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Abstract

The Sudbury Neutrino Observatory (SNO) is a solar neutrino detector which is currently under
construction in Sudbury, Canada. This experiment is unique amongst solar neutrino experiments in that
it can seperately measure the rate of electron neutrinos which come from the Sun and, via a neutral
current (NC) interaction, the total rate of electron, muon and tau neutrinos. This is important because
the SNO experiment can therefore show if neutrinos coming from the Sun are oscillating into different
flavours before they reach the Earth, irrespective of the total solar neutrino flux.

The observation of neutrino oscillations is of great importance since they require neutrinos to have a
small, finite mass. If this is found to be true then the Standard Model of Particle Physics will need to be
extended since it assumes all neutrinos to be massless. The reasons for this assumption and the results
of several experiments which are trying to observe neutrino masses are discussed.

The best evidence for neutrinos having mass comes from solar neutrino measurements. There have
been five experiments to date which have measured the rate of electron neutrinos coming from the Sun.
They have all observed a deficit when the measured rate is compared to the rate predicted by solar
models. The reasons why this deficit is thought to be most easily explained by neutrino oscillations are
presented and the reliability of the results of these five solar neutrino experiments is discussed along with
the expected ability of the SNO experiment to show whether or not neutrino oscillations are occuring.

To achieve its objective the SNO experiment has to fully understand any sources of backgrounds to NC
neutrino interactions. These backgrounds are primarily caused by the presence of natural radioactivity
in the 1000 tonnes of heavy water (or magnesium chloride solution) which makes up the SNO detector
target. The existing techniques to measure NC backgrounds are summarised before describing in detail
the new radiochemical techniques that had to be developed to enable an assay for the most critical
isotope, 212Pb.

A novel procedure to manufacture sources of 212p}, is also explained. These sources were shown, at
production, to be free from any long-lived activity and so they can be used within the SNO experiment
to calibrate 212Pb extraction efficiencies. Such calibrations are shown to be necessary to ensure an
accurate assay of 212Pb and hence an accurate measurement of the most significant component of the
NC background in the SNO experiment.
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Chapter 1

Do Neutrinos have Mass?

1.1 Introduction

The existence of neutrinos as light, neutral particles was first postulated by Pauli in 1930 in his now
famous letter to a physics meeting in Germany to solve the problem of energy conservation in beta decay
[Bro78]. Neutrino physics was born to experimental Particle Physicists in the 1950’s by the discovery
of the electron anti-neutrino by Reines and Cowan [Cow56]. Since that time there have been many
experiments conducted to observe neutrinos. Measurements of the width of the Z° mass peak began in
1989 (see [LEP89]) and have since been improved to show without doubt that there are three distinct light
neutrinos. These three neutrino flavours match the three families of the other fundamental particles and
all of these particles have been incorporated into the Standard Model of Particle Physics which describes
how they interact.

The interactions of neutrinos in the Standard Model are governed by the electroweak theory and
this theory has been proven to be extremely accurate by numerous experimental results. Neutrinos are
assumed by this model to be massless because initial experiments showed that if they do have finite
masses they are much much smaller than the masses of the other fermions. A possible theoretical model
to account for very small neutrino masses, the see-saw effect, will be summarised in this chapter together
with the phenomenon of neutrino oscillations which can occur if neutrinos have a finite mass.

After this theoretical discussion the results of various experiments which are trying to measure neutrino
masses will be examined. This will include the results from experiments which can directly measure
neutrino masses and experiments which can indirectly determine if neutrinos have a small, finite mass by
searching for neutrino oscillations.

1.2 A Theoretical Discussion

1.2.1 Possibilities of Neutrino Masses

In this section there is a brief summary of the mechanisms in the Standard Model which give fermions
their masses and of a possible theoretical model which would predict neutrinos having masses very much
smaller than the other fermions.

The electroweak Lagrangian is invariant under SU(2)r x U(1)y and as such mass terms like: —moap,
cannot be simply added to the interaction terms in the Lagrangian since this term is not gauge invariant.
Fermion masses within the Standard Model are generated by adding to the Lagrangian coupling terms
between the fermions and the Higgs doublet. In Equation 1.1 the terms that must be included in the
Lagrangian to give the electron its mass are shown.
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By spontaneously breaking the symmetry only two terms remain in the Lagrangian and these are
shown in Equation 1.2 in terms of the vacuum expectation value, v. This procedure of spontaneous
symmetry breaking is described in many texts such as [Hal84].

L =—-m.ee— %e-éeh (1.2)

The first term in Equation 1.2 generates the electron mass whereas the second term is a coupling term
between the electron and the neutral Higgs scalar. Although the Higgs mechanism does allow masses to
be generated for all the fermions it does not predict what these masses will be.

The Standard Model does not generate neutrino masses, by choice, simply by not including the
existence of right handed neutrinos. This prevents the coupling to the Higgs doublet which was used
above to generate the electron mass. The Standard Model can be extended to include right handed
neutrinos which would allow neutrino masses to be generated in the same way as the other fermions in
the Standard Model. Unfortunately by using the same mechanism to generate neutrino mass it is difficult
to understand the difference between the very small mass of neutrinos, if indeed they have a mass at all,
and the masses of the other fermions.

There is a theoretical model which generates very small neutrino masses and this starts from the fact
that, unlike all the other fermions, neutrinos do not carry any electromagnetic charge.

All of the fermions in the Standard Model are assumed to be Dirac particles which can be described
by four component spinors consisting of the two spin states of the particle and its anti-particle. It is
obvious that by using a Lorentz transformation the helicity of a particle can be changed, however the
electric charge is invariant. This means that if one observes a charged particle in one frame by boosting
to another frame one might see a different helicity but it will always be a particle not an anti-particle.

It can be seen that there is an ambiguity if the original particle is an uncharged massive neutrino since
the particle in the new frame can be either a neutrino of opposite helicity or an anti-neutrino of opposite
helicity since there is no charge conservation to prevent the latter occurring. If this latter does occur the
neutrino is its own anti-particle, called a Majorana particle, and then it can be completely described by
a two component spinor.

By adding to the Standard Model right-handed neutral fields for each charged lepton: Nigr, we can
develop a full theory which encompasses the possibility of both Dirac and Majorana neutrinos. The
most general gauge invariant Lagrangian which gives mass terms for N generations of neutrinos, in the
Majorana basis of field and conjugate field, is given in Equation 1.3, as explained in [Moh91].

e=3 ) (e ) () +ne w9

The off diagonal terms given by the N x N matrices M and MT are called the Dirac mass terms and
the values of these terms come from the Higgs mechanism as has already been discussed. The diagonal
term, the matrix B, is called the Majorana mass term and it couples the right handed neutrino fields.
This coupling is gauge invariant because the N;r and its conjugate field, Ny are both invariant under
SU(2)L xU(1)y. This kind of term for the charged leptons would violate electromagnetic gauge symmetry
whereas for neutrinos it only leads to the violation of B-L number (Baryon number - Lepton number).
Such a violation can be permitted since it does not effect any of the dynamics of the Standard Model.

If just one generation of neutrinos is considered the matrices: M and B, reduce to simple numbers:
M and B. Tt is then relatively easy to find expressions for the eigenvalues of the mass matrix and the



results are shown in Equation 1.4 together with approximate values for the two masses when it is assumed
that B> M.

2
m,,=-é—(vB2+4M2:l:B)=>m1_—]%— H mo =~ B (1.4)

The value of M is generated by the Higgs mechanism as was discussed above and so it would be
expected to be of the same order as the masses of the other fermions in that generation, say a few GeV
at most. The value of B is expected to be at energies of Grand Unified Theories, say 10'5GeV, since
there is no known mechanism to break the symmetry of right-handed neutrinos in the Standard Model.
Hence, the assumption that B 3> M is reasonable.

The mass generating mechanism explained above is called the ‘see-saw mechanism’. It generates a
hierarchy of three very light left-handed neutrinos at the expense of the production of three extremely
heavy right-handed neutrinos by allowing the violation of B-L number and the existence of Majorana
neutrinos.

1.2.2 Vacuum and Matter Enhanced Neutrino Oscillations

If neutrinos do have finite masses there is no reason for the mass eigenstates to be the same as the
three flavour eigenstates. Indeed it is well known that in the quark sector the weak eigenstates are rotated
with respect to the strong eigenstates and values for the mixing angles between the three generations
have been measured by numerous experiments.

If a similar behaviour is true in the lepton sector, which requires the violation of leptonic charge
conservation within families, then neutrino mixing can occur. This means that there is a finite probability
that a neutrino of certain flavour will, after a period of time, oscillate into a different flavour.

The probability of an electron neutrino oscillating into a different neutrino as it travels a distance,
R, in vacuum can be determined by evolving the flavour eigenstates in time. An expression for this
probability for the simple case of just two neutrino flavours is given in Equation 1.5 in terms of a mixing
angle, 6, and an oscillation length, L = 47E, / Am?.

P(v. = v;) = 1 —sin® 20 sin’*(vR/L) (1.5)

Although Equation 1.5 is true for neutrinos which travel through a vacuum, the simple formula has
to be altered when the neutrinos travel through matter since the electron neutrinos behave differently in
matter to muon and tau neutrinos because they can undergo charged current scattering as well as neutral
current scattering. The effect of matter on neutrino oscillations was first investigated by evaluating the
Hamiltonian for the scattering and adding it to the Hamiltonian generating the equations of motion in
a vacuum by Wolfenstein [Wol78]. This alters the survival probability of an electron travelling through
constant density matter to the expression given in Equation 1.6 which is taken from [Ros87]. This
expression is a function of parameters whose definitions are given in Equation 1.7 in terms of the weak
coupling constant, Gr, and the density of electrons in the matter, Ne.

Plve 2 vg) =1— sin® 20 sin®(mR/ L) (1.6)
sin? 20 = sin?20/[sin?20 + (L/Lo — cos20)®] ; L= 47E, |Am? (L)
Lar = L/[sin?20 + (L/Lo — cos 26)*]'/? . Lo =271/V2GFN, '

The main difference that occurs by adding the matter interactions is that the matter mixing angle,
61, is dependent upon a function of the vacuum mixing angle, the density of electrons in the matter and
the energy of the neutrinos. This means that even for very small vacuum mixing angles the effect on
neutrino survival probabilities can be very large for certain energy neutrinos.



The effect of matter oscillations is even more complicated in the case where the density of the matter
traversed by the neutrinos is not constant, for example in the case of neutrinos propagating from the
interior to the exterior of the Sun. In 1985 Mikheyev and Smirnov found that neutrino oscillations in
variable density matter could be enhanced and this is called the MSW effect [Mik85]. They found that
for some neutrino energies it is possible to have complete conversion of electron neutrinos to muon or tau
neutrinos.

1.3 Experimental Measurements

1.3.1 Direct Limits on Neutrino Masses

Limits upon the masses of neutrinos have been obtained directly by various experimental methods.

The tightest upper limits on the mass of the electron neutrino, m,,, come from the measurements of
2

tritium beta decay spectra. There have been numerous limits placed on mj, by fitting the energy
dependence of Kurie plots for tritium decay, however the derived results may not be entirely reliable due
to unknown systematics. The most recent published limits on the electron neutrino mass from tritium

beta decay experiments are given in Equation 1.8.

m,, < 5.6eV(95%CL MAINZ)[Bon96] ; m,, <39eV(95%CL TROITSK)[Lob96] (1.8)

The limits in Equation 1.8 are for the mass of the electron neutrino independent of whether neutrinos
M

are Dirac or Majorana particles. Upper limits for the mass of a Majorana electron neutrino, m,,_,

can
be found by measuring the rate of neutrinoless double beta decay. There are several candidate atoms
from which these decays could be observed and there are a number of experiments searching for evidence
of neutrinoless double beta decay using these atoms, see Figure 10 of [K1a96]. To date, no evidence of
neutrinoless double beta decay has been found which means that there is, as yet, no evidence of that
neutrinos are Majorana particles. However, the measured limits on the half-lives of these decays allow
corresponding limits to be calculated for the mass of Majorana neutrinos and the best limit at present is

produced by the Heidelberg-Moscow experiment, which uses 76Ge. This result is given in Equation 1.9.

mM < 0.46eV (90%CL)[Bau97] (1.9)

The best limit for the mass of the muon neutrino is obtained by momentum analysis of pion decay
and the most recent published limit is given in Equation 1.10.

my, < 170keV (90%C L)[Ass96] (1.10)

The LEP accelerator has provided the means to place bounds upon the tau neutrino mass by recon-
structing tau decays to pions. There are four published limits from the three LEP experiments: ALEPH,
DELPHI and OPAL and these limits are shown in Equation 1.11, as taken from [Pas97].

m,, < 23.1MeV(95%CL ALEPH 5% /5r*x°) ; m,, <25.7TMeV(95%CL ALEPH 3rt)
m,, < 29.3MeV(95%CL DELPHI 3r%) ; m,, <353MeV(95%CL OPAL 3rt) (1.11)

Alongside these direct, experimental bounds it is possible to place bounds on neutrino masses by con-
sidering primordial nucleosynthesis since neutrino masses affect predictions of primordial helium abun-
dance by altering the rate of reactions holding the neutrons and protons in equilibrium.

4



These predicted bounds are functions of the number of extra neutrino species during nucleosynthesis
given by: AN, = N, — 3. Assuming massless electron neutrinos and the weak bound that AN, < 1,
bounds on Majorana and Dirac neutrino masses can be calculated and are given in Equation 1.12, as
taken from [Fie97].

mP >25MeV ; mD <0.37MeV ; mp <0.31MeV

1.12
mM > 32MeV ; mM <0.95MeV ; m}! <0.95MeV (1.12)

These limits are not compatible with the tightest upper mass limits for the tau neutrino mass as given
in Equation 1.11. To produce an agreement between the experimental bound and the nucleosynthesis
bound the mass of the tau neutrino must lie below about 1MeV [EL96].

In summary, the measured limits on neutrino masses together with the bounds due to nucleosynthesis
show that if neutrinos do have a mass then it is extremely small when compared to the other fermions
in its generation and this is a possible motivation for the see-saw mechanism as was described in the last
section.

One final severe constraint for the mass of stable neutrinos can be made if it is assumed that the mass
density of the universe is less than the critical density, as is favoured by theories of cosmological inflation.
This limit is derived from General Relativity and is given in Equation 1.13 where it is assumed that the

present Hubble expansion rate, Ho, is about 50kms~*Mpc~?!.

m, < 92HZ x 10™%eV ~ 23eV[El96] (1.13)

1.3.2 Searches for Neutrino Oscillations

Introduction

There have been many experiments searching for neutrino oscillations in a number of different pa-
rameter regions since an observation of neutrino oscillations would be evidence that neutrinos possess
a small but finite mass. It can be seen from Equation 1.5 on page 3 that depending upon the energies
of the neutrinos involved and the distance through which they propagate different vacuum mixing an-
gles can be investigated. There are three main sources of neutrinos: neutrinos produced by terrestrial
sources including nuclear reactors and man-made neutrino beams, neutrinos produced in the atmosphere
by cosmic rays scattering off nuclei and finally, neutrinos produced in the fusion reactions of the Sun.

The oscillation length, L, for vacuum neutrino oscillations was given in Equation 1.5 on page 3asa
function of the energy of the neutrinos involved, E,, and the squared mass difference between the two
neutrino mass eigenstates undergoing the oscillations, Am?2. Tt is therefore possible to determine the
region of Am? values to which a particular experiment is sensitive. The formula given in Equation 1.14
gives the value of Am? in eV? as a function of the distance from the source of the neutrinos, R in metres,
and the energy of the neutrinos, E, in MeV.

2.5E,(MeV)
R(metres)

Using this formula it can be calculated that, due to the high energies of man-made neutrinos and the

Am?(eV?) = (1.14)

low distances involved in most terrestrial experiments, accelerator and reactor experiments can investigate
neutrino oscillations if Am? is greater than about leVZ2. It can also be calculated that atmospheric neu-
trino experiments can investigate neutrino oscillations if Am? lies between about 10~ 1eV? and 10~ 4eV2.
Finally, due to the very large distances involved, it can be calculated that solar neutrino experiments can
investigate vacuum oscillations if Am? lies between about 10~*°¢V? and 10~1eV2. However, since solar
neutrinos have to propagate through the Sun it is necessary to take into account the matter enhancement



of the oscillations. If the MSW effect is occurring this means that solar neutrino experiments can actually
investigate neutrino oscillations with a much larger range of Am? since the electron density in the Sun
varies considerably.

