reasonable one. In order to test this, we created a sample SNO

Monte Carlo with a noise signal present, in the form of a 2% amplitude Gaus-

sian white noise model. A comparison of the power spectra for this white noise
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MC and the standard no-signal MC which has been used for the more general

single-frequency signal search is shown in Figure 8.1.

8.3 Rayleigh Power Confidence Levels: A Fig-

ure of Merit

As it is difficult to judge the degree of distortion of the Rayleigh power spec-

trum in Figure 8.1, we will be able to get much more information from in-

specting the distribution of confidence levels for the noise MC, since that dis-

tribution should account for any statistical fluctuations (which may be harder

to rule out by eye). But before we get ahead of ourselves, let us first consider

the case of the distribution of confidence levels for a Monte Carlo Rayleigh

power file with no noise signal built in. We would expect that for a signal-free

Monte Carlo, we would get a uniform distribution of confidence levels between

0% and 100% due to the fact that the Rayleigh powers will be truly randomly

distributed in terms of the predictive analytic form for any given frequency

(this is the form which is used to generate the confidence levels).

Just to reiterate what has already been described, for clarity: the Monte

Carlo are generated with no knowledge of the predictive analytic form, but

have been demonstrated to agree remarkably well with it for all frequencies

tested. So if the no-signal Monte Carlo are truly signal-free for all frequencies

(and include the SNO deadtime in them), this distribution of confidence levels

turns out to be not only a means of inspecting our data for the presence of
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Figure 8.1: Comparison of Rayleigh power spectra for the case of no-signal
SNO Monte Carlo (black), and Gaussian white noise signal SNO Monte Carlo
(red). To make printing easier, this figure has been ‘watered down’ to only
show the Rayleigh powers for every 100th frequency. Full frequency-inclusive
figure can be provided if necessary.
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solar ‘noise’, but it can be looked at as a test of the robustness of our analytic

form.

If the Monte Carlo does (as we expect it to) agree with the predictions of

our random-walk model analytic form, we should see an even distribution of

confidence levels. If there were some bias to our form, or if it did not truly

predict the behavior of the Rayleigh power at different frequencies, we would

expect to have a slightly lower-mean distribution, in the case where we have

underestimated confidence levels of the data (i.e. the statistical distribution of

our no-signal Monte Carlo caused us to be too restrictive), or we would expect

a slightly higher-mean distribution if our analytic form was not restrictive

enough. If our predictive analytic form is actually correct, we would expect a

mean of 50% (or 0.5), with an equivalent number of confidence levels above

50% and below 50%. In Figure 8.2, we can see that this is indeed the case.

8.4 Rayleigh Power Noise Model: Noise Monte

Carlo

Now that we have convinced ourselves that not only is our expectation of a flat

confidence level distribution true when no noise signal is present, we also have

demonstrated the robustness of our predictive analytic form. The next obvious

question is, how does our confidence level distribution look when there is a

noise signal present? We are basing this confidence level distribution approach

on the assumption that the distribution will be distorted if there is indeed a
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Figure 8.2: Distribution of confidence levels for SNO Monte Carlo with zero
signal built in. The distribution not only tells us what a noise-free data set
would look like in terms of Rayleigh power confidence levels, but also serves
as a goodness-of-fit for our predictive analytic model, for all frequencies in our
region.
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noise signal in the data. So obviously, we must check that this assumption is

correct. In order to do this, I ran the Rayleigh power code on the sample Monte

Carlo data set with 2% amplitude Gaussian white noise distributed among all

frequencies, and then generated confidence levels for all the frequencies (1.6

million) sampled. The distribution of confidence levels for all frequencies is

shown in Figure 8.3.

8.5 Rayleigh Power Noise Model: SNO Data

It is evident that if there were noise present in the solar interior which affected

the neutrino production and/or propagation, even at the 2% amplitude, as is

shown in Section 8.4, this confidence level check would be sensitive enough to

be used for its discovery. I have not performed a rigorous check of the point

at which we lose sensitivity for claims of a detection: this should serve more

as a proof-of-principle to verify that this type of signal could potentially be

detected in our data set if it were indeed present in the solar neutrino signal.

That being said, the next obvious step is to investigate the nature of the

confidence level distribution of the actual SNO combined-phase data. The

distribution of confidence levels for the SNO combined-phase data is shown

in Figure 8.4. The similarities between the data CL distribution and the no-

signal Monte Carlo CL distribution are striking. There is apparently no noise

present in our data set above at the very most a 2% limit. This is somewhat

remarkable, in that this basically tells us that neutrino production in the sun

is highly stable.
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Figure 8.3: Distribution of confidence levels for SNO white noise Monte Carlo
(signal of 2% amplitude).
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CL Distribution, SNO Combined-Phase Data
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Figure 8.4: Distribution of confidence levels for SNO combined-phase data set.
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There is more work that could be done in this regime (namely sensitivity

studies), but this analysis, at least for the time being, will remain as it is; a

straightforward check to determine whether or not this other potential time

dependence in the neutrino flux (here, noise) is detectable in the SNO data

set. We have seen that indeed, while it is possible to detect such a signal

via the Rayleigh power test, it is not actually detected in the combined-phase

SNO data set.
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Chapter 9

Directed Search for

High-Frequency Periodicity

9.1 Experimental Motivation (Helioseismology)

The GOLF experiment has consistently reported claims of the detection of g-

modes with data taken from the SOHO satellite[60], with a persistent multiplet

signal in the region of 220 µHz[61],[53]. Recently, analysis of the ten-year data

set has reinforced the case for detection in this region[62],[63], piqueing interest

in g-mode searches directed in this region.

Though not yet verified by a truly independent experiment, the GOLF

results have been verified by two other experiments aboard the SOHO satellite;

VIRGO1, measuring changes in solar irradiance via a full-sun photometer, and

1Variability of solar IRradiance and Gravity Oscillations
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SOI/MDI2, which measures changes of the solar surface via interferometry. As

these experiments are housed by the same satellite as GOLF, their results are

only considered nominally independent from those of GOLF. Temperature

fluctuations of the SOHO satellite, for instance, have been looked into as a

universal cause for this peak - and encouragingly, no correlations have been

seen[63]. A sample power spectrum density from each of the three instruments

is shown in Figure 9.1.

This tentative signal gives SNO the opportunity to perform a search specif-

ically in the region of the strongest expected g-mode frequency, which greatly

improves our sensitivity for detecting or ruling out a g-mode-induced signal in

the neutrino flux. Because the high-frequency Rayleigh power analysis is signif-

icantly compromised by the trials issue, being provided with a directed-search

region (with far fewer frequencies to be sampled) gives us the opportunity of

searching for a signal with much greater sensitivity.