The present status of neutrino oscillation searches in each of these Am? ranges are discussed separately
in the following three sections. All of these experiments either search for the appearance of neutrino
flavours known not to be initially present or they search for the disappearance of neutrino flavours known
to be initially present.

Terrestrial Neutrino Oscillations

As has already been discussed, experiments searching for terrestrial neutrino oscillations can be divided
into accelerator and reactor based experiments. The reactor experiments generally start from a known
flux of electron anti-neutrinos and measure the final flux which reaches the detector placed some distance
away to search for any 7; — ¥; oscillations. Accelerator based experiments generally start from a beam of
muon neutrinos or anti-neutrinos and then search for any tau or electron neutrinos or anti-neutrinos. Such
accelerator experiments can therefore search for either v, (7;) = v (77) or v, (7;) — ve(Ve) oscillations
or both depending upon the actual detector.

To date there have been no v, (¥;) — v, (¥7) oscillations observed and exclusion limits have been set on
combinations of Am? and sin? 20 by numerous experiments. Recently, two experiments running at CERN,
Geneva, called NOMAD and CHORUS have set limits of sin® 20, <34x 10~3 and sin? 20, < 3.5% 10-3
respectively for large values of Am?, see [Mez97] and [Esk97] respectively. These two experiments are
both situated about 800 metres from a source of 25GeV muon neutrinos but they differ considerably in
their detectors. The CHORUS experiment uses a target of nuclear emulsion which has high resolution
so that the 1.5 millimetre decay length of the tau lepton produced by tau neutrino interactions can be
observed. The NOMAD experiment has an active target made from drift chambers and together with
tracking systems it can distinguish different neutrino interactions by their kinematics. In this way the
NOMAD experiment can search for ¥, — 7 oscillations as well as 7, — ¥; oscillations and its exclusion
limits for ¥, — 7, oscillations are discussed below.

Perhaps the most startling occurrence in the search for neutrino oscillations in the recent past came
with the announcement by the LSND experiment in 1995 of a signal consistent with 7, — V¢ oscillations
[Ath96]. The LSND experiment is a large scintillation detector situated 30 metres away from a beam stop
of pions at the Los Alamos Meson Physics Facility, USA. The LSND experiment is designed to detect the
production of electron anti-neutrinos from a beam of muon anti-neutrinos. The parameter space of the
LSND allowed region is shown in Figure 1.1 together with the most recent exclusion limits from four other
experiments. One further exclusion region that can be added to this plot comes from the results of the
Bugey short-baseline reactor experiment which excludes 7, — Ve oscillations above about sin? 26 = 0.04
[Ach95] .

The exclusion limits in Figure 1.1 come from the NOMAD experiment which has already been dis-
cussed, the currently operational KARMEN experiment and two older experiments: BNL 776 and CCFR.
The first of these older experiments, BNL 776, published its results in 1992 using a large fiducial mass
electromagnetic calorimeter and a muon spectrometer placed 1 kilometre from the source of a v, beam at
the Brookhaven National Laboratory, USA [Bor92]. The second experiment, CCFR, published its results
in 1995 using a coarse grained calorimeter situated at Fermilab, USA [McF95].

The exclusion limit shown in Figure 1.1 from the KARMEN experiment is important because this
experiment is very similar to the LSND experiment in that it is a highly segmented liquid scintillation
detector searching for the appearance of v.(7;) from a beam of v,(¥;). The KARMEN experiment
is currently operating at the Rutherford Appleton Laboratory (RAL), UK. The KARMEN detector
underwent an upgrade in 1996 which means that within the next few years it should be able to fully
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Figure 1.1: The LSND allowed region for 7, — e oscillations together with the current exclusion limits
from four ezperiments. This plot was taken from [Mez97].

Experiment Exposure in Number Ratio of Ratios: Ref
Name kilotonne years | of events || R = (u/e)para/(p/e)mc
NUSEX 0.74 50 0.9610:32 [Agl89]
Frejus 2.0 200 1.00+0.154-0.08 [Dau9s]
Soudan-IT 3.2 ~200 0.61£0.150.05 [Kaf97)

Table 1.1: The measurements of atmospheric neutrinos using iron calorimetric detectors. The only
currently operating experiments is the Soudan-II experiment which can be seen to have produced a result
for R significantly different to unity, unlike the other two experiments.

investigate the region favoured by the LSND signal and so should be able to confirm or deny this hint of
neutrino oscillations [Eit97].

The LSND experiment has continued to refine its own analysis and has recently completed an analysis
into v, — v, oscillations and they report observing a signal consistent with their original claim of 7, — V¢
oscillations [Ath97].

Atmospheric Neutrino Oscillations

Since the mid 1980’s there have been a number of experiments detecting the number of muon and
electron neutrinos produced when cosmic rays scatter in the atmosphere. Although the absolute fluxes
of these neutrinos are not well known in theory, the ratio of the number of muon neutrinos produced
to the number of electron neutrinos produced is thought to be known quite accurately. Experiments
have therefore been measuring a, so called, ‘ratio of ratios’ given by R which is the measured ratio of
muon neutrinos to electron neutrinos divided by the rate that the experiment would expect to see if the
theoretical predictions are correct. The measured values of R are shown in Tables 1.1 and 1.2 where the
experiments have been divided into the two types of detector that have been used to date.



Experiment Exposure in Number Ratio of Ratios: Ref
Name kilotonne years | of events || R = (u/€)para/(1/e)mc
IMB 7.7 610 0.54+0.05+0.11 [Bec92]
Kamiokande (sub-GeV) 8.3 528 0 .62+0.06+0.06 [Ino97)
Kamiokande (multi-GeV) 6/8.2 233 0.5710:92+0.07 [Ino97)
Super-K (sub-GeV) 20.1 1453 0.64+0.04+0.05 [Nak97]
Super-K (multi-GeV)) 20.1 444 0.60+0.05+0.05 [Nak97]

Table 1.2: The measurements of atmospheric neutrinos using large water Cerenkov detectors. The only
currently operating experiment is the Super-K ezperiment and it can be seen that all of these experiments
and the analysis of both low and high energy events are in good agreement with a value of R of around
0.6.

The results show that there has been some disagreement between the different experiments. The
water Cerenkov detectors have consistently shown a deficit whereas the iron calorimetry experiments
have not. However, the currently operating experiments all measure a value for R of around 0.6 which
is very different to the expected value of 1. This low value of R could be an indication of v, — v;
oscillations since these could decrease the number of muon neutrinos by increasing the number of tau
neutrinos which would have not been detected. It is necessary to invoke v, — v, oscillations instead
of v, — v, oscillations since a long base-line reactor experiment, the Chooz experiment, has already
searched the favoured parameter space for the latter type of neutrino oscillations and has found no signal
[Apo97].

Further evidence for neutrino oscillations comes from the fact that in both the Kamiokande and
Super-K experiments it was observed that there was a dependence of R with the zenith angle, the angle
between the neutrino direction and the perpendicular direction out of the earth from the detector. This
effect, called the ‘up/down asymmetry’, could be caused by neutrino oscillations since neutrinos coming
through the earth have very different path lengths to those coming straight from the atmosphere. The
recent results of the Super-K experiment for this effect produce a good fit to v, — v, oscillations with
Am? =5 x 10-3eV? and sin® 20 = 1.0 [Nak97).

In the future, long-baseline accelerator experiments will be able to investigate this region of parameter
space and so provide independent evidence as to whether or not neutrino oscillations are the cause of the
low value of R which have been measured.

Solar Neutrino Oscillations

There are two main fusion processes which occur in the Sun which generate neutrinos and energy:
the p-p and CNO cycles and in Table 1.3 there is a list of some of the details of the electron neutrinos
produced by these cycles. The main energy producing reactions in the Sun are from the p-p cycle and
they can be summarised by the reaction shown in Equation 1.15.

dp+2e s a+2v.+4y Q=26TMeV (1.15)

This equation shows that two electron neutrinos are released with about every 26MeV of energy. This
allows an estimate of the number of electron neutrinos produced by the Sun can be made by using the
measured luminosity of the Sun. However, to search for neutrino oscillations it is necessary for the flux
of electron neutrinos to be determined accurately. This is done by building solar models which describe
the reactions taking place and model the transport of both energy and elements within the Sun. There
have been several solar models suggested and these differ in the details of neutrino predictions. It should
be noted that these models are in good agreement when they calculate the flux of p-p neutrinos since



Chain Individual Neutrino production:

name reactions Name | Energy (MeV) | Flux (cm~2s71)
p+p—2H+et + v, p-p <0.420 591709 x 1010
ppl p+e +p—=2H + v, pep 1.442 1.4015-0% x 108

H+p—*He+~
SHe +°He — a+2p

hep |3He+p—*He+et +v. | hep <18.8 ~ 10%
SHe +*He -"Be + v
pplII "Be+e~ ="Li+ v, "Be 0.86 (90%) | 4.6475:3% x 10°
0.38 (10%) | 5.15%9:3% x 108
"Li+p—2a

"Be+p -8B +7

pplI | 3B —8Be*+et +v. 8B <15 6.6219-33 x 10°
8Be* — 20

20 4+p-oBN+y

BN SBN +et + v, 13C <1.2 6.1871:95 x 108

BC +p-asUN+7y
BN 4+ p 150 4+
CNO | 'O -"N+et+v. 50 <1.73 5.457195 x 108
BN +p-2CH+a
5N +p 190 +4
80 +p =51"F + 4
E 3170 + et + v, 7R <1.74 6.489-37 x 108
70 +p "N +a

Table 1.3: The energy and flur of electron neutrinos produced by the fusion reactions in the Sun. The
fluzes are from the 1995 Bahcall and Pinsonneault solar model [BP95] and the other details about the
neutrinos are taken from [Bah89].
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Figure 1.2: The energy spectrum of solar neutrinos reaching the earth normalised to the fluzes given by
the 1995 solar model of Bahcall and Pinsonneault [BP95]. The neutrino fluzes from continuum sources
are given in units of the number of neutrinos per square centimetre per second per MeV. The neutrino
fluzes from line sources are given in units of the number of neutrinos per square centimetre per second.

this rate is strongly constrained by the luminosity of the Sun. The solar model most widely accepted
as accurate, and which will be used in the rest of this thesis, is the 1995 solar model of Bahcall and
Pinsonneault [BP95). This model includes heavy element diffusion which earlier models did not include
and has been shown to compare very favourably with the most recent helioseismology results, see [Bah96}.

The fluxes of the different solar neutrinos as given by this solar model are listed alongside the neutrino
reactions in Table 1.3 and are displayed in Figure 1.2 to show the complete electron neutrino energy
spectrum produced by the Sun.

As of 1996 there were four operating solar neutrino detectors which used three different targets to
detect the neutrinos: chlorine, water and gallium. These different detectors have both different cross-
sections for detecting neutrinos and different energy thresholds which means that their expected detection
rate needs to be calculated individually. The results of solar neutrino experiments are often expressed
in terms of solar neutrino units where 1 SNU is 1036 events per second per target atom. These rates
are predicted by the solar model for each solar neutrino detector by convolving calculated fluxes with
the appropriate cross-sections for electron neutrinos interacting in the particular target while taking into
account the energy threshold of the detector. The results of the solar neutrino experiments, as of 1996,
are shown and compared to the solar model predictions in Figure 1.3 taken from [Bah97].

It is clear that all four experiments have measured smaller rates of electron neutrinos than the rates
predicted by the solar model. The overall deficit as measured by each experiment is roughly the same
and so naively one could simply say that the solar model overestimates the flux of neutrinos by a factor of
about three. This simplistic solution does not fit the data because the different experiments are sensitive
to the neutrinos coming from the different fusion reaction in the Sun, as can be seen in Figure 1.3. A
direct comparison of the rate measured by the chlorine and water experiments suggests that there is no
flux of pep, "Be or CNO neutrinos. Furthermore, the results of the gallium experiments show that their
measured rate is fully accounted by the predicted flux of p-p neutrinos. This result is almost independent
of the solar model used since, as has already been noted, the flux of p-p neutrinos is strongly constrained
by the measured luminosity of the Sun. The gallium experiments therefore also seem to indicate that
there is no flux of 7Be neutrinos coming from the Sun. However, B neutrinos are observed in the water
experiment and so this apparent deficit of "Be neutrinos is extremely hard to explain using standard
physics.
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Figure 1.3: This figure shows the measured rates of solar neutrinos in solar neutrino units (SNU) for
four experiments using three different targets. These rates are taken from [Eng96] and [Nak97] and are
compared to the rates in SNU predicted by the 1995 solar model of Bahcall and Pinsonneault [BP95].
The different shading in the predicted rates indicates the sources of the neutrinos that are ezpected to be
detected. This figure is taken from [Bah97].
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Figure 1.4: The allowed MSW solutions to the solar neutrino problem, as taken from [Bah97]. This figure
uses the the predictions of the 1995 solar model of Bahcall and Pinsonneault [BP95] and the measured
rates taken from [Eng96] and [Nak97]. The small mizing angle solution (SMA) has sin® 26 = 8.7 x 1073
and Am? = 5.0 x 10~%eV2. The large mizing angle solution (LMA) has sin®20 = 0.63 and Am? =
1.3 x 10~%¢V2. The low solution (LOW) has sin® 26 = 0.83 and Am? = 1.1 x 10~ "eV2.

There have been attempts to reconcile all of these results by changing the solar model but these have
found that the probability of a standard-physics solution is less than 2% if the luminosity constraint is
retained and less than 4% if the luminosity constraint is abandoned, see [Hee96]. However, this deficit
of solar neutrinos can easily be accounted for if neutrinos have a small, finite mass and undergo ve — v,
oscillations. In particular, the matter enhanced oscillations suggested by the MSW effect produces survival
probabilities for electron neutrinos which vary in energy. It is therefore quite possible for the MSW effect
to produce an extremely low flux of "Be electron neutrinos while keeping an observable flux of 8B electron
neutrinos. Figure 1.4 shows the best fit MSW solutions to the solar neutrino data as of 1996. This figure
was taken from [Bah97]. It should be noted that the experimental results can also be explained by
vacuum neutrino oscillations with no matter enhancement but this gives a worse fit and requires very
large mixing angles of sin® 26 > 0.6.
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1.4 Conclusions

In this chapter the present experimental results relating to the question of whether or not neutrinos
have mass has been summarised. To date no direct evidence of massive neutrinos has been found and
limits on these masses are always being reduced by better experimentation. There is however a lot of
indirect evidence that neutrinos have mass and this comes from the observed hints of neutrino oscillations.

The only direct neutrino oscillation observation is claimed by the LSND collaboration but this needs
to be confirmed by another experiment, probably KARMEN, before it will be considered as evidence
for neutrino mass. There are two indirect observations of neutrino oscillations and these come from
the need to explain an observed deficit in both atmospheric and solar neutrinos. Although recent results
from the Super-K experiment are confirming a problem with atmospheric neutrinos this problem is not as
convincing as the solar neutrino problem. This is because two previous atmospheric neutrino experiments,
NUSEX and Frejus, did not observe the problem. Only with the results of future long-baseline accelerator
experiments will the hint of neutrino oscillations in atmospheric neutrinos be proven.

The strongest evidence to date for neutrino oscillations, and hence that neutrinos have a small but
finite mass, comes from the measured deficit in the number of neutrinos coming from the Sun. In
this chapter it was explained why the combination of the results of the four solar neutrino experiments
operational in 1996 makes it virtually impossible to explain the deficit using standard physics. However,
neutrino oscillations via the MSW effect can easily account for the observed results.

It seems that the only way to account for the combined results of these solar neutrino experiments,
within the realms of standard physics, is if one of these experiments has produced an inaccurate result. In
the next chapter this possibility will be examined by discussing the details of the three different techniques
that have been used to detect solar neutrinos to date.

Finally, it is interesting to note that the see-saw theory which was described in this chapter can
generate a neutrino mass hierarchy with the correct structure needed to give solutions to the hints of
neutrino oscillations suggested by the atmospheric and solar neutrino problems. However, it should be
noted that it is impossible to solve both of these problems and account for the LSND result with neutrino
oscillations without invoking oscillations to non-interacting, sterile neutrinos. It is possible to account
for all three of these effects by extending the see-saw mechanism and by the addition of three sterile
neutrinos but this could just be the case of adding enough free parameters to fit all of the data [Chu98].
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Chapter 2

The Solar Neutrino Experiments

2.1 Introduction

Since the 1960’s there have been three different techniques used to detect solar neutrinos, these involve
targets of chlorine, gallium and water. In the last chapter the results of these experiments as of 1996 were
given and it was explained that, unless one of the measurements was inaccurate, the combined results
are a very good indication that solar neutrinos undergo neutrino oscillations. In this chapter the details
of these experimental techniques and the most recent results of the experiments that have used them will
be discussed in order to verify this conclusion. Finally attention will move from presently operational
solar neutrino experiments to a future experiment due to commence operation in April 1998.

This experiment, the Sudbury Neutrino Observatory, is a unique solar neutrino experiment because
it can detect electron neutrinos by a charged current (CC) interaction and the total sum of electron,
muon and tau neutrinos by a neutral current (NC) interaction. This means that the SNO experiment
can prove whether or not the electron neutrinos produced by the Sun are oscillating into muon or tau
neutrinos before reaching the Earth. It will also be explained that, to be able to prove that these neutrino
oscillations are occurring, the SNO experiment needs to have methods to measure the amount of natural
radioactivity within its detector target and some of these methods will be described.

2.2 The First Solar Neutrino Experiment

In 1958 it was realized that neutrinos could be produced in the sun via the infrequent inverse beta
decay of both "Be and ®B, as was shown in Table 1.3 on page 9. This led to several initial attempts to
measure solar neutrinos since the flux from 8B was predicted to be reasonably high. These attempts,
led primarily by F.Reines, were all foiled by large backgrounds, as described in eg [Rei64]. However it
should be noted that these initial experiments were actually pilot experiments of those in preparation
today. The first experiment which actually measured the rate of electron neutrinos coming from the Sun
used the inverse beta decay reaction given in Equation 2.1.

ve +37C1 —» e~ +%3"Ar (E, > 0.814MeV) (2.1)

The reason for choosing this reaction is that the 37Ar produced by the neutrino interaction can
be quantitatively retrieved from a liquid source of chlorine by purging the liquid with an inert gas.
Furthermore, 3" Ar decays by electron capture with a 35.2 day half-life by emitting 3 to 4 Auger electrons
whose total energy is 2.82keV. This means that after retrieving the 37 Ar it is possible to measure it using
low background proportional counters.
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A collaboration from Brookhaven National Laboratory (BNL), New York, USA, led by R.Davis de-
signed an experiment which used 615 tonnes of tetrachloroethylene [Dav68]. The argon removal system
involved purging the tank for 20 hours with helium. Any tetrachloroethylene in this helium was removed
using absorbers and finally any argon collected was removed using a liquid nitrogen cooled charcoal trap.
The argon was then purified using smaller charcoal traps and a gas chromatography column to remove
heavy radioactive gases such as 222Rn which would lead to counting backgrounds. Finally, the purified
argon was mixed with a counting gas, consisting of 90% argon and 10% methane, and placed into a
0.5 millilitre miniature proportional counter for measurement. These counters were calibrated using an
external source of 33Fe which produces an escape peak at 2.93keV, just above the signal from 37Ar.

To calibrate the efficiency of the collection procedure a known amount of an isotopically pure argon
isotope, alternating between 3¢ Ar and 38 Ar, was added to the tank before each solar neutrino exposure.
The recovery of this carrier was determined after the counting time of 200-400 days by analysing the gas
in the counter by mass spectroscopy. These calibrations always showed a carrier recovery greater than
00%. A final calibration of this solar neutrino experiment was made by mixing 500 atoms of 37 Ar directly
to the target and these were also recovered with a good yield.

In a small scale experiment, performed both at BNL by H.Ruiz and R.Davis and in Russia, some
tetrachloroethylene labelled with 36Cl was added to a tank of tetrachloroethylene and the 3¢Ar was
recovered. Measurements using neutron activation showed that both groups obtained excellent yields.

As with all solar neutrino experiments the possible background producing mechanisms needed to be
understood, measured and subtracted from the total number of events. One of the main backgrounds was
the cosmic ray production of 37Ar and so for this reason the collaboration constructed the experiment
down a deep mine in South Dakota, the Homestake Gold Mine. It is from the name of this mine that the
solar neutrino experiment gained its name: the Homestake experiment. The cosmic ray background was
measured separately and found to produce 0.047+0.011 atoms of 37Ar each day as compared to the few
atoms of 37Ar produced each day by solar neutrinos [Dav97]. Other sources of backgrounds were those
found in the counters but these were minimised by using pulse rise-time cuts and energy cuts.

This experiment is no longer taking data but after about 25 years of running the neutrino flux was
measured to be relatively constant at 2.54+0.20 SNU [Lan96]. This can be compared to the 1995 Bahcall
and Pinsonneault solar model prediction, which includes theoretical errors on the calculated cross-section
of inverse beta decay on chlorine, of 9.5712 SNU [BP95]. The Homestake experiment therefore detected
about a quarter of the neutrinos expected and there is no reason to think that this measurement is
incorrect since it was shown that argon in the detector was always extracted with a good yield.

The Homestake experiment was not sensitive to p-p neutrinos whose flux is most accurately predicted
by solar models and so other experiments which have a lower energy threshold were devised and these
are explained in the next section.

2.3 The Gallium Experiments

The next radiochemical solar neutrino experiments used inverse beta decay on a gallium target, as
shown in Equation 2.2 since it has an energy threshold lower than the 0.42MeV maximum energy of p-p
solar neutrinos.

Ve +7'Ga — e~ +"'Ge (E, > 0.233MeV) (2.2)

The "'Ge produced by interactions of neutrinos in the gallium can be collected quantitatively by
radiochemical techniques for measurement by small, low-background proportional counters since it decays
by electron capture with a 11.4 day half-life emitting a 1.17keV gamma ray from the L-peak and a
10.37keV gamma ray from the K-peak. To be able to detect a sufficient number of low energy neutrinos
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it was calculated that about 30 tonnes of gallium would be required and methods to extract germanium
from this quantity of gallium had to be developed, in fact two such methods were developed [Bah78].

The first of these methods started with a target of metallic gallium and this was used by the SAGE
experiment [Abd94]. The germanium can then be extracted into an acidic solution containing hydrogen
peroxide by vigorous mixing and concentrated as germanium tetrachloride using a stream of helium.

The second of these methods to extract germanium from 30 tonnes of gallium started from a target
of 8M gallium chloride mixed with 2M hydrochloric acid and this was used by the GALLEX experiment
[Ans92]. The germanium can then be extracted from this mixture as germanium tetrachloride by purging
with nitrogen gas.

In both experiments after the germanium has been extracted as germanium tetrachloride in nitrogen or
helium, it has to be purified and concentrated so that it can be measured for "' Ge decays by a miniature,
low background proportional counter. The first stage of this concentration uses water absorbers to collect
the germanium tetrachloride into a 40 litre volume. This 40 litres is then acidified to 8.5M hydrochloric
acid to make the germanium tetrachloride volatile so that it can be extracted and collected, as in the
previous stage, into a 1 litre volume. This 1 litre is acidified again and a solvent-solvent extraction
carried out using 500 millilitres of carbon tetrachloride. The germanium is then back-extracted from
the organic phase using 50 millilitres of low tritium water. Finally, by adding 50 millilitres of a pH 10
solution containing 0.3 grams of sodium borohydride the counting gas, germane (GeHy), is generated.
This germane gas is then purified using water traps and a gas chromatography column before being added
to a counting gas with some xenon to increase detection efficiency and transferred into a proportional
counter.

These gallium experiments found a background in the proportional counters caused by 222Rn but
this could be removed by fitting counting results to the energy of "*Ge decays and its 11.4 day half-life.
These experiments also found a background due to the production of radioactive germanium by cosmic
rays and so the experiments were operated in underground laboratories like the Homestake experiment.
The GALLEX collaboration chose the Gran Sasso National Laboratory in Italy whereas the SAGE
collaboration chose the Baksan Neutrino Observatory in Russia. Both experiments had to take steps to
deal with a high initial background during their construction in the early 1990’s caused by the cosmogenic
production of long-lived germanium isotopes in the gallium.

As for the Homestake experiment, a carrier of different germanium isotopes was always used to
determine the overall efficiency of recovering germanium in each exposure. However, these experiments
also used many more calibrations to verify their results. Both the SAGE and GALLEX experiments
used an intense neutrino source to verify the overall efficiency of the experiments in detecting neutrinos
independently of theoretical cross-sections. The chosen neutrino source was ! Cr which decays with a 28
day half-life by electron capture emitting neutrinos with energies of 0.426, 0.431, 0.746 and 0.751MeV
which are all detectable by inverse beta decay on 'Ga. The results of these calibrations are shown in
Table 2.1.

The GALLEX experiment stopped taking data in January 1997 and after this date carried out a
further calibration by adding a known amount of 7' As to the target solution. This isotope beta decays to
"1Ge with a 2.72 day half-life and so the recovery of minute quantities of germanium actually produced
in the gallium could be measured and these results are also shown in Table 2.1.

These calibration results show that both gallium detectors were performing as expected and so their
solar neutrino measurements must be considered to be accurate. The solar neutrino measurements made
by the SAGE and GALLEX experiments during different time periods are shown in Table 2.2 where
their average results are compared to the solar model prediction. It can also be seen that the solar
neutrino measurements, in particular from the GALLEX experiment, do vary between different time
periods however this effect has been studied by the collaboration and they have found that the individual
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Experiment "1Ge Extraction Calibrations:
Name 51Cr Source "1 As Source | Ref
SAGE 0.9715:13 - [Gav97]

GALLEX 1.01+91210.999+0.012 ; 1.001£0.012 | [Cri97]

0.841312 | 1,005+0.012 ; 0.996+0.013

Table 2.1: The results for calibrations using a 5! Cr source of neutrinos and an ™ Ar source of ™ Ge. These
results are given as ratios of the amount of ™ Ge recovered to the expected amount of " Ge produced.

Experiment Solar Neutrino Rate in SNU:
Name Measurements ] Average | Ratio to[BP95] | Ref
SAGE | 8172%; 70713 ;65722 [ 7048 0.51£0.07 | [Gav97]
GALLEX || 83.4/3%5;75.907195 | 7648 0.55+0.12 [Cri97]
53.9+118 . 117.0%}28

Table 2.2: The final results of the GALLEX experiment and the most recent preliminary results of the
SAGE experiment. The 1995 Bahcall and Pinsonneault theoretical prediction for the solar neutrino rate
in these two experiments is 13775 SNU [BP95].

results are totally consistent with a statistical distribution about a constant production rate. Overall
both the SAGE and GALLEX experiments have detected about half the solar neutrinos that the solar
model predicted.

The results of these gallium experiments are very compelling evidence for a solar neutrino deficit, much
more so than the results of the Homestake experiment, for two reasons. Firstly, the two experiments were
carried out independently with different analysis and different initial radiochemical techniques and yet
the experiments show excellent agreement on the rate of solar neutrinos. Secondly, these experiments
were extremely well calibrated particularly by using a source of neutrinos and so there seems to be no
argument that these experiments could determine how many neutrinos they were detecting.

Since these gallium experiments are sensitive to p-p neutrinos their result suggests that the solar
neutrino deficit is not caused by errors in the predictions of the solar models since the predicted rate of
p-p neutrinos is strongly constrained by the luminosity of the Sun.

There are future plans for other radiochemical experiments with an even lower energy threshold but
in the next two sections discussions will concentrate on the other class of solar neutrino detectors, the
large water Cerenkov detectors.

2.4 The Light Water Cerenkov Detectors

Other operating solar neutrino experiments are not radiochemical in how they detect neutrinos but
they do depend upon radiochemical techniques to reduce and measure backgrounds caused by natural
radioactivity. The method for the detection of neutrinos is to detect the Cerenkov light caused by
neutrinos scattering off electrons in a large target of water. This method allows real time measurements
of neutrinos and provides some directional information about where the neutrinos came from. This
directional information allows solar neutrinos to be extracted from other backgrounds such as are caused
by natural radioactivity and cosmic rays. The backgrounds due to natural radioactivity, particularly
radon gas, increase rapidly at low energy and therefore create an artificial energy threshold in the Cerenkov
detectors.
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Figure 2.1: The distribution in cos@sy,, for the initial results from the Kamiokande detector as taken
from [Hir90]. The excess of events coming from the Sun, at cosfs,, = 1.0, can be clearly seen above the
constant background caused by spallation. It can also be seen that the total number of neutrino events in
this peak is much lower than the solar model prediction as of 1990 which is shown by the histogram.

Experiment “ Flux(10%cm~2s71) I Ratio to [BP95] ‘
Kamiokande 2.80+£0.19+0.33 0.4240.06
Super-K 2.3713:08 1009 0.35819.917

Table 2.3: The final result of the Kamiokande experiment and the most recent results of the Super-K
experiment for the fluz of 8 B solar neutrinos. The 1995 Bahcall and Pinsonneault solar model theoretical
prediction for the fluz of ® B neutrinos is 6.6279:3% x 106cm=2s~1 [BP95].

The first solar neutrino detector of this kind was converted from a proton decay experiment sitting
in the Kamioka mine in Japan. This experiment, the Kamiokande detector [Hir88] had a total target
volume of about 3000 tonnes of HoO viewed by 950 twenty inch photo-multiplier tubes. By using a
fiducial volume of 680 tonnes and an anti-coincidence veto, external backgrounds could be reduced and
solar neutrinos detected. In 1990 the Kamiokande experiment gave results showing the first directional
dependence of neutrinos with the position of the Sun. These initial results, for neutrinos with energies
greater than 9.3MeV, are reproduced in Figure 2.1 which is taken from [Hir90]. The threshold of the
Kamiokande experiment was reduced as the experiment continued to a final value of 7.0MeV but this
experiment could only ever measure 8B neutrinos. The Kamiokande detector was calibrated for energy
using 9MeV gamma rays from neutron capture on nickel and 30MeV electrons from muon decay. The
final results for the detection of 8B neutrinos are given in Table 2.3 where they are compared to the
prediction of the 1995 Bahcall and Pinsonneault solar model [BP95] and show a clear deficit of solar
neutrinos of just over one half.

The success of the Kamiokande experiment has led to the construction of a larger experiment, called
Super-K, in the same mine in Japan in order to obtain better statistics and a lower energy threshold
[Suz94]. This new detector has a total volume of 32,000 tonnes of water which is observed by 11,000
twenty inch photo-multiplier tubes. There is, as there was for Kamiokande, an anti-coincidence detector
composed of 1900 eight inch photo-multiplier tubes to allow the detector to veto external backgrounds.
The fiducial volume of the detector is 22,500 tonnes of water, a factor of thirty times the fiducial volume
of Kamiokande.

19



The flux of 8B solar neutrinos, as measured by the Super-K experiment between June 1996 and
October 1997 is given in Table 2.3 where it can be seen to be in complete agreement with the final result
of the Kamiokande experiment.

The high statistics of the Super-K experiment allows measurements not only of the rate of solar
neutrinos but the measurement of any time variation of this rate and of any variation in the energy
spectrum of the ®B neutrinos as compared to the predictions of solar models. The measurement of any
time variation is important because the MSW eflect predicts, for certain parameters, a difference in the
electron neutrino rate between neutrinos arriving in the detector during the night and during the day.
This, so called, ‘day/night effect’ is caused by the regeneration of neutrinos in the earth via the MSW
effect. At present the data is consistent with no such effect and so this excludes certain MSW solutions
to the solar neutrino problem.