9.2 SNO Directed Search

The directed search is carried out in exactly the same manner as the full-range

search. To determine confidence levels, signal-free Monte Carlo are generated

and the Rayleigh power analysis is run on them. To determine sensitivities,

signal Monte Carlo are generated, the Rayleigh power analysis is carried out,

and ultimately signal-detection code is run on the resulting power spectra.

The only difference for the directed search is that rather than scanning a

2Solar Oscillations Investigation/Michelson Doppler Imager

204



On the solar origin of the 220.7 signal 3

Figure 2. Collapsograms of the time evolution power diagrams computed
using data from SPM, GOLF and GONG instruments.Figure 9.1: Power Spectrum Density (PSD) profiles from three experiments

aboard SOHO; GOLF, VIRGO, and SOI/MDI. All three experiments show
evidence of possible g-mode oscillation at 220.7 µHz.
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region from 1/day to 144/day, which requires the treatment of 1.6 million

individual frequencies, we ‘zoom in’ on a region centered around the GOLF-

detected frequency, therefore significantly restricting the number of frequencies

being scanned. This means that the bin-specific confidence level necessary for

detecting a signal is reduced significantly (the chance of statistical fluctuations

to a ‘significant’ level are much lower if you have 1,000 entries as opposed to

1,000,000).

The frequency at which GOLF has claimed evidence for g-mode oscillations

sits at roughly 220 µHz. The analysis methods used in the detection depend

on the presence of multiple peaks in the power spectrum for one specific l-

mode. This causes the ‘true’ frequency of the g-mode to be washed out, in a

sense, and the values reported as part of the multiplet therefore are interpreted

as frequency splittings of the main mode, or possibly mixed modes (due to

the theoretically predicted presence of the l = 3 and l = 5 modes in the

same frequency range as the l = 2 mode). The actual predicted mode which

corresponds to the GOLF ‘detected’ frequency range ie the l = 2, n = −3

mode, which sits at 222.14 µHz. To perform a thorough search of this region,

including both the frequency at which g-modes were claimed to have been

detected, as well as the corresponding frequency which is predicted for these

modes, we designated the ‘directed search’ region to scan from 214 µHz to

225 µHz (roughly 18.5/day - 19.5/day). Using the value for frequency spacing

which we have decided upon for the combined-phase SNO dataset, this leaves

us with roughly 11,000 frequencies to sample, in comparison with the previous
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value of 1.6 million. This allows us far greater sensitivity, due to the ever-

present trials issue.

9.3 Results of a Directed Search

The results of the ‘directed’ search are shown in Figure 9.2, with the corre-

sponding curve for 90% confidence level. As is clear from the power spectrum,

there were no statistically significant peaks in this directed-search range. The

highest-significance peak was found at a frequency of 19.2579/day with a con-

fidence level of 58.28%. Though this is more significant than what we have

found for the full-range search, it is still not statistically significant enough to

merit claims of an independent verification of the GOLF results.

9.4 Sensitivities of SNO in a Directed Search

As there was no detection of a statistically significant signal in the directed-

search GOLF region, we also would like to understand what limits can be

placed on the impacts of g-mode oscillations on the neutrino flux in the directed

GOLF region. In Figure 9.3, the sensitivity for detection of a signal at the 99%

Confidence Level is shown, both for detection 50% of the time, and 90% of the

time. The amplitudes necessary for detection in this region are lower than for

the full search (due to the trials issue), and are similar to those published in the

low-frequency periodicity search [8]. This is as expected, since the number of

bins used for the GOLF directed search region are comparable to the number
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Figure 9.2: Rayleigh power spectrum for ‘directed’ high-frequency search, in
black. The line corresponding to detection with 90% confidence level is shown
in red. The highest peak in the power spectrum is found at a frequency of
19.2579/day with a confidence level of 58.28%.
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of bins used in the low frequency periodicity search (11,190 vs 9,998). This is

encouraging, as it reassures us that the Rayleigh power is competitive with the

other two previously-used methods (maximum likelihood and Lomb-Scargle

analyses), in terms of sensitivity to an inherent periodic signal in the neutrino

flux in SNO.

Again, as is seen in Figure 9.3, for us to discover a signal in the directed

high frequency region at a confidence level of 99%, its amplitude must be at

least 7.85% for us to detect it 50% of the time, and at least 9.93% for us to

detect it 90% of the time.
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Figure 9.3: SNO’s Sensitivities to a High-Frequency Periodic Signal in the
Combined Phase Data sets (D2O and Salt) for the Directed High Frequency
Search Region. The two lines shown are the calculated sensitivity at which
we detect a signal 50% of the time, with 99% confidence level, and 90% of
the time, with 99% confidence level, and the yellow and cyan bands represent
the respective binomial errors. The amplitudes necessary for detection in this
region are lower than for the full search due to the trials issue, and are similar
to those published in the low-frequency periodicity search [8].
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Chapter 10

Conclusion

The weak interactions that neutrinos have with matter have made the neutrino

one of the most elusive elementary particles to study. However, this weakness

of interaction means that neutrinos from astrophysical sources can escape en-

vironments that trap or delay easier-to-detect photons. Neutrinos produced

in fusion reactions at the solar core are able to travel unimpeded through the

solar envelope to be detected on Earth. Similarly, neutrinos produced in dis-

tant processes such as supernovae can travel through the interstellar medium,

retaining valuable information about the conditions which they have left be-

hind. This has allowed neutrino detection to serve as a secondary observation

method for astrophysical processes, in addition to the more standard electro-

magnetic detection.

The Sudbury Neutrino Observatory (SNO) has proven to be an optimal

testing ground for studying neutrinos and the sources from which they are

emitted; information about the true interaction time of the neutrino, as well
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as the neutrino energy, have been gathered and processed, and because the

detector target was heavy water, SNO was uniquely able to differentiate be-

tween neutrino flavors. These detector attributes, paired with the extremely

low levels of backgrounds SNO has been able to attain, allow for unprecedented

studies of time dependence in our neutrino signal.

I have developed and applied a statistical treatment of the directional

Rayleigh power test, in the context of time-ordered data: as has been evi-

denced in this thesis, the Rayleigh power analysis, if appropriately interpreted,

can be a very powerful tool in the context of a periodicity search.

I have put forth a number of frequency-dependent analyses of the SNO

data sets. For the low-frequency periodicity study, three independent methods

were used to investigate claims both for and against the existence of a periodic

modulation of the solar neutrino signal. All three methods employed by SNO

showed an absence of signal in the low-frequency regime.