The measurement of the 8B energy spectrum is also important because the MSW effect predicts an
energy dependence to the probability of electron neutrino conversion. However, to make the most use of
energy spectrum information it is essential that the threshold for the Super-K experiment is as low as
possible. At present the energy threshold of the Super-K detector is 6.5MeV which is a little lower than
the final threshold achieved by the Kamiokande experiment. This threshold is dominated by 222Rn in the
water and radioactivity in the glass of the photo-multiplier tubes. The measured energy spectrum has so
far been found to be consistent with that predicted by solar models. However by using an electron linear
accelerator, which produces mono-energetic electrons in the range 5 to 16MeV, a more precise energy
calibration of the detector can be made. This together with more statistics will mean that the Super-K
experiment will soon be able to make deductions based upon the observed energy spectrum.

The results of the Kamiokande and Super-K experiments have both shown that they can identify
solar neutrinos by looking for their directional dependence with the Sun. They have also measured a
similar rate of solar neutrinos which is much lower than that predicted by the solar models. In the future
the Super-K experiment may be able to determine an energy distortion of the 8B spectrum which would
point even more strongly to neutrino oscillations.

There seems to be no reason to doubt the results of any of the solar neutrino experiments to date.
All of the detectors have been well understood and, in particular, the gallium experiments have been
extremely well calibrated. This means that, as was suggested in the last chapter, their combined results
are strong evidence that neutrino oscillations are occurring when neutrinos travel from the Sun to the
Earth. However, the only way to prove that neutrino oscillations are occurring is to detect the muon
and tau neutrinos that are expected to be produced by such oscillations. The solar neutrino experiment
discussed in the next section is the only solar neutrino experiment which has the capability to detect
muon and tau neutrinos separately from electron neutrinos.
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2.5 The Sudbury Neutrino Observatory

2.5.1 A Description of the Experiment

The Sudbury Neutrino Observatory (SNO) is presently completing the construction of a large Cerenkov
detector similar to the Super-K detector. The important difference between these two experiments is that
the SNO detector uses heavy water as its neutrino target instead of the light water used in the Super-K
detector. The use of a deuterium target to detect solar neutrinos was first tried by T.L.Jenkins in 1962
but the results were limited by backgrounds. In 1985 H.H.Chen discussed the possibility of using neutrino
interactions on deuterium to distinguish between electron neutrinos and muon or tau neutrinos [Che85).
In 1987 this idea led to a proposal for the construction of the SNO detector 2 kilometres underground
in a mine in Sudbury, Ontario, Canada [McD87]. A schematic diagram of this experiment is shown in
Figure 2.2 where it can be seen that the neutrino target of 1000 tonnes of heavy water will be suspended in
an acrylic sphere in about 8000 tonnes of light water. This light water provides shielding for the detector
from natural radioactivity in the cavity walls. Neutrino interactions within the target are observed by
9500 eight inch photo-multiplier tubes positioned on a geodesic sphere submerged in the light water and
encircling the acrylic vessel.

nitrogen cover gas
support ropes

high vc?lfoge 17m diameter
and signal array of 9500
cables ) 8 inch
cavity wall photo-muitiplier
12m diameter acrylic vessel tubes

Figure 2.2: A schematic diagram of the Sudbury Neutrino Observatory. This diagram does not show the
many connections which allow both the light and heavy water to be circulated through purification and
extractive assay systems.
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Interaction: Scenario:

Name I Reaction SSM I SSM/3 [ MSW
Charged Current (CC) | ve+d—>p+p+e || 8832 | 2944 | 3400
Elastic Scattering (ES) | v, +e~ = v, +e || 1206 | 402 535
Neutral Current (NC) | v, +d—>n+p+vy, || 2413 | 804 2413

Table 2.4: The neutrino interactions in the SNO detector together with the expected number of events for
different situations in a year of taking data assuming the presence of 2 tonnes of magnesium chloride in
the heavy water. These expected rates are taken from [Lyo97] and assume a threshold of about 6MeV (60
photo-multiplier tube hits) and a 7 metre fiducial volume. The MSW rates are for the most likely solution
whereas the SSM is the ezpected rate if the solar model is correct.

The important neutrino interactions which will occur within the SNO experiment are listed in Table 2.4
together with the expected number of events for one year of running in different scenarios. The SNO
experiment, like the Super-K experiment, can investigate any MSW distortions of the B energy spectrum
via the charged current interaction. However, unlike the Super-K experiment, the SNO experiment can
separately measure the total rate of electron, muon and tau neutrinos via the neutral current (N C)
interaction and the rate of electron neutrinos via the charged current (CC) interaction. This is important
because it can be seen from Table 2.4 that the CC/NC ratio can distinguish between an overall factor
of three reduction in the number of neutrinos predicted by the solar model and the occurrence of matter
enhanced neutrino oscillations. It should be noted that if the electron neutrinos are oscillating into
sterile neutrinos then it will be very hard for the SNO experiment to show that neutrino oscillations are
occurring.

The three interactions that are listed in Table 2.4 are detected by different methods in the SNO
detector. The charged current (CC) and electron scattering (ES) interactions can be easily detected by
observing the Cerenkov light from the electron that is either produced or given energy in a scattering. The
two interactions can be distinguished because the ES interactions have a greater directional dependence
than the CC interactions with the position of the Sun. The important neutral current (NC) interaction
is not measured directly by the production of Cerenkov light instead the neutron has to be detected and
this can be done by using one of two methods.

The first method is to add about 2 tonnes of magnesium chloride to the heavy water and detect the
gamma cascade caused by the thermal capture of the neutron on the chlorine. The light produced by this
interaction is more isotropic than the Cerenkov light generated by both the CC and ES interactions and
it has been shown that this makes it possible to distinguish NC interactions from CC and ES interactions
by considering the angular distribution of the hit pattern produced by the photo-multiplier array [Bri96].
The second method to detect the neutrons produced in NC interactions is to add discrete 3He proportional
counters directly into the detector. These neutral current detectors (NCD’s) are suspended in an array
within the 1000 tonnes of heavy water so that neutrons produced in this volume can be detected. The
NCD’s are more difficult to add and remove from the detector than the magnesium chloride but they
do provide a method of making simultaneous, independent measurements of the CC and NC rates. It is
envisaged that both of these methods will be used in the SNO experiment at different times.
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2.5.2 Backgrounds to the SNO Detector

The threshold of the SNO experiment is determined by the amount of natural radioactivity in the
materials which make up the detector. At present it is expected that the threshold will lie at about 6MeV
and this value was used in Table 2.4 to calculate the expected neutrino event rates within the detector.
External backgrounds due to cosmic rays are not a problem for the SNO experiment due to the position
of the detector 2 kilometres underground in one of the deepest mines in the northern hemisphere. The
light water shielding also greatly reduces backgrounds due to high energy gamma decays in the cavity
walls. Unfortunately the SNO experiment is especially sensitive to natural radioactivity within the heavy
water itself since this not only increases the threshold of the detector it also adds a background which
mimics NC neutrino interactions. This is because natural radioactivity produces high energy gamma rays
and these can photo-disintegrate the deuterium to produce a neutron as is shown in Equation 2.3.

y+d—d+n (E,>2.223MeV) (2.3)

There are two naturally occurring sources of high energy gamma rays and these are in the decay
chains of thorium and uranium and the details of these decay chains are shown in Figures 2.3 and 2.4.
The thorium decay chain produces a NC background because every decay of 2°8T1 releases a gamma of
2.615MeV. The uranium decay chain produces a NC background through decays of 2!4Bi either directly
or via 219T1. In total about 2.2% of 2'4Bi decays release gammas with energies higher than 2.223MeV.

It has been calculated that to ensure that the NC background is less than one tenth of the expected
NC neutrino signal the amount of thorium and uranium in equilibrium with all of their daughters in the
heavy water has to be limited to less than 3.7 x 10715 grams of 2*2Th per gram of heavy water and less
than 4.5 x 1014 grams of 238U per gram of heavy water [McD87]. The higher limit for 238U is primarily
due to the different branching ratios in the two decay chains to the high energy gamma decays and this
means that the SNO experiment is roughly ten times more sensitive to isotopes from the thorium decay
chain than isotopes from the uranium decay chain.

It is interesting to note that these extremely low limits for the amount of radioactivity in the heavy
water would probably be exceeded by the addition of just one gram of mine dust to the entire 1000 tonnes
of heavy water.

In order for the SNO experiment to be confident about accurately measuring the rate of NC neutrino
interactions it is essential that the amount of natural radioactivity in the heavy water is kept to these
extremely low levels. It is therefore necessary to have techniques which have the sensitivity to be able to
measure natural radioactivity in the heavy water down to these extremely low levels and these will be
discussed in the next section.

2.5.3 Measuring the NC Background

Recent Monte-Carlo studies have shown that by examining the angular distributions of low energy
events in the SNO detector it is possible to extract information about the amount of uranium and thorium
in the heavy water [Xin98]. This will be a valuable technique to measure the NC background but it is
essential to determine the NC background by a variety of methods. The only other way to measure the
natural radioactivity in the heavy water is to extract the radioactivity and then count it in a separate
low-level detector.
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232Th Decay Scheme
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228 Ra
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Qo = 5.52MeV
24Ra
3.66 days
Qq = 5.79MeV
220Rp

55.6 secs
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216Po
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212Pb
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Figure 2.3: The thorium decay chain including half-lives and Q-values taken from [Fir96].
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2381J Decay Scheme
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Figure 2.4: The uranium decay chain including half-lives and Q-values taken from [Fir96].
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There are several extractive radiochemical techniques, called ‘assays’, that have been developed to
carry out this task and these will be summarised below. More details about these techniques can be
found in [Nob96].

o A large Reverse Osmosis unit (R/O):

The R/O unit passes the pure heavy water through a membrane under high pressure. Any con-
taminants remain on the input side of the membrane, in the concentrate stream, while the pure
water passes through the membrane into the permeate stream. The concentrate stream is then sent
to a second unit and the concentrate from that unit into a third. In this way any contaminants
in the heavy water can be concentrated into just 300 millilitres which can be assayed by various
techniques depending upon the exact contaminant, radioactive or non-radioactive, involved.

This technique has already been operating at the SNO experiment and does provide a very effec-
tive concentration of contaminants within the heavy water including lead isotopes. However, this
technique cannot be used when the magnesium chloride is present because the R/O unit will then
also remove the salt.

o MnO, coated beads:

The MnOy ion-exchange material is very effective at extracting radium isotopes from both pure
water and salt solutions. The method of extraction is to coat acrylic beads with the ion-exchange
material and pass the heavy water through several 1 litre columns of these beads. In this way
224Ra from the thorium decay chain and 2?6Ra from the uranium decay chain can be extracted
from the heavy water. The extracted radium is measured by drying the columns and counting the
radon which emanates from the beads using electrostatic counters. The overall efficiency using this
process for detecting radium is quoted to be 6% for 224Ra and 24% for 226Ra [Nob96] . The lower
efficiency for ??4Ra is primarily due to a lower emanation efficiency for 22°Rn due to its shorter half
life.

e Monitor Degasser:

This is a system that assays the amount of 222Rn removed from the heavy water by a LiquiCel.
A LiquiCel contains hollow fibres through which nitrogen gas is pumped in the opposite direction
to the flow of heavy water. In this way gases in the heavy water diffuse through the large surface
area of the fibres into the nitrogen gas flow. The radon in this gas flow is frozen out using a liquid
nitrogen cooled trap and reduced in volume so that it can be transferred to a 15 millilitre Lucas Cell
which is then measured for activity using a photo-multiplier tube. The amount of 2?2Rn extracted
from a known volume of heavy water can then be evaluated by fitting counts to its 3.82 day half-life.

The usefulness of these three techniques in measuring the NC background can be evaluated by exam-
ining the two decay chains which are shown in Figures 2.3 and 2.4. It has already been noted that the
background producing, high energy gamma decays lie at the bottom of the two decay chains. To be able
to measure the amount of these isotopes in the heavy water the SNO experiment needs to measure the
presence of isotopes above these decays within the decay chains. Since ??°Ra and 22¥Th have very long
half-lives there is no point in assaying isotopes above these isotopes in the decay chains. This means that
there are just two long-lived isotopes that it would be useful to assay in the 238U decay chain and these
are: 226Ra and ??2Rn. In the 232Th decay chain there are three isotopes that it would be useful to assay
and these are: 228Th, 224Ra and 2!2Pb.
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Another important feature of both decay chains is the presence of radon isotopes: 22°Rn in the thorium
decay chain and ?2?Rn in the uranium decay chain. These isotopes are important because there are many
materials which emanate radon and so it is quite possible that there will be a disequilibrium within both
decay chains due to an excess of radon. (There are other mechanisms for generating disequilibria in the
decay chains and these will be discussed in the next chapter.) This means that to be able to determine
the NC background caused by isotopes from the uranium decay chain it is essential that a method exists
to assay 222Rn. The radon isotope in the thorium decay chain, 22°Rn, is itself short-lived and so its effects
have to be monitored by its only long-lived daughter, 2!2Pb. To be able to determine the NC background
caused by isotopes from the thorium decay chain it is essential that a method exists to assay ?!2Pb.

The Monitor Degasser is specifically designed to assay the amount of ?2Rn in the heavy water which
means that the NC background caused by the uranium decay chain can be expected to be well determined.
However it should be remembered that the SNO experiment is ten times more sensitive to decays from
isotopes of the thorium decay chain than from isotopes of the uranium decay chain. Unfortunately the
systems that have been described are not optimised to measure 2!2Pb. In fact only the R/O system has
the capability to measure 2!2Pb and it cannot be used when the magnesium chloride has been added
since it would then remove the salt. This means that the present assay systems are unlikely to be able
to determine the NC background caused by the thorium decay chain.

2.6 Conclusions

In this chapter all of the solar neutrino experiments, their radiochemical techniques and their solar
neutrino measurements have been discussed. These experiments use well understood detectors, especially
the well calibrated gallium experiments, and there seems to be no reason to suspect that the observed
deficits in any of the experiments is in error. However, in order to prove that these deficits are caused by
neutrino oscillations the results of the Sudbury Neutrino Observatory are needed.

The SNO experiment can measure the rate of electron neutrinos and can compare it to the total
rate of electron, muon and tau neutrinos using the neutral current (NC) interaction of neutrinos on
deuterium. Unfortunately there is a background to NC neutrino interactions which is caused by natural
radioactivity in the heavy water. It is therefore essential that the amount of isotopes from both the
thorium and uranium decay chains within the heavy water is kept to extremely low levels. Furthermore
it is essential that the SNO experiment has methods which are sensitive enough to measure these low
levels of radioactivity.

In the last section the methods that have already been developed to measure the amount of natural
radioactivity in the heavy water were discussed. These methods can measure the amount of ?2?2Rn in the
heavy water which should allow the NC background caused by isotopes from the uranium decay chain
to be determined. However, these systems do not provide a method to determine the NC background
caused by isotopes from the thorium decay chain since they cannot measure the amount of 2'2Pb in all
of the running conditions of the SNO experiment, particularly when the magnesium chloride has been
added. The SNO experiment is actually ten times more sensitive to the decays of isotopes in the thorium
decay chain than from those in the uranium decay chain and so an assay for 2!2Pb has to be developed.

In the next chapter a new assay system will be described which is designed to assay the amount of
212Pb in the heavy water, even if the magnesium chloride has been added, and so should allow the SNO
experiment to determine NC background caused by isotopes from the thorium decay chain.
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Chapter 3

The Hydrous Titanium Oxide
Seeded Ultra-Filtration System

3.1 Introduction

In the previous section it was discussed how the SNO experiment intends to measure the total rate
of electron, muon and tau neutrinos that come from the Sun by the important neutral current (NC)
interaction. It was also explained that a background to these NC interactions is caused by high energy
gamma rays which are produced by the naturally occurring radioactivity of the uranium and thorium
decay chains.

The radiochemical assay systems that have already been developed were discussed in the last chapter
and are predominantly useful for measuring the contribution to the NC background caused by the presence
of isotopes from the uranium decay chain in the heavy water. In this chapter the hydrous titanium oxide
(HTiO) seeded ultra-filtration (SUF) assay system will be described. This assay system was developed
for the SNO experiment by members of the Oxford Water Group to provide a radiochemical assay for
isotopes from the thorium decay chain. Importantly this system is designed to assay 2!2Pb in the heavy
water even when magnesium chloride is present which is when the R/O assay system is inoperable.

In this chapter the physical and chemical properties of this system are described and then this system
is modelled to determine the accuracy to which it can be expected to calculate the contribution to the
NC background due to the presence of 212Pb in the heavy water of the SNO experiment.

3.2 An Assay System for the Thorium Decay Chain

3.2.1 Introduction to Delayed Coincidence Scintillation Counting

The activity of 2!2Pb that it is hoped will be in the heavy water can be calculated from the upper
limit for the amount of thorium in the heavy water which will produce neutrons at a rate equal to about
one tenth of the rate with which they are expected to be produced by NC neutrino interactions. This
was quoted in the last chapter to be 3 x 107! grams of 232Th per gram of heavy water. If it is assumed
that the thorium decay chain is in equilibrium, this limit is equivalent to an activity of about 1 decay
per day per tonne (1ddt) of any isotope within the decay chain. Due to the 10.6 hour half-life of 212Pb,
this means that in the entire 1000 tonnes of heavy water there is expected to be no more than about
600 atoms of 212Pb. To assay such minute quantities of 2!2Pb in the heavy water a new, efficient, low
background counting technique needed to be developed and this was done by Dr R.K.Taplin in 1994.
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The technique is that of delayed coincidence scintillation counting and details of it can be found in
Chapter 4 of [Tap95b] and in Appendix D of this thesis. In the 232Th decay chain there is a delayed
B — a coincidence caused by the short-lived 2'2Po isotope which can be seen in Figure 2.3 on page 24 to
decay with a 300 nanosecond half-life. This decay produces an 8.78MeV alpha particle which is preceded
by a beta decay from 22Bi which has a Q-value of 2.25MeV. Scintillation counting together with pulse
shape discrimination allows signals caused by alpha particles to be distinguished from those caused by
gamma and beta particles. This allows a coincidence requirement to be made which requires two signals
to be recorded in about 1 microsecond with the second signal having been caused by an alpha particle.
This coincidence requirement virtually eliminates background coincidences being mistaken for real 8 — a
coincidences. The measured background of the 8 —a counters developed at Oxford for measuring isotopes
from the thorium decay chain is less than 1 decay per day which is at least an order of magnitude lower
than the signals expected to be measured from the SNO experiment. The efficiency of the 8 — a counters
developed at Oxford for measuring decays of 228Th, ?24Ra and 2!2Pb from the thorium decay chain is
about 50%.

There is a similar delayed 8 — a coincidence that can be used to measure the activity of 226Ra and
222Rn in the 238U decay chain. This coincidence is caused by the 214Po isotope whose decay can be seen
in the 232U decay chain shown in Figure 2.4 on page 25. The half-life of 24Po is 164 microseconds which
is much longer than the 300 nanosecond half-life of 2!2Po and so 3 — a coincidences from the uranium
and the thorium decay chains can be easily distinguished.

The measured background of the 8 — a counters developed at Oxford for measuring isotopes from the
uranium decay chain is higher than that for measuring isotopes from the thorium decay chain, at around
a few decays per day, due to the longer coincidence time. However, this background is still at least an
order of magnitude lower than the signals expected to be measured from the SNO experiment since the
detector is ten times less sensitive to the decays of isotopes from the uranium decay chain than from the
thorium decay chain. The efficiency of the § — a counters developed at Oxford for measuring decays of
222Rn and ??Ra from the uranium decay chain is about 60%.

This counting technique is used to measure small amounts of activity in up to 12 millilitre aqueous
samples by mixing them with 40 millilitres of a scintillator cocktail called Optiphase HiSafe 3! and
detecting signals on a 2 inch photo-multiplier tube. Although the scintillator cocktail is reasonably
tolerant concerning chemical consistency of these 12 millilitre samples it is known that they need to have
an acid and salt content less than about 1M in concentration.

To use these low background counters to assay the activity in the heavy water, activity first has to be
extracted from large volumes of the heavy water and then concentrated into suitable 12 millilitre aqueous
samples. The aim of the radiochemical extraction system developed by the Oxford Water Group is to
perform this extraction and concentration and the methods by which this will be done are explained in
the next two sections.

3.2.2 Extracting Radioactivity from the Heavy Water

In the last chapter it was explained that, due to its short-lived radon parent, the most important
isotope to assay im the thorium decay chain is 212Pb. Unfortunately, 2!2Pb only has a half-life of 10.6
hours and so an extractive assay for this isotope has to be completed in a time not longer than a few tens
of hours. To ensure that enough 2!2Pb is extracted in this short time any assay system has to work using
high flow rates. In order to achieve this a system was designed which would pump the heavy water past
an ion-exchange material trapped on the inside of ultra-filtration fibres. This method is called seeded
ultra-filtration (SUF) by the Oxford Water Group however this term is a little misleading since it actually

!Optiphase HiSafe 3 scintillation cocktail can be purchased from Wallac at 20 Vincent Avenue, Crownhill Business
Centre, Milton Keynes, MK8 0AB.
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refers to the recirculation of a suspension of ion-exchange material not a fixed coating as is used in this
situation.

The ion-exchange material used by this system is hydrous titanium oxide (HTiO). This material was
selected because it was known that HTiO extracts lead, radium and thorium from both pure water and
solutions of magnesium chloride. The HTiO material was investigated in some preliminary experiments
for use in the SNO experiment and these showed very promising results, see [How94] and Chapter 5 of
[Tap95b].

The ultra-filtration membranes on which this HTiO will be coated have been chosen so that two such
membranes connected in parallel to form a pair can pass a flow rate of 200 litres per minute. This flow
rate allows the whole 1000 tonnes of heavy water to be processed in a time comparable to the half-life
of 224Ra, or about 120 tonnes in a time comparable to the half-life of 2!2Pb. The chosen membranes are
4 foot long Amicon H26MP01-43 cartridges, each of which has a 0.1 micron pore size and a 2.4 square
metre surface area?.

Two of these membranes will be coated with 0.1 to 0.5 grams of titanium per square metre of membrane
in the form of HTiO using the Elution Rig which will be situated in the surface chemistry laboratory at
the SNO experiment. Before a coated membrane can be put into the heavy water the HTiO needs to
be deuterated and this will be done using a separate rig to displace the hydrogen with deuterium under
gravity. The membranes then have to be kept wet while they are transfered underground. Here they will
be connected into the SUF Rig so that the heavy water can flow through the two membranes in parallel
at the high flow rate. This unit of two HTiO coated membranes operating in parallel is called a parallel
pair of membranes.

After the completion of an assay the membranes will be removed from the SUF Rig and sealed for
transportation above ground to the surface chemistry laboratory. Here, they will be reconnected as a
parallel pair on the Elution Rig and will undergo further chemical processing using light water.

In the next section some of the details of these further chemical processes will be described, however
the full operational details of both the Elution Rig and the SUF Rig can be found in [M0096].

3.2.3 The Elution and Secondary Concentration Procedures

The HTiO ion-exchange material was known not only to extract lead, radium and thorium very
efficiently, even from solutions of magnesium chloride, but it was also known that these ions could then
be retrieved from it using mineral acid washes. This method, called eluting, allows radioactive isotopes
from the heavy water to be extracted onto membranes and then transferred into about 15 to 20 litres of
light water mineral acid.

Some initial work showed that radium extracted onto HTiO can be eluted with about 90% efficiency
by washing with 0.03M nitric acid for about 15 minutes [Her93]. This acid is not strong enough to remove
very much of any lead and thorium extracted onto the HTiO, however lead and thorium can be eluted
from HTiO with about a 95% efficiency by washing with 0.5M hydrochloric acid for 20 minutes [Tap96].
These two elutions will be carried out sequentially using the Elution Rig by circulating 15 to 20 litres of
the required acid through a pair of membranes used in an extraction for the desired amount of time.

In the last section the 3 — a delayed coincidence scintillation counting technique was described and it
was explained that these counters can measure tiny levels of activity in 12 millilitre aqueous samples. A
further stage of chemical processing, the secondary concentration, is therefore required to extract natural
radioactivity from the 15 to 20 litres of light water acid into 12 millilitre samples suitable for 8 —
counting.

2 Amicon membranes are sold by: Millipore (UK) Ltd, The Boulevard, Blackmoor Lane, Watford, Hertfordshire,
WD1 8YW.
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The secondary concentration for radium will be carried out by treating the eluate with HTiO once
again, at a much smaller scale. This will be done by adding about 3 milligrams of titanium, in the form
of titanium chloride or titanium sulphate, to the 15 to 20 litre eluate and then raising the pH of the
solution to about 8 or 9. At this pH the titanium is precipitated as HTiO which extracts any radium
present. The HTiO and radium can then be collected on a Media-Kap 10 filter® which has a surface area
of 0.015 square metres and a pore size of 0.2 microns. The HTiO on one of these filters can be eluted
using two or three samples of 4 millilitres of 0.5M hydrochloric acid by leaving each sample in the filter
~ for several minutes. In this way any ??Ra or ?26Ra extracted from the heavy water can be collected
into a 12 millilitre sample which is ready to be measured for activity on a 8 — a counter. Experimental
results by Dr P.T.Trent have shown that such a secondary concentration procedure for radium is about
75% efficient [Tre96].

Unfortunately, the procedure used for radium cannot also be used for the secondary concentration
of lead and thorium because, unlike the 0.03M nitric acid, the 0.5M hydrochloric acid dissolves a large
proportion of the HTiO. It has been found that a 20 minute elution with 0.5M hydrochloric acid dissolves
over 80% of the titanium originally coated into the membranes [Tap96]. This large amount of titanium
cannot all be collected on a Media-Kap 10 filter after being precipitated as HTiO as the amount exceeds
the capacity of the filter.

The use of a shorter elution time using 0.5M hydrochloric acid has been shown to reduce the amount
of titanium dissolution without greatly reducing the efficiency for eluting lead and thorium. For example,
a 5 minute elution with 0.5M hydrochloric acid gives elution efficiencies for lead and thorium of 85% and
65% respectively and it dissolves only about 20% of the titanium [Tap96].

This smaller amount of titanium is still too much to be collected on a Media-Kap 10 filter after
precipitation but it could be collected on a medium size filter. This medium filter can then be eluted
to return the lead and thorium into an acid solution, however the volume of acid required to do this is
greater than the 12 millilitres that can be measured by a single 8 — a counter. The solution could be
measured using a number of 3 — a counters but this will reduce sensitivity because counting backgrounds
will be higher.

The repetition of HTiO extractions and elutions on progressively smaller sized filters should make it
possible to end up with a 12 millilitre volume. Unfortunately, the details of this procedure are depen-
dent upon the amount of titanium in the initial eluate of the SUF membranes. Also, the procedure is
inefficient since each extraction and elution stage, including the final Media-Kap stage, is expected to be
only about 80% efficient. This means that, for lead, the procedure would give a combined elution and
secondary concentration efficiency of only 54% using one intermediate sized filter and only 44% using
two intermediate sized filters. The efficiencies for thorium are expected to be even lower since elution
efficiencies for thorium are generally lower than for lead.

The development of an alternative, efficient method for the secondary concentration of lead and
thorium which is not dependent upon the amount of titanium in the initial eluate of the SUF membranes
is clearly needed. In Chapters 5-7 of this thesis there are details of the research that has been conducted
to develop such an alternative method.

3Registered Trade Mark of MICROGON CAT. #:ME2M-100-18S which are sold by Spectrum, Laguana Hills, CA and
their distributors.
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3.3 Simulating the Capability of the HTiO SUF Assay System

3.3.1 Introduction

In the last section it was explained that the HTiO ion-exchange material will be coated on two SUF
membranes which will be connected in the form of a parallel pair to allow high flow rates of heavy water
to be processed. The extraction of 2?8Th, 224Ra and 2!?Pb by a single, small scale SUF membrane has
been investigated both experimentally and theoretically, see Chapter 5 and Appendix D of [Tap95b].

It was found that when 22¢Ra extracted on an HTiO coated SUF membrane decays it does not usually
produce an atom of 22Pb extracted onto the same membrane. This effect, called ‘radon breakthrough’,
is caused by the 224Ra first decaying to 22°Rn which dissolves in the water flow and only decays to >'2Pb,
with a 55 second half-life, after the water has passed through the membrane.

Because of this effect the HTiO SUF assay system is designed to use two parallel pairs of SUF
membranes connected in series with a one tonne decay tank in between. The volume of this decay tank
has been chosen so that the residence time of water flowing at 200 litres per minute is 5 minutes. This
corresponds to about five half-lives of 22°Rn, thus ensuring that almost all of the 22°Rn decays to ?'?Pb
before the water enters the second membrane when the decay tank is present.

To calculate the activity of 2!2Pb in the heavy water by measuring the activity of 228Th, 2“Ra
and 2'2Pb on each membrane pair after an extractive assay it is necessary to understand the effect of
radon breakthrough in a double membrane system. In the rest of this chapter this will be done by
mathematically modelling the HTiO SUF assay system.

3.3.2 Notation and Definitions

A schematic of the double membrane system including the decay tank between the two membrane
pairs is shown in Figure 3.1 along with the notation that will be used in modelling this system. The
number of atoms of each isotope on each membrane pair are given by: NM! and NM2 | where i stands
for thorium, radium or lead. The rate of flow of atoms per hour for each isotope into each membrane
pair are given by: RF! and RF?, and the rate of flow of atoms per hour for each isotope out of each
membrane pair are given by: RF! and R

In order to model the characteristics of this double membrane system a number of parameters have
to be defined and estimated. This is done below using the same convention as was used in Appendix D
of [Tap95b] and experimental values taken from small scale systems as detailed in Chapter 5 of [Tap95b).

e arp, ore and apy: The respective probabilities that an atom of thorium, radium or lead in the
heavy water is extracted onto a parallel pair of HTiO coated membranes when a flow rate of 200
litres per minute is maintained. These probabilities are all expected to be about 0.9 meaning that
the extraction efficiency of a pair of HTiO coated SUF membranes for thorium, radium and lead is
90%.

e ¢: The probability that the decay of a ??)Ra atom, which has already been extracted onto a
membrane pair, leads to an atom of 2!2Pb being captured on the same membrane pair. Small
scale experiments have shown that e takes a value of around 0.25 which corresponds to 75% radon
breakthrough.

e u: The probability that the (1 — €) atoms of >'?Pb which are produced by decays of *Ra on the
first membrane pair but are not captured by it, can be extracted by the second membrane pair. If
it is assumed that the loss of 212Pb is entirely due to radon breakthrough then the value of 1 can
be calculated from the residence time between the two membrane pairs. With no decay tank this
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DECAY
TANK

Figure 3.1: This is a schematic of the double membrane system used by the SUF HTiO system. In this
diagram each membrane shown represents a parallel pair of SUF membranes. The R’s denote the rates
of flow of atoms per hour and the N’s denote the numbers of atoms on the membranes. The subscript, i
stands for the three important long-lived isotopes in the 232 Th decay chain: 2?8 Th,>>* Ra and ?'2 Pb.

is estimated to be about 3.4 seconds which means that 4% of the ?2°Rn will have decayed to 2!2Pb
before the second membrane pair, making p = 0.04. With the one tonne decay tank the residence
time is increased to about 303 seconds which means that 98% of the 22°Rn will have decayed to
212P} before the second membrane pair, making p = 0.98. To a good approximation therefore,
without a decay tank: p = 0, and with a one tonne decay tank: u = 1.

e §: This represents the same loss as € but for the thorium-radium system. It is the probability that
the decay of a 228Th atom, which has already been extracted onto a membrane pair, leads to an
atom of ?2Ra being captured on the same membrane pair. It is expected that there will be no
loss mechanism in this system and so § will have a value of 1. However, this loss has not been
investigated experimentally and it is possible that effects such as nuclear recoil may slightly reduce
this value.

e 7: This variable is the same as g but for the thorium-radium system. There is no reason to expect
this variable to take any value other than 1 and in all calculations it will take this value. However, it
is included in algebraic expressions in order to preserve the symmetry between the thorium-radium
and radium-lead systems.