I have also performed the first-ever analysis of high-frequency periodicity in

the solar neutrino flux, with tentative helioseismic evidence for g-mode oscilla-

tions as a motivation and guiding tool. In a separate study, I have concentrated

on the most empirically promising band of frequencies to determine whether

predicted g-mode oscillations could appreciably affect neutrino production in

the solar core, or could impact their propagation as they exit through the ra-

diative zone of the sun. The effect of solar ‘noise’ on the solar neutrino flux

has also been studied. In all of these contexts, I have measured no statistically

significant modulation in the 8B solar neutrino flux.
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As a heavy-water Cherenkov detector, SNO has the potential to carry out

a search for bursts of neutrinos of astrophysical origin, which are not accom-

panied by an optical trigger. I have laid out the groundwork for addressing

the backgrounds of such a search, and removing them from the data set, with

the motivation of carrying out a blind burst search on SNO combined-phase

data.

Though SNO is no longer in production-running, there is still a great deal

of exciting physics which can be extracted from the data set, as is shown by

the analyses in this thesis. Even more promising, a new generation of neutrino

experiments is at the forefront of current sensitivity thresholds, and promises

to open up new energy regimes and improve on SNO’s low-background and

real-time-detection capabilities. Perhaps with these advancements, we can

push farther into experimentally untapped realms, and gain a better under-

standing of the neutrino’s potential to illuminate its astrophysical origins and

surroundings, from gravity-mode oscillations at the solar core to high-energy

astrophysical processes far beyond our solar system.
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Appendix A

A Search for Trigger-Free

Bursts

Detection of neutrinos from a supernova, gamma ray burst, or any other exotic

astrophysical object could give us great insight into processes that are not well

understood within the interiors of these bodies. Perhaps more importantly,

detection of astrophysical neutrinos also provides us with the chance of further

illuminating basic neutrino properties, such as the mass hierarchy for instance

(normal or inverted). This appendix should serve as a beginning step for

establishing the possibility of a trigger-less burst in SNO, and in particular

examining the backgrounds to such a search, and developing cuts for their

removal.

One of the expected functions of a large underground Cherenkov detector

such as SNO is its ability to detect neutrinos from a galactic core-collapse su-

pernova. Though there were no optically detected galactic supernovae during
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the lifetime of SNO, it is still beneficial to carry out a study of bursts of neu-

trino interactions in SNO. This is due to the possibility of a supernova occuring

in a ‘non-standard’ manner, in which the emission of neutrinos occurs with-

out the accompaniment of an optical explosion. Also, as has been previously

mentioned, there does exist the possibility that a ‘standard’ 1 core-collapse su-

pernova would be optically obscured from detection, and it would be expected

that the cause of optical obscuration (such as dust, or a dark compact object)

might not affect a neutrino signal. As such, it is reasonable to search for bursts

in SNO’s data set even in the absence of a known astrophysical trigger.

A.1 Supernova Neutrinos

The emission of neutrinos is thought to be one of the chief mechanisms for

energy loss in core-collapse supernovae. Since neutrinos are neutral and weakly

interacting, they are often able to escape conditions in which photons and

charged particles are trapped. Such a situation exists in the death of a massive

star, or a supernova. There are two main categories of supernovae, Type I and

Type II, so designated because of the absence (Type I) or presence (Type II) of

hydrogen in their spectral signatures. The most common type of supernova,

and incidentally the type most relevant to our studies, is death by way of

core-collapse.

The most recent detection of neutrinos from a non-solar astrophysical

1I put this in quotes because there is much room for uncertainty in the definition of a
‘standard’ galactic supernova
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source occurred over two decades ago with Supernova 1987A, the result of the

death of a star in the Large Magellanic Cloud, roughly 52 kpc away. SN1987A

was detected by three independent neutrino observatories; Kamiokande II, in

Japan [64], IMB (Irvine-Michigan-Brookhaven), in the U.S. [65], and Baksan,

in Russia [66], with 19 neutrino events recorded by K-II and IMB. The Baksan

events were not conclusively linked to the supernova (5 events, occurring later

in time), and as such their results are not typically cited as contributing to the

SN1987A data set. Though statistics from this supernova were limited, many

studies were performed with the data in the hopes of learning more about

the elusive process of piecing together the mechanisms involved in a stellar

explosion, as well as neutrino production and propagation in a supernova.

A.1.1 Gravitational Core Collapse Supernovae

The process of the core-collapse supernova begins with a typical star, with

nuclear fusion occurring at the stellar core. In all stars, the first stages of

nuclear burning consist of fusing hydrogen to helium. The important concept

involved here is that of hydrostatic equilibrium, where gravitational pressure

incurred by the attraction of mass in the outer shell of the star is fully balanced

by the nuclear pressure being generated at the stellar core in fusion reactions.

Once hydrogen at the core has been exhausted, nuclear fusion shuts down and

the stellar core begins to collapse under the gravitational pressure from the

star. This causes an increase in pressure and temperature at the core, which

then creates the conditions necessary for the next stage of fusion to begin,
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with the fusing of helium into carbon. This process continues through the

elements, successively producing oxygen, then magnesium, etc. Massive stars

(∼8 times more massive than our sun) generally are capable of carrying out

nuclear fusion reactions at their core up to the end point of iron.

Once iron has been created at the core, the balancing act of hydrostatic

equilibrium has reached its end; fusion of iron is an endothermic process, and as

such the fusion chain has reached a stopping point. When this happens, energy

is no longer created by fusion in the stellar core and the nuclear pressure, which

until now had counter-balanced the gravitational pressure, no longer serves as

a stabilizer. The star, having spent all of its nuclear fuel, begins to implode.

(Although electron degeneracy pressure delays the collapse, once the core’s

mass exceeds the Chandrasekhar limit (∼ 1.4MJ), degeneracy pressure is no

longer enough to hold off collapse due to the gravitational pressure).

As the implosion occurs, the core of the star begins to heat up very rapidly,

igniting nuclear reactions, with copious amounts of neutrinos and neutrons

being produced. High-energy gamma rays produced in the heating of the

core decompose iron nuclei, resulting in free neutrons. With the heightened

pressure and temperature, a period of ‘neutronization’ occurs, where density

conditions allow for electrons and protons to merge via inverse beta decay,

producing a huge release of neutrinos in a neutronization burst. As neutrinos

are carried away as part of this neutronization burst, an enormous amount of

energy is released from the core (roughly 1051 ergs, a substantial portion of

the total amount of energy released in a supernova). Once the density of the
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core is greater than that of nuclear matter, the infalling material rebounds,

and generates a pressure wave now propagating outward from the core.

A.1.2 Supernova Neutrino Energies and Times

For a gravitational core-collapse supernova, there are many competing mod-

els to consider when determining the expected energy and time signatures.

The most comprehensive model that takes into account the evolution of the

neutrino flux with regard to both time and energy is the often-cited Burrows

model [67], which forms the basis for many supernova simulations. Other mod-

els (Beacom and Voegel [68], Bruenn-Mezzacappa [69][70]) were developed for

specific studies such as supernova timing or relativistic effects, and as such

placed more emphasis on modeling one aspect of supernova behavior than on

modeling the supernova system as a whole. The Burrows et al. model is the

most generally appropriate one for the purposes of SNO supernova studies,

and it is this model which we use to understand supernova energy and time

signatures.

As has been stated already, the neutronization burst is a period in the

very beginnings of the supernova when enormous amounts of neutrinos are

released in a burst of energy ∼ 1051 ergs; Figure A.1 shows this burst in terms

of neutrino luminosity as a function of time.

The time scale for this neutronization burst, which releases νe’s only, is

expected to be somewhere between roughly 0.01 and 0.1 second, with fall-off

up to 1 second, as is shown in Figure A.1.

218



Figure A.1: Neutrino luminosity as a function of time relative to core collapse,
assuming no oscillation. Taken from[9]

The original distribution of neutrino energies has been predicted with some

accuracy also2, and are shown in Figure A.2.

These time and energy signatures expected for neutrino emission from

a core collapse supernova assure that we make an informed and physically-

motivated decision when determining what type of window should be used to

scan for bursts in the SNO data set.

2I refer to the ‘originial’ distribution here: in this study we will not be accounting for any
oscillation effects, so ‘original’ should be taken to indicate that matter effects and vacuum
oscillations could ultimately have an impact, and the ‘original’ distribution would therefore
be our initial state.
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Figure A.2: Expected distribution of original energies for supernova neutrinos,
not accounting for oscillation effects. Taken from [9]
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A.2 Determining Factors for Window Lengths

In the first steps of determining what region in Energy, window length, and

fiducial volume (E, τ , FV) ‘space’ we are interested in, we are guided by the

expected physics of a supernova. We know of the predicted neutronization

burst within the first second of supernova explosion, just after core collapse,

which occurs over a time scale of less than one second. With such a short time

scale, we have the advantage that we can afford to lower the energy threshold

substantially and still be able to avoid contamination of our burst search with

accidental coincidences.

A more SNO-centric version of the time signature in Figure A.1 is shown

in Figure A.3, where the expected number of events in SNO from a Burrows-

model supernova is plotted against time since core collapse.

During and directly following the neutronization burst, there is a substan-

tial increase in νµ and ντ luminosities, in addition to the much larger burst

of νe’s. We are therefore justified in wanting to maximize our ability to de-

tect neutral current events, rather than focusing on a purely charged current

signal. Even though the expected supernova neutrino energy is fairly high

with regard to SNO’s typical solar neutrino analysis energy thresholds, for the

neutral current reaction, detection will depend not primarily on the energy of

the incoming supernova neutrino, but instead on the neutron capture energy

for whichever phase we are inspecting. Because of this, we want to be able

to keep the energy threshold for our burst window fairly low, comparable to

the neutron capture energy. This is (unfortunately) more important for longer
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Figure A.3: Expected number of events in SNO from a standard Burrows-
model supernova (distance of 10 kpc) as a function of time since core collapse
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burst windows (post-neutronization), where νµ’s and ντ ’s make up a larger

fraction of the overall supernova neutrino output.

However, the neutral current signal is not the only reason to drive the

energy threshold lower; the charged current signal benefits from a lower en-

ergy threshold as well. One reason to try for this comes from the original

distribution of neutrino energies, as is shown in Figure A.2.

The energy distribution for νe’s appears to peak lower than those for the

other flavors; this is also not accounting for the fact that in the charged current

reaction, we ‘lose’ 1.442MeV in terms of the energy that we detect;

νe + d→ p+ p+ e− − 1.442MeV

Thus for SNO we can imagine that the νe energy distribution in FigureA.2

are shifted to the right by 1.442MeV, in terms of energy of the detected charged

leption (i.e. the detected energy spectrum would be shifted left by 1.442MeV

relative to this plot). This all motivates us to try to push the energy threshold

as low as is reasonable, so we must find a suitable compromise between low

energy and as long of a time window, τ , as we can afford.

A.3 Determining Backgrounds

As there is no astrophysical trigger to guide us in our search for neutrino bursts,

we must scan through the SNO data set with great care. The detection of a

burst of events in SNO would not in and of itself be reason for claims of a detec-

tion of a supernova; there exist multiple sources of backgrounds in and around
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the detector which mimic the expected signal of neutrinos from a supernova.

One of the main difficulties in performing a trigger-less burst search with SNO,

therefore, is the elimination of background burst events. Ultimately, we would

like to set a very low threshold in energy, and use the largest possible volume

in the detector, and the longest length burst window, in order to optimize our

sensitivity to supernovae. The problem we encounter with this approach is

obviously that we end up including many more background events, causing

an increase in the probability that there will be accidental coincidences, and

these accidentals may mimic a supernova burst signal. In order to eliminate

false supernova events from our analysis and still have decent sensitivities at

low energies, we must find the best compromise between having a low-energy

threshold and a long time window in which to test for bursts.

It should be pointed out that in SNO, we have an advantage over other

Cherenkov detectors for a trigger-less burst search in that we are able to focus

on bursts with low multiplicities (here, multiplicity refers to the number of

events comprising a burst; a burst made up of three events would have a

multiplicity of three). While Super-Kamiokande (described in Section A.9)

required high multiplicities to reduce background contamination in longer time

windows, at SNO we can afford to look only at the least restrictive signal

condition of two- or three- multiplicity bursts. After deciding on an optimal

set of paramaters for a burst search window (low energy, long time window,

large fiducial volume), we can calculate what residual backgrounds we will be

left with in our search, and then develop effective cuts to help us minimize
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these residual backgrounds.

A.3.1 Accidentals

Before doing any fine-tuning of energy thresholds and burst window lengths,

the accidental coincidence rates must be calculated. This is done by running

through all of the standard SNO data (for the D2O and Salt phases individ-

ually), and simply counting the number of raw events that pass the relevant

data cleaning cuts for each phase 3.