Using the definitions above, and by assuming that each membrane pair behaves identically, a number
of first order, coupled differential equations can be written down to describe the double membrane system
when extracting the three long-lived isotopes in the 232Th decay chain: 2?8Th, 224Ra and 2!?Pb, from
the heavy water of the SNO detector. These equations all involve the decay constants of 222Th, 2?4Ra
and ?'2Pb (A7h, Ara and Apy) whose values are listed in Equation 3.1.

Arh =414 x 107%hr™! ; Ape = 7.89 x 1073hr~1 ; App = 6.54 x 10~2hr—1 (3.1)
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The first equations which can be derived are for the atoms of 228Th, 224Ra and 2'2Pb on each
membrane pair after a time, ¢, of passing heavy water through them. These are shown in Equations 3.2, 3.3
and 3.4 where j = 1,2 denotes the first or second membrane pairs. These equations are given in terms
of the rates of flow of atoms into the membrane, the extraction efficiencies and the loss parameters.

dNMi

—%}’(—t) = arnRyj(t) — AraNpwl (2) j=12 (3.2)

M . . .
Wes O = R, REI(t) = Ara NMI (8) + AT NMI(1) j=1,2 (3.3)

Mj . ) .
111%%_@ = aprf;{,(t) - /\prI%J (t) + Ex\RaNII;? (t) ji=12 (3-4)

The feed rate of flow of ?®Th atoms into the second membrane pair, RF?, is constant in time and
an expression for it is given in Equation 3.5. The feed rate of flow of 224Ra and 2!2Pb into the second
membrane pair, RE? and RE2, are not constant in time as they depend on the activity of their parent
isotope extracted onto the first membrane pair. Expressions for these can be found in terms of the rate
of flow of atoms into, and the number of atoms on, the first membrane pair by taking into account the
values of the parameters p and 1 and these expressions are given in Equations 3.6 and 3.7.

RE2 = (1 —ars)RE} (3.5)
Rpi(t) = (1-ara)REL+0(1 - )AraNHML(t) (3.6)
REY(®) = (1-aps)RE; +p(l — ) AraNAL(2) (3.7

Instead of writing equations in terms of the number of atoms on a membrane or in the flow of water,
it is often more useful to express them in terms of activities. These activities can be easily obtained from
the number of atoms by multiplying by the decay constant for that particular isotope. This change of
notation is shown in Equation 3.8 where the activities of each isotope on each membrane pair are given

by: AM! and AM?, and the feed activity flow rates of each isotope into each membrane are given by:
FiFl and Fin.

AMV(E) = NNM() 5 AMR(8) = ANM (1)

. 3.8
FF'=\RFY=F, ; FF2(t)=\RF2(t)  i=Th,Ra,Pb (3:8)

It will be assumed that the feed activity flow rates of each isotope into the first membrane pair are
constant in time during an assay. This is shown by redefining the Ff!’s to be the constant: F;’s, as is
also shown in Equation 3.8.

3.3.3 A Computer Simulation of a Single Extraction

In Section A.2 in the Appendix starting on page 139 the full solutions of the equations given in
the last section are derived. These expressions are somewhat difficult to analyse directly and so a simple
FORTRAN simulation program was written in order to investigate the behaviour of the activity of 228Th,
224Ra and 2'?Pb on each membrane pair during extractions.
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This program allowed the values for the parameters describing the system to be varied along with
the feed activities of 222Th, 224Ra and ?'?Pb within the heavy water. The values of the parameters were
chosen to be the expected values given by small scale experiments, as were listed in the last section. This
means that the extraction probabilities were assumed to be 0.9, the radon breakthrough parameter was
assumed to be 0.25 and no other losses were assumed.

Three situations with different feed activity flow rates were assumed. In the first of these situations,
Situation A, it will be assumed that there is the same activity of 22Th, ?>Ra and 22Pb in the heavy
water, ie radioactive equilibrium. The activity of these isotopes in the heavy water will be assumed to be
that which produces neutrons at a rate equal to about one tenth of the rate that they are expected to be
produced by NC neutrino interactions. In Section 3.2.1 on page 29 it was explained that this corresponds
to an activity of 228Th, 224Ra or 2!2Pb in the heavy water of 1 decay per day per tonne of heavy water
(1ddt). At a flow rate of 200 litres per minute this activity gives a flow rate of activity of 0.5 decays per
hour, per hour of water flow into the first pair of membranes. Therefore in Situation A the feed activity
flow rates of 228Th, 22*Ra and 2'2Pb (Fpy, Fro and Frp) will all take the value of 0.5.

There are two obvious physical situations which could cause a steady state disequilibrium between
the isotopes of the 232Th decay chain in the heavy water and these situations will be labelled Situation
B and Situation C. In these situations it will be assumed that the minimum activity of any isotope in
the heavy water is at the 1ddt level and that an assumed excess of a particular isotope will mean that its
activity will be at the 5ddt level. These levels have been arbitrarily chosen however they are not thought
to be unrepresentative of the conditions that will be found in the SNO experiment. In Situation B it will
be assumed that thorium and lead are coming out of the heavy water and adhering to surfaces within the
heavy water circulation system. This effect, called ‘plating’, will reduce the activity of *2Pb and *?Th
in the heavy water and create an excess of 224Ra. Therefore in Situation B, while Fipy and Fr, will both
take the value of 0.5, the value of Fr, will be increased to 2.5. In Situation C it will be assumed that
there is a fixed source of 224Ra or ??8Th emanating ??°Rn into the heavy water which will produce an
excess of 212Pb in the heavy water. Therefore in Situation C, while Fr, and Frj will both take the value
of 0.5, the value of Fp;, will be increased to 2.5.

Using these values for the feed activity flow rates, and the values for the parameters which have
already been discussed, the amount of activity of each isotope on each membrane pair was calculated
every two hours for a 100 hour extraction using the simulation program. The resulting activities were
written as HBOOK®, ntuple files and plotted using PAW?® as shown in Figure 3.2.

It can be seen from this figure that the activity of 222Th on the first and second pairs of membranes is
linear in time which is to be expected due to the long, 1.91 year half-life of 228 Th. It can also be seen that
the 228Th activity on the second membrane pair is ten times less than that on the first. This is because
the second membrane pair can only extract from the 10% that the first membrane failed to extract. It
is clear that by taking the ratio of the activity on the second membrane pair as compared to the first,
it is possible to gain some knowledge of the extraction efficiency for that isotope. The calculation of
extraction probabilities from final membrane activities is discussed more fully in Section 3.3.5 starting
on page 40.

The activity of 22Ra on the first membrane pair is, like the >?®Th activity, ten times the activity
on the second however there is a slight non-linear time dependence caused by the extraction times being
comparable to the 87.8 hour half-life of 2?4Ra. The excess of >*Ra introduced in Situation B can be
clearly seen at all times on both membrane pairs.

4HBOOK, CERN Program Library entry Y250.
5PAW:Physics Analysis Workstation, CERN Program Library entry Q121.
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Figure 3.2: Simulations of the activity of 2?8 Th, *2* Ra and *'? Pb in decays per hour expected on the first
and second membrane pairs in the HTiO SUF assay system for different extraction times. The extraction
probabilities for 228 Th, 2> Ra and ?'2 Pb were all assumed to be 0.9, the radon breakthrough parameter was
assumed to be 0.25 and no other losses were assumed. In Situation A (shown by circles) equilibrium feed
activities at the 1ddt level were assumed. In Situation B (shown by stars) the case of a >4 Ra excess was
assumed. In Situation C (shown by empty squares) the case of a 212 pp excess was assumed. The final
plot shows the 212 Pb activity in decays per hour ezpected on the second membrane pair and this depends
upon whether or not the 1 tonne decay tank is present and so both situations were calculated and are

displayed.
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The plots showing the activities of 212PY, on the first and second membrane pairs are the most
interesting. With small extraction times the activity of 212ph on each membrane pair is representative
of the activity of 2!2Pb in the heavy water but with extraction times long compared to the 10.6 hour
half-life of 212Pb, the activity of 212Pb on each membrane pair is greatly effected by the activity of 2?‘Ra
extracted by that membrane pair. Indeed, in Situation B, where there is an excess of 224Ra, the activity
of 212Pb on the first membrane pair is always almost entirely dominated by the activity of 224Ra on that
membrane pair.

The activity of 212Pb on the second membrane pair clearly shows the combined effect of radon break-
through and a decay tank. Without a decay tank the activity of 2'2Pb on this membrane pair is again
always one tenth of the activity on the first membrane pair in each of the three situations. However,
when the decay tank is present the 212Pb activity on the second pair of membranes is much higher. This
is caused by the extraction of 2!2Pb produced by decays of 224R 4 on the first membrane pair but which
are not captured by it due to radon breakthrough. When there is an excess of 224Ra in the heavy water,
in Situation B, it can be seen that the activity of >!2Pb on the second pair of membranes is actually
greater than that on the first pair for extraction times longer than about 15 hours.

The differences between Situation A, when there is equilibrium, and Situation C, where there is an
excess of 212Pb, can be clearly seen at all times.

3.3.4 The Decontamination Factor for ?'?Pb in Different Situations

The HTiO SUF system has been designed primarily as an assay system, however its characteristics
as a purification system can also be investigated. An extractive purification system can be described
by its decontamination factor (DF) for a particular component. This is defined to be the amount of a
component which enters the system divided by the amount which leaves it. The DF for 212Pb for a single
HTiO SUF membrane at different times when extracting from a solution in radioactive equilibrium has
been shown to depend upon the amount of radon breakthrough, see Appendix D of [Tap95b].

The DF for 2!2Pb of the HTiO SUF system has to take into account the two pairs of parallel membranes
and the possible presence of a 1 tonne decay tank. An expression for the 212Pb activity flowing out of
the second pair of membranes as a function of time can be derived and this is shown in Equation 3.9.
An expression giving the DF for >'2Pb at an instant in time, t hours after the start of an extraction,
can be found by substituting into Equation 3.9 the expression for the feed flow of activity into the
second membrane pair, as given in Equation 3.7 on page 35. The final expression for DFpy(t) is given in
Equation 3.10.

RE2(t) = (1 — aps)REZ(E) + (1 — ARaNA2(£) + (1 — p)(1 — ) Ara N () (3.9)

1 _RRQ® _

DFpy(t) ~ REL(t) ~

It is obvious that the DF for 212Pb is decreased if € is small meaning that there is a large amount

of radon breakthrough. The DF for 212Pb is also decreased if p is small which is the case if there is no

(1-¢€)Aps

[AMY(1 - apop) + AR (3.10)
Fpy

(1-ap)®+

decay tank present. These effects are caused by a large proportion of 212pPp produced by decays of 2*Ra
on the first membrane pair passing through both membrane pairs and back into the heavy water.

The simulation program discussed in the last section was used to calculate the DF for 212PY of the
HTiO SUF system every two hours for 100 hour extractions. These extractions used the same values for
the parameters and feed activities as were used in the last section for the three different feed activity
situations. The DF for 212Pb was calculated for extractions with the one tonne decay tank present and
for those without a decay tank and the results are compared graphically in Figure 3.3.
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Figure 3.3: The variation of the decontamination factor for 2'2 Pb with the length of time of an extraction
from the heavy water for the three feed situations of radioactive equilibrium at the 1ddt level (Situation
A), a 22“Ra excess (Situation B) and a 2'2Pb excess (Situation C). The full circles are the calculated
values for DFpy when a decay tank is present and the empty circles are when there is no decay tank. The
horizontal lines given in dots show a value of DFpy, equal to one. When the calculated value for DFpp
crosses this line the amount of 2'2Pb flowing out of the double membrane system becomes larger than the
amount entering the system at that particular time.

It is clear from examining Figure 3.3 that, as expected, the DF for ?!?Pb is always higher with a
decay tank than without. It is however interesting to note that in certain circumstances the DF for ?!?Pb
actually drops below 1 which means that at that point in time there is more **Pb flowing out of the
second membrane pair than which enters the first membrane pair. In Situation B, where 212pp plating is
assumed to be high creating an excess of 224Ra, this effect is a little artificial since the 212Pb is likely to
plate out shortly after the system. However, even when the isotopes are in equilibrium at the 1ddt level,
in Situation A, without a decay tank the DF for lead drops below 1 after an extraction time of only 20
hours. The fact that the DF for 212Pb drops below 1 after a certain extraction time does not mean that
the integrated effect of the assay is to add 2!?Pb to the detector but it does mean that for long assays
the extraction system can start to become a source of 22Pb which could pass into the SNO detector and
increase the NC background at particular times. To ensure that this does not happen extraction times
should be kept short and a decay tank should be used.
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3.3.5 Modelling Assays Using the HTiO SUF Assay System

A computer model of the HTiO SUF double membrane system was developed using as a basis the
simulation program which was discussed in Section 3.3.3 on page 35. This program was changed so
that instead of calculating the activities of the three isotopes on the two membrane pairs for just one
extraction it could calculate the activities for many such extractions each with different values for the
feed activities and parameters.

In the HTiO SUF system the 228Th, 2?/Ra and ?!2Pb on each membrane pair after the end of an
extraction have to be removed and concentrated into small volumes so that they can be measured by
the B — a delayed coincidence scintillation counters. The method to do this for radium was discussed
in Section 3.2 on page 29. It was also explained that new techniques have to be developed to perform
the secondary concentration of lead and thorium. In this model it will be assumed that new techniques
exist and that they give efficiencies similar to the already developed secondary concentration procedure
for radium.

To be able to analyse and estimate the accuracy to which this system can be expected to calculate the
feed activities of 228Th, 224Ra and, especially, 2!?Pb it is necessary to model these chemical processing and
counting techniques while including any sources of uncertainty. It is envisaged that the two main sources
of uncertainties are the accuracy to which the efficiency of the secondary processing and counting is known
and the statistical v/IN error on the number of counts that are eventually expected to be measured. The
details of how this modelling was performed is given in Section A.3 in the Appendix starting on page 140.
The modelling assumes that the overall concentration and counting efficiency is 35% for **Ra and 212pp,
and 25% for 228Th. The lower overall efficiency for 222 Th is assumed because of its lower elution efficiency.
This modelling assumes that the actual efficiencies in each secondary concentration are within 10% of
these true values indicating a 10% systematic error.

In the SNO experiment the activity of each isotope in the heavy water and some of the parameters
which describe the HTiO SUF system will need to be calculated from the measured activities of >'?Pb,
224R4 and 228Th on the membrane pairs after an assay. In the following discussion it will be explained
how this can be done. It was noted in Section 3.3.3 on page 36 that the ratio of the activity of an
isotope on the second membrane pairs compared to the first gives knowledge of the extraction efficiency
of the membrane pairs for that isotope. In fact for 228Th the extraction probability, ars, can be exactly
calculated from these activities alone using the expression given in Equation 3.11. Using this calculated
value for the extraction probability, ars, the feed activity flow rate of 2*Th, Fry, can be calculated
using the expression given in Equation 3.12. In this equation the approximation given is valid for all
assay times that will be used in the SNO detector since Arxt is very small for assays lasting only a few
days.

LA
arp =1 AM1 (3.11)
Th
Athl ATh ~ Athl

Fry = (3.12)

arh (1 —e=>rt) — arst

The activity of 222Th in the heavy water can be easily deduced from the calculated value of Frs by
knowing the average rate at which the heavy water was pumped through the system during the assay.

Similar expressions to those shown in Equations 3.11 and 3.12 can be used to calculate the extraction
probabilities and feed activity flow rates for 22Ra and 2!*Pb, if assay times used are much shorter than
their respective half-lives. If longer assay times are used then it becomes necessary to take into account
the effects due to the decays of parent isotopes and in particular the effect of radon breakthrough. The
exact expressions for agq, apy, Fre and Fpy including all of these effects are given in Section A.4 in the
Appendix starting on page 142.
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Situation || Description || Feed Activity Flow Rates: Parameters and Efficiencies:
Name: of System: Frp, I Fre | Fpy 1) [ € l QaTh, QRe and apyp

A Equilibrium || 0.4-0.6 | 0.4-0.6 | 0.4-0.6 || 0.9-1.0 | 0.1-0.4 0.75-0.95

B 224Ra excess || 0.4-0.6 | 2.0-3.0 | 0.4-0.6 || 0.9-1.0 | 0.1-0.4 0.75-0.95

C 212Ph excess || 0.4-0.6 | 0.4-0.6 | 2.0-3.0 || 0.9-1.0 | 0.1-0.4 0.75-0.95

Table 3.1: The initial ranges of the feed activity flow rates, the two loss parameters: § and €, and the
extraction efficiencies: arp, ar. and apy, which were used by the computer model for the three different
feed activity situations which were discussed in Section 3.3.3 on page 36.

Unfortunately these exact expressions are in terms of the values of the loss parameters 6 and € and it
is impossible to measure the values of these parameters for the HTiO SUF assay system without adding
long-lived activity to the SNO detector. The effect of any losses in the thorium-radium system, given by
5, can be decoupled from calculating the activity of 22Ra in the heavy water by using assay times of
less than about 30 hours since for these times the terms involving é are only minor corrections. However,
the effect of radon breakthrough cannot be decoupled from calculating the activity of 2'2Pb in the heavy
water since assay times short compared to the 10.6 hour half-life of 2**Pb will not extract enough activity
to be measurable. There is a solution to this difficulty and that is to calibrate the extraction efficiency
of 212Pb by the HTiO SUF assay system. This can be done using stable lead or a source of ?'*Pb which
has been separated from its long-lived parents. In the rest of this analysis it will be assumed that such
a calibration has taken place and that the extraction efficiency for 2!2Pb is known to within 10% of its
true value in any particular assay. Using this known value of ap, the value of € can be calculated in each
assay from the activities of the isotopes on the membrane pairs after an assay using the expression given
in Equation A.18 on page 143.

3.3.6 The Capability of a Single Assay in Different Situations

The computer model which was described in the last section was used to calculate the accuracy to
which the activity of 22Pb in the heavy water can be calculated using the HTiO SUF assay system. This
was done by simulating many such assays and comparing the calculated values of variables, such as the
feed activity flow rate of 2!2Pb, with the true values that the simulation used. The difference between the
calculated and true values as a fraction of the true value was calculated so that distributions for many
assays could be generated. The width of these distributions gives the average percentage error to be
expected when that variable is calculated by a single assay during the operation of the SNO experiment.

The variation of the percentage error on calculating the activity of 2!?Pb in the heavy water with
different assay times is shown in Table 3.2. These results were achieved by taking values for the feed
activity flow rates from those given in Table 3.1 for Situation A which assumes rough equilibrium at
the 1ddt level and assuming the presence of a decay tank and a 10% accurate calibration for the 2**Pb
extraction efficiency.

It can be seen that the variation of the error with assay time is not large but it does indicate that
assays of between 10 and 15 hours are optimal. The increased error for short assays is due to an increase
in the statistical error on the number of 2!2Pb counts measured whereas the increase in error for longer
assay times is due to additional errors introduced by terms involving the radon breakthrough parameter.
To maximise the assay time while keeping the error on calculating the activity of 212Pb in the heavy
water as low as possible the best assay time is 15 hours and this time will be used as standard for every
short assay in the rest of this analysis.
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r Time of Assay: || 5hrs | 10hrs l 15hrs l 20hrs ‘ 30hrs |
[ Error on 22Pb Activity: [| 38% | 34% | 34% | 36% | 42% |

Table 3.2: The percentage error on calculating the activity of 212 P} in the heavy water using a single,
short assay of different assay times. These assays assumed values for the feed activities and parameters
taken from the ranges given in Table 3.1 for the situation of rough equilibrium at the 1ddt level, the
presence of a decay tank and a 10% accurate calibration for the 212 pp extraction efficiency.

The distributions produced for all of the variables that can be calculated by 15 assays are shown in
Figure 3.4 for the case of rough equilibrium at the 1ddt level assuming the presence of a decay tank and
a 10% accurate calibration for the 2!2Pb extraction efficiency. The percentage errors in the calculated
values for these variables can be taken from these plots, as has already been explained, and they are
given in Table 3.3. Also given in Table 3.3 are the similar results obtained when the feed activities are
taken from the ranges shown in Table 3.1 for the situations of a 2>*Ra excess (Situation B) and a ?'?Pb
excess (Situation C).

The results of Table 3.3 show that the feed activities of 222Th and 224Ra can always be calculated
to within about 10% of the true values. This error is dominated by the 10% systematic error which was
assumed on the knowledge of the chemical processing and counting efficiencies. These results also show
that by using the double membrane system it is possible to self-calibrate the extraction efficiencies for
228Th and 224Ra to within 4-6% of their true values.

The error in calculating the feed activity of 212Pb can be seen to be about 35% when there is equilib-
rium within the decay chain at the 1ddt level of activity. This error is dominated by the large, statistical
error on the number of counts measured for 212Pb samples. When there is five times more 2!2Pb present
in the heavy water, which is the case in Situation C, the error in calculating the activity of 212P} in the
heavy water decreases by a factor of about V5 to 15%, as would be expected.

Unfortunately the results of Table 3.3 also show that if there is an excess of 24Ra in the heavy water
the activity of 212Pb in the heavy water can be calculated less accurately. This is due to large correction
terms involving the poorly calculated radon breakthrough parameter, e.

This parameter can be seen from the results given in Table 3.3 to be very poorly calculated in all
situations even when a calibration for the lead extraction efficiency is assumed and a decay tank is present.
This is due to the very low statistics that are involved in 2!2Pb assays. However, except for the case of
a 224Ra excess this large uncertainty in the amount of radon breakthrough is not a major error in the
calculation of the 212Pb activity in the heavy water since the correction terms are usually small.

The fact that the amount of radon breakthrough does not seem to be very well calculated led to
an investigation to determine whether or not the one tonne decay tank is useful when performing short
assays using the HTiO SUF assay system and this is discussed below.

Without the presence of a one tonne decay tank it is still possible to calculate the amount of radon
breakthrough in the SUF assay system using the expression given in Equation A.18 on page 143 but such
calculations are extremely inaccurate. This is because without a decay tank it is virtually impossible to
know whether the 212Pb activity on the first membrane pair has been extracted from the heavy water or
has been caused by a proportion of 224Ra decays. Only by collecting a known portion of the 2'*Pb lost
from the first membrane pair on the second membrane pair, by the use of a one tonne decay tank, can
the amount of radon breakthrough be calculated with any real accuracy. In fact without a decay tank it
is more accurate to assume reasonable limiting values for the amount of radon breakthrough and accept
the systematic errors that this produces. To investigate the size of this systematic error a simple analysis
of short assays without a decay tank present was completed.
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Figure 3.4: Distributions showing the results of calculating feed activity flow rates and parameters by a
model of the HTiO SUF assay system. These results are for 15 hour assays assuming the presence of
a decay tank and a calibration for the lead extraction efficiency of 10% accuracy. The feed activity flow
rates and parameters were taken from the ranges given in Table 8.1 on page {1 for the situation of rough
equilibrium at the 1ddt level, Situation A.

Situation: Probabilities: || Loss Param: Feed Activities:
Name | Description || arh ] O Ra € Fry ‘ Fr, l Fpy
A Equilibrium || 6% 4% 170% 12% | 11% | 34%
B 224R 3 excess || 6% 3% 90% 12% | 9% | 69%
C | '2Pb excess | 6% 4% 350% 12% | 11% | 15%

Table 3.3: A summary of the accuracy to which the feed activities of **2Pb, 2>Ra and ** Th in the
heavy water and the parameters which describe the system can be expected to be calculated in different
feed activity situations as described in detail in Table 3.1 on page 41. These results were calculated using
single 15 hour assays assuming the presence of a decay tank and a calibration for the lead extraction
efficiency of 10% accuracy.
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In this analysis € is chosen to have a lower limit of 0.0 which is a physical bound and an upper limit
of 0.5 which is expected to be a reasonable bound based on the results of small scale experiments. The
calculated 2!2Pb activities using these limiting values of € and no decay tank are compared to the true
values for many short assays in Figure 3.5. Superimposed onto each plot are the results found by using
a decay tank and calculating e.

These plots show that by removing the decay tank and assuming limiting values for €, the distributions
for the calculated feed activity flow rates of 212Pb are systematically shifted in one direction or the other.
This is because if € is underestimated then the activity of 22Pb in the heavy water is calculated to be
higher than the actual value whereas if € is overestimated then the opposite effect occurs. These shifts
in the peaks of the distributions must be interpreted as systematic errors and therefore must be added
in quadrature to the statistical error given by the mean width of the two distributions to give overall
errors for calculating the activity of 2!2Pb in the heavy water without a decay tank. These errors are
summarised for each of the three feed activity situations and compared to the error found when a decay
tank is used and € is calculated in Table 3.4.

The results in this table show that there is very little difference in the overall error on calculating the
activity of 2!2Pb in the heavy water by single 15 hour assays when using a decay tank or by assuming
limiting values of radon breakthrough. Only when there is a large excess of ?**Ra in the heavy water is
the error caused by not having a decay tank very much larger than when using one. However, it may
be possible to more accurately calculate the amount of radon breakthrough using the decay tank by
combining the results of two assays of different times and this will be discussed in the next section.

3.3.7 The Benefits of Combining the Results of Two Assays

It will be possible to use the HTiO SUF assay system to perform not only single short assays but to
perform two consecutive assays of different times. This allows the possibility of not only calculating the
amount of radon breakthrough more accurately but it also might allow any losses within the thorium-
radium system to be identified.

The computer model used in the previous section was made to assume the presence of a decay tank
and a 10% accurate calibration for the extraction efficiency of 2!2Pb. This model was then developed to
combine the results of two assays, assumed to be identical apart from their duration, in order to most
accurately calculate the activities in the heavy water and the parameters which describe the system. The
exact expressions which were used in these calculations are given in Section A.4 in the Appendix starting
on page 142.

In the last section it was found that 15 hours is the best assay time to most accurately calculate
the activity of 212Pb in the heavy water by a single, short assay and so it was decided that one of the
assays would retain this time. The other assay was chosen to have a longer time of 70 hours so that the
combined assay time of 85 hours would process the entire 1000 tonnes of heavy water.
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Figure 3.5: These three plots show distributions of the calculated values for the feed activity flow rate of
212 pp compared to the true values for 15 hour assays in each of the three feed situations as described in
Table 3.1 on page 41. The solid histograms with the fitted results give the distributions when a decay tank
is present and € is calculated. The dotted and dashed histograms give the distributions when no decay
tank is present which means that € cannot be calculated with any degree of accuracy and so it is assumed

(Fou™—Fpp™*) /Fep™ for Situation C

to take the limiting values of 0.0 and 0.5 respectively.

Situation: Overall Errors on 212Pb Activity:
Name | Description || With Tank] Without Tank
A | Equilibrium 34% 31% 112 = 34%
B 224R 5 excess 72% 54%f$§é = 88%
C 212P} excess 14% 18%“:2;::18%

Table 3.4: A summary of the accuracy to which the activity of '2Pb in the heavy water can be ezpected
to be calculated using a single 15 hour assay in the three feed activity situations as described in Table 3.1
on page 41. When a decay tank is present the error is purely statistical whereas when there is no decay
tank limiting values for € of 0.0 and 0.5 have to be assumed and this leads to additional systematic errors
which have to be combined in quadrature with the statistical error to give the overall error.
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The distributions produced for all of the variables that can be calculated by combining the results
of two assays are shown in Figure 3.6 for the case of rough equilibrium at the 1ddt level assuming
the presence of a decay tank and a 10% accurate calibration for the 212Pb extraction efficiency. The
percentage errors in the calculated values for these variables can be taken from these plots, as has already
been explained, and they are given in Table 3.5. Also given in Table 3.5 are the similar results obtained
when the feed activities are taken from the ranges shown in Table 3.1 for the situations of a 224Ra excess
(Situation B) and a 2!2Pb excess (Situation C).

The results in Table 3.5 can be compared to the results in Table 3.3 to see that, in general, smaller
errors can be achieved by combining the results of two assays than can be achieved using a single, short
assay. The activity of 22Th and ?>4Ra in the heavy water and the extraction efficiencies of these isotopes
can be calculated more accurately due to lower statistical counting errors since more activity of each
isotope is extracted by a longer assay. Also, by combining the results of two assays it can be seen that
the error in calculating § would probably be low enough to determine if there are any significant losses
in the thorium-radium system.

The activity of 212Pb in the heavy water can be calculated slightly more accurately by combining the
results of a 15 hour assay and a 70 hour assay when there is a 22Ra excess if a one tonne decay tank is
used. This is due to a more accurate calculation of the amount of radon breakthrough which can also
be seen in Table 3.5. It may be possible to gain more information on the amount of radon breakthrough
by combining the results of other assays, in particular short assays with and without the decay tank,
however there was insufficient time to investigate this.

3.4 Conclusions

In this chapter the operation of the HTiO SUF assay system has been described as it is expected to
be used in the SNO experiment. This assay system has been specifically designed to assay isotopes from
the 232Th decay chain, and in particular 2'2Pb, both in pure heavy water and when magnesium chloride
has been added. This assay technique together with those described in the last chapter should enable the
SNO experiment to calculate the amount of natural radioactivity in the heavy water in all operational
modes.

The majority of this assay system has been developed but there is the need for more efficient methods
to perform the secondary concentration of thorium and particularly of lead. These methods must be able
to extract lead and thorium efficiently from up to 20 litres of 0.5M hydrochloric acid, containing large
quantities of titanium, into a 12 millilitre sample suitable for measurement by a 8 —a delayed coincidence
scintillation counter. The development of such new methods is discussed in Chapters 5-7 of this thesis.

If it is assumed that such methods are available then the expected accuracy to which the HTiO SUF
assay system can calculate the activity of 2!2Pb, ??Ra and 2?8Th in the heavy water can be found
by modelling the system. The HTiO SUF assay system is designed to be virtually self-calibrating by
operating two parallel pairs of extraction membranes in series. This means that the extraction efficiencies
for 222Th and 224Ra can be calculated to within a few percent of their true values by a single assay. Also,
the activity of 228Th and 22?Ra in the heavy water can be calculated by a single assay as accurately as
the secondary concentration efficiencies are known.
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Figure 3.6: Distributions showing the results of calculating feed activity flow rates and parameters by a
model of the HTiO SUF assay system. These results are obtained by combining the results of a 15 hour
assay with a 70 hour assay assuming the presence of a decay tank and a calibration for the lead extraction
efficiency of 10% accuracy. The feed activity flow rates and parameters were taken from the ranges given
in Table 3.1 on page 41 for the situation of rough equilibrium at the 1ddt level, Situation A.

Situation: Probabilities: || Loss Params: Feed Activities:

Name | Description || ars ] ORa € [ ] Fry | Fr, | Fpy
A Equilibrium || 3% 6% 69% | 25% 9% | 11% | 34%
B 224Ra excess || 3% 4% 57% | 74% 9% | 9% | 62%
C | ?'2Pb excess || 3% 6% 83% | 25% | 9% | 11% | 18%

Table 3.5: A summary of the accuracy to which the feed activities of 2'2Pb, 2?*Ra and **® Th in the
heavy water and the parameters which describe the system can be expected to be calculated in different
feed activity situations as described in detail in Table 3.1 on page 41. These results were calculated by
combining the results of a 15 hour assay with a 70 hour assay assuming the presence of a decay tank and
a calibration for the lead extraction efficiency of 10% accuracy.
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The activity of 212Pb in any system is complicated due to its short lived radon parent, 2?°Rn. In the
HTiO SUF assay system this isotope produces an effect, called ‘radon breakthrough’, which means that
to calculate the activity of 212Pb in the heavy water it is necessary to perform a calibration for the lead
extraction efficiency. Unlike for 224Ra or 2?8Th the extraction efficiency of the HTiO SUF assay system
for 212Pb can be calibrated without adding any long-lived activity to the detector by using either stable
lead or specially manufactured 2!2Pb sources which are free from any other activity. The details of a
procedure to manufacture such sources are given in Chapter 4 of this thesis.

Using such a calibration means that the activity of 2*Pb in the heavy water can be calculated by
a single assay lasting 15 hours but its accuracy is limited by statistical counting errors. If there is
radioactive equilibrium within the 232Th decay chain in the heavy water, at the level of 1ddt, the activity
of 212Pb can be calculated by the results of a single assay to within 35% of the true value. By performing
one such assay every week for three months the average activity of >*?Pb in the heavy water during this
time can therefore be calculated to within 10% of the true value. This corresponds to an error of 1% on
calculating the NC neutrino interaction rate in the SNO detector providing that all of the !*Pb in the
detector is found to be in the heavy water.