This can be translated into the overall rate of events, given the appropriate

livetime4, and then with the equation,

Rcoinc = R2
detτ (A.1)

where Rdet is the rate of (clean) events in the detector and τ is the length of

the time window in consideration, we find the rate of accidental coincidences,

Rcoinc, for any given event rate in the detector. The event rate will obviously be

different for different fiducial volumes, energy thresholds, and window lengths,

what the probability of detecting less than one accidental coincidence in the

entire span of SNO’s data-taking would be, where the number of total expected

coincidences in a data set is of course given by

3For the burst analysis, the standard DAMN mask was used with the exception of the
NHIT Burst cut and the Missed Muon Follower Short cut, but including the Muon cut and
the Muon Follower Short cut

4Since I have used the data processed for the LETA working group, livetime values were
taken from the LETA Cheat Sheet, http://deapclean.org/sno/leta cheat sheet.html, and
were corrected for difference due to the inclusion of NHIT Burst and Missed Muon Follower
Short events
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Ncoinc = Rcoinc ∗ T (A.2)

(T is the length of the SNO detector livetime). There are modifications to

this equation for higher multiplicity coincidences; specifically, for a three-fold

coincidence, the accidental coincidence rate and expected number would be:

Rcoinc
mult=3 = Rcoinc

mult=2 ∗Rdet ∗ τ = R3
det ∗ τ 2 (A.3)

and

Ncoinc = Rcoinc
mult=3 ∗ T (A.4)

For SNO, our window lengths will be tuned for coincidences with multi-

plicities of two and three.

Ideally, we are shooting for less than one accidental coincidence in our

entire data set, but the difference in numbers of coincidence events passing

threshold between a 0.1-second time window and a 1-second time window is

significant. To pin down the energy threshold at which we cross over between

less than one accidental coincidence event in the entire data set and one or

more coincidence events in the entire data set, I scanned through the data

and calculated overall event rates, and the resulting accidental event rates for

multiple energy and burst window combinations.

In Figures A.4 and A.5, I show the expected number of accidental coinci-

dences (Ncoinc) for many window-lengths and different energy thresholds (using

the standard fiducial volume of r limited to 0-550cm, in agreement with what
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Accidental Coincidences in D2O for different Energy thresholds
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Figure A.4: Expected values of accidental coincidences for the D2O phase at
different energy thresholds

is used for the LETA analysis and earlier signal extractions).

If we look initially at the window with fiducial volume 0 − 550 cm, and

energy threshold (total) of 4.5 MeV, we find that in the D2O phase, between

t=0.25 sec and t=0.3 sec, for instance, the number of expected accidental

coincidences increases from 0.30203 to 0.362432063. If we simply refer again

to Figure A.2, we can loosely determine how much νx flux we are sacrificing

by choosing this energy threshold and in turn, restricting our time window to

be less than t=0.3 sec. If the amount that we are sacrificing is significantly

more than what we might be gaining by having such a low energy threshold,

we should re-evaluate whether the energy threshold should be raised.

One important point to note here is that the numbers which I have cal-
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Accidental Coincidences in Salt for different Energy thresholds
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Figure A.5: Expected values of accidental coincidences for the Salt phase at
different energy thresholds

culated and plotted in Figures A.4 and A.5 are only the expected values for

numbers of accidental coincidences in the data set. The actual upper limit for

each of these window lengths will be determined by treating these expected

values as a mean in a Poisson process, and extrapolating up to the corre-

sponding upper limit for a Poisson distribution with a mean as given by the

Ncoinc-value we’ve determined.

If we believe that the values in Figures A.4 and A.5 are the expected number

of accidental coincidences for each window, we can determine the probability

that there will be exactly k coincidences in the window based on the Poisson
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distribution. The probability, of course, is given by

f(k;λ) =
λke−λ

k!
(A.5)

So if we want less than one coincidence in the entire data set we can start with

the first set of conditions (FV 0-550 cm, and E > 4.5 MeV, considering only

the D2O-phase data for now), and we calculate the probability that with the

value calculated for this set of conditions, and with a window length at t=0.25

sec, again (so λ is 0.302026689) we have k=0 coincidences, we find that there

is a 73.9% chance of having zero coincidence events in the entire data set. For

a higher energy threshold (5.0 MeV), but with that same burst window length

(0.25 sec) we find (with λ now at 0.125042841) that there is an 88.25% chance

that we will have zero accidental coincidence events in the entire data set. If

we push even higher in energy threshold, so we now sit at 5.5 MeV, and with

λ now at 0.0814243481, we will have an even higher probability, 92.2%, of

having no accidental coincidences. It is clear that the lower the probability of

having a single accidental coincidence in our data set, the better. We will use

the fairly standard limit of 10% probability of fluctuation as our measure of

an acceptable value, which gives us the following values, shown in Table A.3.1

for the D2O and Salt phases, for multiplicities of both two and three.
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Table A.1: Time Windows giving acceptable accidental contamination of SNO
data set. (Here, Energy is Total Energy).

Window Length Multiplicity Phase E Thresh

D2O 5.5 MeV
0.2 sec 2

Salt 7.0 MeV

D2O 6.0 MeV
0.4 sec 2

Salt 7.5 MeV

1.0 sec 2 D2O 7.0 MeV

D2O 4.5 MeV
20 sec 3

Salt 6.0 MeV
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A.3.2 Physics Backgrounds

Although accidental coincidences have now been accounted for as a dominant

effect on our choice of window length and energy threshold, we still must

account for all other ‘physics’ backgrounds in SNO which could create non-

supernova ‘burst’ events that interfere with the detection of true supernova

burst events. The main backgrounds to a trigger-free burst search are events

which can create a simulated burst signal, such as a burst of neutrons from

fission within the detector, or spallation neutrons following the interaction of

an energetic muon in the detector.

Muon spallation is one of the greatest possible backgrounds for the SNO

trigger-less burst search: when a muon interacts in the detector, it can break

apart a nucleus into small radioactive fragments. These radioactive fragments

can decay with the production of a neutron, or a gamma ray above the deuteron

photodisintegration threshold (2.2 MeV) which results in a neutron. Regard-

less of the production mechanism, if more than one neutron is produced as a

result of spallation, it can interfere with our search as a burst background.

Although muons generally can be removed from the data set by requiring

coincidence with the firing times of the outward-looking tubes (OWLs), there

remains a small fraction of muons which are low enough in energy that they

do not cause the OWLs to fire. Also, muons due to atmospheric neutrinos

interacting in the heavy water will not be tagged by OWLs, and as such we

will have no visible precursor to spallation events alerting us to the presence

of a muon. The typical muon detected in SNO generally has energies far
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greater than what we will be concerned with for our burst search, and as such

we can remove a large number of them with a simple energy cut (detailed in

Section A.7.2). Also, any muon which has been flagged by our OWL detectors

will be removed, and all spallation followers as well. There does still exist a

relatively large level of backgrounds due to muons in the detector, and these

must be accounted for and removed, as will be discussed in the following

sections. The remaining backgrounds we encounter are very much the same as

the backgrounds that were dealt with in SNO’s anti-neutrino paper[71], and

they are expected to come primarily from the following sources:

- Atmospherics/muon spallation

- Spontaneous fission of 238U

- Photodisintegration of the deuteron (+ Compton e−)

- 13C(α, ne+e−)16O

- Instrumental contamination (neck events, Leslies, etc.)

- Reactor antineutrinos

- Geo-antineutrinos

- Diffuse Supernova Background (DSNB)

This is a list of solely coincidence backgrounds, i.e. backgrounds with more

than one product in a short time window. There are also many other physics

backgrounds that do not affect our analysis. Since we are only hurt by fake
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bursts, not just background noise, the only way other zero-multiplicity events

could hurt us are in the form of accidental coincidences, which have already

been outlined in the previous section. Events such as leaked muon spallation

(‘leaked’ = sneaking past the DAMN cuts5 and atmospherics (since for the

burst search we can’t use the standard SNO burst-removing ’Missed Muon

Follower Short’ cut) will be the largest contributors on this list, since they so

closely mimic a signal, and as such may be hard to distinguish (and eliminate)

from the data.

I have collected in Table A.2 all of these expected number of all backgrounds

for roughly our window parameters (FV < 550cm, and E > 5.5MeV ). The

sources from which the values are taken are indicated for each field. The num-

bers for this table come from various different sources, but primarily from [71]

and [72]. The estimate for coincidences due to muon spallation after apply-

ing the data cleaning cuts is taken from [73], which gives the total amount

of muon-induced events in SNO after the Muon-Follower-Short cut (MFLSH),

fiducial volume (FV), and energy cuts have been applied. The values I show for

atmospheric backgrounds come from an internal analysis done for the LETA

group [74].

The fission number for D2O comes from [71], and we can try to extrapolate

a rough number for Salt based on the D2O value. The method which was used

to calculate the value in [71] relied on a measurement of the 238U in the detec-

tor after NaCl had already been added, so we can assume the concentration of

5DAMN=Data Mask Number, SNO’s data cleaning/background removal system
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238U would be the same for both calculations, however the detection efficien-

cies would be different, which will significantly change the number of fission

backgrounds for Salt. Another source that might be another reliable method

for the Salt phase is [75], but here the parameters beng fit are specifically

for single-neutron fission numbers. Plots therein seem to indicate, however,

roughly 10 fission bursts. I will assume this is a safe upper limit for Salt.

For photodisintegration, we take the coincidence value given in [71] for D2O,

and for Salt, the value comes from Table 21.1 in J. Orrell’s thesis [76], where

he has provided, based on MC studies of Nhit response to 6.25-MeV gamma

rays from neutron capture on deuterons, what the number of coincidences due

to secondary neutron production (Nγ,n) is. The value taken for this plot is

assuming an energy of 5.5 MeV, or NHIT of roughly 45.

The geo- and reactor- neutrino background values come from the analysis

in [71] (D2O), and use as an upper limit (since coincidence events are what

would cause a background) the absolute number listed in Table X of [72].

The values calculated for (α, n) in coincidence with a e+e− pair come from the

analysis done by John Orrell again [76], the results of which are found in Table

20.3 of his thesis. The numbers for (n, 2n) are for now simply assumed to be

smaller than or equivalent to those for (α, ne+e−), based on the fact that in

[72], the (α, ne+e−) process is referred to as the ‘main source’ of coincidence in

the calculations of ‘Other Backgrounds’, counting the (n, 2n) process as a much

weaker source of coincidence. However, this only takes into account (n, 2n)

induced by fast neutrons due to (α, n) reactions, and presumably does not
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Table A.2: Coincidence backgrounds expected for SN Burst Search

Backgrounds Residuals (D2O) Residuals (Salt)

Muon Spallation (< 0.5) (< 0.5) [73] [72]
Atmospherics 32.24 [74] 102.34 [74]
Fission (238U) < 0.79 [71] < 10 [75] [72]

Photodisintegration < 8x10−4 [71] 0.41 [72] [76]
geo-ν (ν) 0.0 [71] < 0.5± 0.1 [72]

reactor-ν (ν) 0.019± 0.002 [71] < 1.4± 0.3 [72]
(α, ne+e−) 0.02± 0.10 [76] 0.07± 0.07 [76]

(n, 2n) (< 0.02) [72] (< 0.07) [72]
DSNB ≤ 0.005 [71] (≤ 0.005)

Instrumentals < 0.027 [71] (< 1) [72]
Total Backgrounds < 35 < 116

take into account (n, 2n) coincidences induced by photodisintegration neutrons

within the detector. This needs to be accounted for, but hopefully will only

add a negligible amount of background. The diffuse supernova background

(DSNB) for D2O was taken from [71], and it is assumed that the value given is

a high enough upper limit that it is safe to carry over to the Salt phase as well.

Lastly, the value for instrumental backgrounds (backgrounds coming from the

electronics and PMTs rather than Cherenkov processes in the detector) for

D2O is again taken from [71], and for Salt, the upper limit comes from the

total value reported in [72], which will presumably be an upper limit.

The items listed should ultimately have a relatively small impact on the

final window decisions, since they will be largely removed by cuts which are

developed for this purpose, described in Section A.4.
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A.4 Burst Cuts and Search Methods

As was previously mentioned, one difficulty in eliminating backgrounds comes

from the fact that the signal that we would expect from supernova neutrinos

- two or more events in a short time window - is also present in SNO in the

form of unwanted signal, such as fission, or muon spallation products. These

events are identified and removed from the SNO published data set, typically

with a ‘burst’ cut, but this cut cannot be used for the burst search, since this

would cut true bursts in addition to cutting backgrounds.

As was discussed in Section A.1, the predicted energies of neutrinos emitted

in core-collapse supernovae vary from the range of 8B solar neutrinos (∼ 10

MeV) to much greater energies (∼ 70 MeV). Because of this wide range, we

cannot afford to use the same energy restrictions as are used in preparing the

standard SNO solar neutrino data set. We must therefore come up with a more

creative means of removing higher-energy background events such as muons

and muon followers which have not been correctly identified as such in SNO’s

data set.

We can develop alternative cuts, however, which would selectively remove

a majority of these backgrounds caused by spallation or fission products (for

instance) in the heavy water by following Super-K’s example.
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A.5 A ∆r Cut

Super-K developed a ∆r cut which removed events which were localized in

a small volume; events from a supernova would be expected to be dispersed

throughout the volume of the detector, and therefore we can say with some

certainty that events which exhibit a small ‘∆r’ are not likely to be supernova

events. Here, we are defining ∆r as a weighted mean of distances between

events’ reconstructed positions for any candidate ‘burst’;

∆r =

∑M−1
i=1

∑M
j=i+1 |

−→ri −−→rj |
MC2

(A.6)

where |−→ri −−→rj | is the distance between the reconstructed positions of events

i and j within a burst, M is the multiplicity of the burst, and MC2 is the num-

ber of non-redundant combinations. An example of expected ∆r distributions

for supernova events is plotted alongside a sample distribution of ∆r for cali-

bration neutrons (Cf source), which we expect to emulate background events.

A fortunate characteristic of these distributions stems from the fact that

there is very little overlap in ∆r for the expected signal (here, SN MC) and

background (here, Cf calibration data). Typically, the backgrounds we would

expect will follow this tight distribution in space, and allow us to cut in ∆r

without losing too large a fraction of our SN signal. I’ve run a quantitative

study on this, to determine where we must place a ∆r cut if we are to eliminate

99% of our expected physics backgrounds, (i.e. there will be less than one
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Figure A.6: Sample MC ∆r for supernova bursts plotted alongside sample ∆r
for calibration Cf bursts, Salt phase.
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Figure A.7: Sample MC ∆r for supernova bursts plotted alongside sample ∆r
for calibration Cf bursts, Salt phase, Log scale.
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Table A.3: Results of signal acceptance (SN MC) and background contamina-
tion (Cf Data) for Salt SN MC and Cf Data. (Last column calculated assuming
total background number of 116 or lower for Salt).

∆r Cut SN Signal Bkgrd Contamination Bkgrd Contamination
(cm) Acceptance (%) (events)
310 87.4% 0.81% ± 0.32 0.93 ± 0.37
320 87.4% 0.72% ± 0.29 0.84 ± 0.34
325 85.4% 0.67% ± 0.26 0.78 ± 0.30
330 85.4% 0.63% ± 0.25 0.74 ± 0.28
335 85.4% 0.60% ± 0.24 0.70 ± 0.28
340 85.4% 0.57% ± 0.24 0.67 ± 0.27

background burst in our final search). I scanned through the SN MC and the

Background data (Cf) and tested what percentage of signal made it through

a given ∆r cut, and what percentage of background contamination remained.

The results are in the following table.

If we are anticipating that we must limit the physics backgrounds to pro-

duce fewer than one coincidence event in the entire data set, we are restricted

to a ∆r cut no more relaxed than ∆r=330 cm, as this value for ∆r sits just at

the threshold for letting at most one background event into the signal analy-

sis. However, we also must include in this calculation the contamination from

accidental coincidences. We require that the combined background - both ac-

cidentals and true physics backgrounds - produce less than one false burst in

the entire SNO data set. This appears out to be a fairly restrictive require-

ment, as has been shown in the previous calculations, and leads us to consider

a more restrictive cut.
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A.6 A ∆r∆t Cut

It appears that we need to look into more stringent cuts than ∆r alone, since

the contributions to the background from both accidentals and physics back-

grounds are large. One clear option is to restrict events not only by their

distribution in space but also by their corresponding differences in time; a ∆r-

∆t cut, which would allow us to cut more tightly on background-like objects.

∆t =

∑M
i=1 ti − ti−1

M
(A.7)

The idea behind a ∆r-∆t cut comes from the assumption that events which

occur as a background product, such as spallation neutrons, will not only be

correlated in their relative positions, the amount of distance which exists be-

tween them should be correlated with the amount of time difference there is

between the events; two neutrons which were released via spallation at the

same location in the detector will only have a large ∆r value if there has been

an appreciable amount of time having elapsed since the time of spallation.

Similarly, a very small ∆r value with a very small ∆t value would accurately

describe spallation neutrons, directly following the muon interaction. Con-

versely, a SN burst will be more likely to have a high ∆r value with a small ∆t

value. Figures A.8 and A.9 show sample distributions of ∆r-∆t for background

events and simulated supernova events.

The ∆r-∆t cut has been developed using a simple parameterization, relat-
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Figure A.8: Sample ∆r-∆t distribution for background events.
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Figure A.9: Sample ∆r-∆t distribution for simulated SN events.

ing ∆r to ∆t by a factor, α, as follows

∆t =
√
α∆r (A.8)

For different multiplicities (two and three) and different phases (D2O and

Salt), there will be different relations between the distance the background

particles will be separated by, ∆r, and their separation in time, ∆t, i.e. there

will be a different value of α for each set of multiplicity and phase we are

inspecting, due to the different capture times and detection efficiencies in the

relative phases. The values of α for multiplicity-two and multiplicity-three

bursts must be fine-tuned to ensure that the percentage of background-type

events which are not cut by the ∆r-∆t is small enough that we ensure that
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fewer than one event (out of the phase-specific 35 or 116 estimated in Ta-

ble A.2) contaminating our final search windows. This means our ∆r-∆t cut

will have to be more than 99% efficient for the Salt phase, and more than 97%

efficient for the D2O phase. Though the ∆r-∆t cut still needs tuning, different

values for α have been tested, and it appears that we will have to sacrifice a

large amount of signal even with this stringent cut. Further analysis on the

best implementation of this cut should be explored.

A.7 Other Cuts

A.7.1 Window Length

This section differs from the previous two in that it details the window length,

which is not truly a cut, but it is the parameter which is used to eliminate ac-

cidentals from the data set; therefore, while the previous cuts (∆r and ∆r∆t)

were designed to eliminated backgrounds due to physical processes in the de-

tector, the window length is determined with the intention of eliminating back-

grounds due to unavoidable accidental coincidences.

A.7.2 High-NHIT Follower (HNF) Cut: Upper Energy

Threshold

As has been discussed earlier, the window of expected energies for supernova

neutrinos has limits based on our understanding of the conditions in a super-

nova. Because of this, we are safe in assuming that any event detected in SNO
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with an energy above the upper threshold of expected neutrino energy, even

if part of a burst, will not be a supernova candidate. This helps us eliminate

atmospheric backgrounds from our data set, as the typical energy for atmo-

spherics (∼GeV) will be much greater than the typical energy for supernova

neutrinos. The energy cut relies on the relation between the energy of the de-

tected particle and the number of PMTs hit (NHIT) for any event. By using

a ratio of roughly 8:1 (PMTs hit: MeV energy - this ratio will differ between

phases), we can rely on a very basic high-NHIT follower (HNF) cut to help

remove high-energy burst candidates that are too high in energy to be due to

a supernova.

For the HNF cut to work, it must not only remove events which are high

in energy themselves, but also remove events which follow the high-NHIT pri-

mary event, assuming that any followers of a high-energy event are likely to

be spallation neutrons or other background-induced followers (photodisinte-

gration gammas, etc.). We will assume that four neutron capture times is

adequate to avoid inclusion of high-energy-event followers in our burst search,

therefore the cut is structured (much like the muon follower cut) to flag any

high-NHIT event and all events following within a window of four neutron

capture times (600msec for D2O phase, 200 msec for Salt phase).

By placing an upper limit on energy as well as the already-present lower

limit energy threshold which we have placed on our window (to eliminate

accidentals), we have limited the number of contributing backgrounds which

must be reduced. One step which should be considered, therefore, before final
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cut parameters are determined, is what the expected distribution of energies for

the atmospheric bursts would be. If the energy (NHIT) of the expected bursts

has a high mean, and a significant fraction of these events would be cut by our

HNF Cut, we are allowed to be less restrictive in our ∆r-∆t cut, which would

be highly desirable in the context of our sensitivity and sacrifice measurements.

This is something which should be considered before finalization of the ∆r-∆t

cut.

A.7.3 Non-Electron Follower (NEF) Cut

One other possible background which must be eliminated is that of a high-

energy event in SNO, such as a pion, which misreconstructs as a low-energy

event due to a non-standard hit pattern. An example of such an event is

shown in Figure A.10, in which a high-energy, double-ring event interacted in

the heavy water of SNO, and was actually misreconstructed by our path fitters

as a single low-energy event, due to its odd hit pattern.

In order to attempt to remove such events from our data set, we can develop

a cut, which we call the non-electron follower (NEF) cut (for followers of non-

electron-like events), which identifies specific characteristics of non-electron-

like events and tags all events within a certain time window of any such non-

electron-like event. The manner in which we identify whether an event is

electron-like or not is by using some specific high-level cuts (HLCs) which

have been developed and tested for the LETA analysis [77]. The cuts which

we use for this purpose are described in [77]; they are the β14 isotropy cut and
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Figure A.10: Example of a high-energy event in SNO which resulted in the
fitting algorithms’ misreconstruction of the event’s energy.
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the angular fitter figure-of-merit cuts (FTP FOMs). The β14 cut was designed

for the separation of electrons from neutrons in the Salt phase, and is a linear

combination of the average value of the first and fourth Legendre polynomials

of the cosine of the angle between each pair of PMTs hit in an event. This

gives us a measure of the degree of isotropy of the PMTs hit in any given

event: the β14 of electron-like events is somewhat distinguishable from that of

neutrons, or non-electron-type events, and as such we use this as one of our

criteria for identifying non-electrons for our NEF cut.

The other HLCs which we use in the NEF cut are the angular FTP FOMs,

which are an assortment of parameters which are essentially K-S tests on

the angular distribution of Cherenkov light of reconstructed events, with the

hypothesis that each event is a single Cherenkov electron (with energy of 5

MeV). Events which fail these FTP FOM cuts, obviously, are taken to be

not well-described as 5-MeV Cherenkov electrons, and as such they serve as

another foundation of our NEF cut.

As the combination of the FTP FOM cuts and the β14 cut together should

give a fairly good indication of an event which would possibly be misrecon-

structed as a low-energy event, when in reality it’s a background-inducing

high-energy event, we have built our NEF cut to trigger on any event which

fails either of these two checks, and then we flag (and ultimately cut) any event

which follows within 4 neutron capture times of the primary event (similar to

the HNF cut). Initial tests show that this cut is only slightly more than 30%

effective at eliminating atmospheric bursts.

248



A.8 Remaining Analyses

Given the array of cuts outlined here, it seems that the next step for the SNO

collaboration will be to test the sacrifice of each cut, and determine SNO’s

ultimate sensitivity for detection after ascertaining the contamination and sac-

rifice due to the combination of all cuts. The specific cuts listed here must

be further tested against Monte Carlo to ensure a complete accounting for,

and removal of, all expected backgrounds. Once the cuts have been developed

further, the sacrifices must be understood, and a final sensitivity estimate for

SNO’s trigger-less burst search must be made. Pending final cut-tuning and

review from the SNO Topic Committee, this analysis should be carried out on

the SNO data sets.

A.9 Super-Kamiokande Search for Bursts with

No Trigger

The Super-Kamiokande Collaboration has also carried out a search for bursts

in their neutrino data set with no optical trigger, and published their method

and results in [78]. The data set for this search spanned the calendar times of

May, 1996, to July, 2001, and then December, 2002, to October, 2005. Their

method of search consisted of sliding a pre-determined window through the

data set sequentially and noting if any window contains a burst. They then

revisited any detected bursts to determine whether the bursts were caused by

backgrounds or a real signal. This is a markedly ‘un-blind’ analysis, and SNO
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would prefer to avoid using this approach, by instead performing the ‘inverse’

of the Super-K search; determine a pre-set window, calculate the expected

number of backgrounds in this window, develop methods of ensuring the re-

moval of such backgrounds, and then finally rely on our ‘blind’ background

removal techniques while scanning through the data with our pre-set window,

with the understanding that any ‘burst’ detected in this final search would

then be classified as due to a non-background signal.

Super-K used three separate time and energy windows in their burst search.

The first window was optimized for detecting a distant supernova, where here,

‘distant’ means hundreds of kpc away from our galaxy. For this search, they

used a low-multiplicity threshold (≥2 events) and a long time window (20

seconds). Because accidental coincidences and solar neutrino events would

swamp such a window, they set a high energy threshold, of 17 MeV, for this

search. The second window used in the Super-K study was intended for achiev-

ing better sensitivity for lower-energy events from nearby supernovae. Because

Super-K would have far higher backgrounds at lower energies than were present

in the previous distant-supernova window, they increased the required multi-

plicity for this window, and decreased the length in time of the window. The

resulting combinations of windows for this portion of the search were then ≥3

events in 0.5 seconds, ≥4 events in 2.0 seconds, and ≥8 events in 10 seconds.

The energy threshold for the first phase of Super-K (SK-I) was 6.5 MeV and

for the second phase (SK-II) was 7.0 MeV. The third and final window used in

the Super-K burst search was directed at detection of neutrinos emitted during
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the neutronization burst expected in a core-collapse supernova. The window

parameters for this were times of 1, 10 and 100 milliseconds, with multiplicity

of ≥2 events for all times. The Super-K collaboration found no evidence of

core-collapse supernovae during any of the windows used, over the period of

2589.2 live days which they considered.
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