Unfortunately if the 222Th, and particularly the 2!2Pb, is not all in the heavy water but has adhered
itself to surfaces the situation is much more complicated. This, so called ‘plating’, effect will mean that
there is an excess of 22¢Ra in the heavy water which makes calculations of the activity of 2!?Pb in the
heavy water less accurate. Also, this effect means that it will be difficult to relate the activity of 212Pb in
the heavy water to the amount of NC background in the SNO experiment. It is clear that more research
will be needed if this scenario is found to be true in the SNO detector.

The usefulness of a one tonne decay tank situated between two parallel pairs of membranes in the
HTiO SUF assay system has also been investigated. This decay tank is present in order to enable the
second membrane pair to extract any 2?Pb lost by radon breakthrough from the first. It has been found
that although its use in single 15 hour assays is somewhat limited its presence is important to be able to
calculate the amount of radon breakthrough in the system by combining the results of two assays. The
decay tank is also useful to prevent the HTiO SUF system from adding 212P} back into the heavy water
at the end of long assays.

The rest of this thesis explains the research that was carried out into completing the HTiO SUF assay
system by developing secondary concentration procedures for 2!2Pb and 2?Th. In the next chapter a
procedure to manufacture sources of 212Pb which can be used to calibrate this assay system is detailed.
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Chapter 4

A 22Pb Calibration Source for the
SNO Experiment

4.1 Introduction

In the last chapter it was found that the HTiO SUF assay system will need to be calibrated for the
212p} extraction efficiency. This calibration could be performed using stable lead since this contains no
long-lived activity and it is expected that any 2!2Pb present would behave in the same way as the carrier.
Indeed in the research detailed in Chapters 4-7 of this thesis stable lead is used to measured the 2'2Pb
extraction efficiency of certain systems. However, there are some concerns over using stable lead as a
calibration source for the SUF HTiO assay system and this is because the amount of stable lead that has
to be used is much larger than the few hundred of atoms of 212Pb that it is hoped will be present in the
heavy water of the SNO detector. A particular concern in using stable lead as a calibration source in
the heavy water itself is that lead could plate out on surfaces within the heavy water circulation system.
It is unclear whether milligram quantities of stable lead will behave in the same way as a few hundred
atoms of 2!?Pb in this plating process.

The ideal calibration source for 2'2Pb would be a source of 2!2Pb itself which has been shown to have
been separated virtually entirely from its long-lived thorium parent, >2¥Th. During 1997 research was
conducted both at Oxford University and at the Brookhaven National Laboratory (BNL), New York,
USA into a novel technique which separates 2'2Pb from from both ??¢Ra and 228Th to a very high degree
of cleanliness. At BNL these cleanliness measurements were made using alpha counting techniques with
the assistance of Dr R.Hahn.

In this chapter are both details of a procedure to manufacture sources of 212Pb free from ??*Ra and
228Th and results of measuring the cleanliness of sources manufactured using this procedure. The *'*Pb
sources that were produced in the experiments detailed in this chapter were used along with stable lead
in experiments detailed in Chapters 6 and 7 to calibrate 2!2Pb extractions.
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4.2 Existing Calibration Sources and Possible Extensions

The use of hydrous titanium oxide (HTiO) to separate radium from thorium was observed by Dr
R.Taplin and Dr M.Moorhead of Oxford University in 1995. Solutions of ?>Ra which contained less
than 0.5% of its parent, 228Th were successfully produced [Tap95a]. Unfortunately the use of such ?>*Ra
sources as calibration sources for its daughter, 2!2Pb, in the SNO experiment is not feasible since the
only way of measuring a 224Ra solution for any 22 Th contamination is to leave the ?>Ra to decay away
with its 3.66 day half-life and measure any remaining long-lived activity. This means that the cleanliness
of any 224Ra solution can only be determined after it has been used and this allows the possibility of
a serious 228Th contamination should the chemical process not be carried out correctly. Furthermore,
the use of 224Ra to calibrate systems for 212Pb is somewhat limited since the 2!2Pb that is produced by
decays of 224Ra would be present for many days making frequent calibrations impossible.

The 10.6 hour half-life of 212Pb itself makes it a much better calibration source, if it can be separated
from both 224Ra and 228Th since in only a few days any activity introduced would be reduced by several
orders of magnitude. Calibration sources of 2!?Pb have another major advantage over 2Ra sources and
this is due to the fact that the alpha peaks from the daughters of 2'2Pb are well separated in energy
from the peaks of 228Th and 224Ra. This means that it is possible to measure the cleanliness of a 2!2Pb
source as it is produced rather than after all the 2!2Pb activity has decayed away. This technique is
not successful for sensitively measuring the purity of 224Ra solutions because of the overlap in energy
between the alpha decays of 228Th and ?*Ra. For a typical alpha spectrum of 22 Th in equilibrium with
its daughters and other details of the alpha counting used in this chapter see Appendix C.

The literature suggests many possible methods to separate 2!2Pb from its parents, these being:
reversed-phase chromatography [S&b74], anion exchange resin [Atc87], high performance liquid chro-
matography [AIM88] and amalgam exchange [Qur67]. All of these techniques produce 2*2Pb sources of
high cleanliness but the procedures are rather complicated and often use specialised equipment.

By examining the decay chain of 228Th, which is shown in Figure 2.3 on page 24, it is clear that
the presence of the short-lived radon isotope between 22Ra and ?!?Pb in the decay chain provides a
possible separation method for 2!2Pb. The use of 22°Rn to produce sources of 2!2Pb is also found in the
literature but again very complicated, specialised equipment is used, see [Nor91]. In the next section a
much simpler procedure using 22°Rn to manufacture 2'>Pb sources which are free from ??*Ra and *2*Th
is detailed.

4.3 The Procedure to Manufacture 2'?Pb sources which are free
from 2%*Ra and 2%2Th

The procedure to manufacture 2'2Pb sources that are free from ?22Th and ?2“Ra contamination is
divided into four stages. The first stage uses the HTiO method already mentioned which produces 224Ra
solutions containing less than 0.5% 228Th. The second stage is to then immobilise this ?*Ra (or some
228Th) on plastic beads coated with manganese dioxide (MnOz) which are known to have good efficiencies
both for extracting radium and for emanating ?°Rn, see Chapter 5 of [Fer92]. The third stage is the
actual emanation of the 22°Rn which is achieved by pumping air through a small cell packed with the
MnO,. Finally, the 22°Rn is trapped using a simple coil of tubing and the 2!2Pb produced by its decay
is collected by washing this tubing with dilute acid.

The first stage of separating the 2?Ra from the ??®Th provides an extra separation by removing
any 228Th from the 2'2Pb generating apparatus. This is useful for safety purposes to reduce risks of
unforeseen possible contamination but it was not found to increase the cleanliness of the 212Ph sources
that were produced and so it can be considered as an optional stage.
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The experimental details of these four stages are given below:

1. The Production of a 224Ra, source free from *?*Th (OPTIONAL):

Starting from an acidic source of 22 Th in equilibrium with its daughters, a source of 224Ra separated
from the 228Th can be produced by adding a small amount of titanium chloride or titanium sulphate,
precipitating the titanium as HTiO at pH 4 and filtering the solution using a 0.2 micron filter. At
pH 4 the HTiO very efficiently extracts thorium but it does not extract very much radium and so
the solution left after filtering typically has a 22 Th contamination of less than 0.5% [Tap95a].

1t should be noted that the extraction efficiency of HTiO for radium varies considerably between
virtually 0% at pH 4 to about 60% at pH 5 and so care must be taken when increasing the pH of
the acidic 228Th solution to ensure that the final pH of the solution is nearer pH 4 than 5. If the
pH ends up being too high then it is necessary to re-acidify the solution to a pH of less than 1 to
remove the radium from the HTiO before proceeding to raise the pH again.

2. Immobilising the 22*Ra or 2?Th on MnO; Coated Beads:

An immobilised source of 22°Rn can be prepared from either a 224Ra solution produced using the
HTiO method, or a solution of 228Th with a pH between 4 and 5, by adding a small quantity of
MnO, coated acrylic resin beads and leaving the solution to mix for a few minutes. The MnQ, is
virtually 100% efficient at extracting radium under these conditions and extracts about 25-35% of
any thorium which is present. These MnO, beads can be removed from the solution using a coarse
filter and then they should be dried for several days in air or for several hours in an oven at 60-80°C
to prepare the beads for emanation.

3. The Emanation of 22°Rn:

To efficiently emanate 22°Rn from the small sample of MnO; beads they need to be placed into a
small cell which has a large aspect ratio to increase the surface area of the beads which is in contact
with the circulating air. The 22°Rn can then be emanated with an efficiency of around 50% by
pumping air through the cell at a flow rate equal to more than 100 cell volumes per minute. The
air containing the 22°Rn should be passed through a 0.1-0.2 micron filter to remove any MnO;, fines
before any other processing.

4. The Trapping of the 22°Rn and the Collection of the 2!2Pb:

The 220Rn which is emanated from the MnO, cell decays to 2!2Pb with a 55.6 second half-life and
so the 220Rn can be trapped by passing the air out of the MnO; cell into a coil of tubing which has

a large enough volume to contain the air coming from the cell for a few minutes, ie a few half-lives
of 22°Rn. In order to prevent the loss of any 2'2Pb which stays entrained in the flow of the air, the
output from this coil of tubing can be fed back to the input to the MnO; cell and this pumping
circuit run as a closed loop.

By emanating for several hours the 2!2Pb has time to build up on the inside of the coil of tubing
and it can then be collected by washing the tubing with a suitable amount of 0.5M hydrochloric
acid for several minutes. The 212Pb solution which is produced is virtually free from any ?*Ra or
228,

In Section 4.5 it will be shown that this overall procedure manufactures sources of 212ph with an
activity of about 20-30% of the activity on the MnO cell during the emanation. It will also be shown
that the 228Th contamination of these sources has been measured, after the >*Pb had decayed, to be
less than 1 part in 10,000 using 8 — a counters whose operation is described in Section 3.2.1 on page 30
and in Appendix D. More importantly the 22Th contamination of these sources has been measured, at
production, using alpha counting to be less than 0.3%.
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4.4 The Experimental Evaluation of the Individual Stages of the

Procedure

4.4.1 General Comments on the Procedure

Several experiments were carried out both at Oxford and at BNL to produce ?'?Pb sources by the
procedure outlined in the previous section and then to measure the contamination of ??Th in these
produced sources. In all of these experiments the starting solution was dilute nitric acid containing about
700 becquerels of 222Th in equilibrium with its daughters. In experiments CLS4-9, which were carried
out at Oxford, the first stage of producing a 2?*Ra solution free from ?28Th was included. This was done
using a small volume of a titanium chloride or titanium sulphate solution and a 0.2 micron Media-Kap
10 filter. The actual amount of titanium added was 3 milligrams which was achieved by taking a tenth
of a millilitre of a solution of the titanium salt which contained 0.15 grams of the salt in each millilitre
of solution and was hence called a 15% weight to volume (w/v) solution. In experiments CLS10 and
BCL1, carried out at Oxford and BNL respectively, this first stage was omitted and instead the MnO,
was loaded directly with a 228Th solution which had been made to have a pH between 4 and 5. The ?!2Pb
sources manufactured in experiments CLS11-12 and BCL2-8 used the MnO, cells which had been made
in experiments CLS10 and BCL1 respectively, since these cells contained 228Th activity and so were a
constant source of 229Rn. The MnO, acrylic resin beads that were used in all of these experiments were
purchased from Seakem!.

The efficiencies in the HTiO extractions, the MnO, extractions and the ?2°Rn emanation were all
measured using gamma counting as discussed in Appendix B. The measurements were not only of
solutions made up in standard counting bottles but also included measurements of the activity contained
in the Media-Kap filter and the MnO, cell. To ensure that the different geometry of the filter and cell did
not effect the counting rate, for a given amount of activity contained within them, a brief investigation
was performed. At Oxford the measured activity of the filter and cell, after an extraction, was compared
to the loss of activity from a solution which was measured using the standard geometry counting bottles.
In the case of a Media-Kap filter the ratio of these two numbers was measured to be 0.99+0.03 and for
the cell used at Oxford it was 0.9440.05. This shows no significant difference between measuring activity
in a standard counting bottle, in a Media-Kap filter and in the MnO; cells used at Oxford.

At BNL the measured activity of the MnO; cell was compared to the measurement of a known source
at two very different distances from the gamma detector. Since these two ratios were very similar this
again indicated that there was no significant difference between measuring activity in a standard counting
bottle and in the MnO, cells used at BNL.

The amount of dry beads containing MnO. used in each experiment was 0.25 millilitres, or 0.2 grams.
At Oxford, after an extraction, these beads were dried in air for several hours before being dried in an
oven at 60-80°C for about 24 hours. At BNL the MnO, was simply dried in air for several days. After
being dried the MnO, was used to make up a cell for ??’Rn emanation. The cells used at Oxford were
constructed differently to the cell used at BNL and the design of both are shown in Figure 4.1. The main
difference between the cells used at Oxford and the one used at BNL was that the latter was made from
glass which made it easier to fill with MnO; and more robust.

At both Oxford and BNL a very similar pumping circuit was used to collect the 2!?Pb and a diagram
of this is shown in Figure 4.2. A constant flow of air of 30 millilitres per minute around the circuit was
obtained using a peristaltic pump and this produced a flow of air of 120 bed volumes per minute through
the 0.25 millilitre MnO5 cell. In Oxford, the coil of tubing was made from 6 millimetre diameter PVC

1Seakem Instruments Ltd, Canada. Lot: 86HX005-11
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Figure 4.1: The design of the MnOs cells used at Ozford (left) and the MnO, cell used at BNL (right).
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Figure 4.2: Apparatus for the emanation of 22°Rn.

tubing wrapped around into about a 20 centimetre diameter coil. At BNL it was made from about 4
millimetre diameter glass tubing formed into about a 10 centimetre diameter coil. Normally the ?'>Pb
was left to accumulate for about 24 hours in the coil of tubing before being washed from the coil using
a suitable volume of 0.5M hydrochloric acid which was left to circulate in the tubing for at least several
minutes at a flow rate of 30 millilitres per minute.

In the following sections the individual stages of the procedure, as detailed in Section 4.2, are evaluated.

4.4.2 The Production of a ?2!Ra source free from ?2Th

The measured extraction efficiencies of HTiO for thorium, radium, lead and bismuth are given in Ta-
ble 4.1 together with the measured pH of the solution during the extraction. These extraction efficiencies
are calculated both from looking at the fitted amount of each isotope extracted onto the Media-Kap filter
(appearance) and the fitted amount of each isotope which was lost from the aqueous solution (disappear-
ance).
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Exp. Efficiency by Appearance: Efficiency by Disappearance:
Name || pH 212B; | 212py, | 224R, l 228 T 2125 l 212pp, | 224R4 | 228
CLS4 || 4.9 || 123+18% | 84+5% | 70+3% | 98+2% | 99+17% | 100+6% | 60+4% | 100+3%
CLS5 || 4.0 || 112+11% | 924+5% | 344+2% | 107+2% || 100+11% | 100+6% | 1+3% | 99+3%
CLS6 || 4.4 || 107+£10% | 87+4% | 32+2% | 96+2% || 100+10% | 100+£6% | 19+3% | 99+4%
CLS7 || 4.0 || 122+11% | 124+9% | 36+£3% | 112+3% || 99+9% | 100+8% | 8+4% | 100+3%
CLS8 || 4.4 || 123+14% | 107+6% | 53+4% | 118+2% || 98+11% | 100£6% | 41+5% | 100+3%
CLS9 || 4.5 || 111+8% | 105+6% | 61+£4% | 107+5% || 100+8% | 99+7% | 37+£5% | 99+5%

Table 4.1: Efficiency measurements for the extraction of HTiO from solutions of pH4-5. The results for
experiment CLS9 have been taken directly from the results of the fits shown in Figure 4.3. The efficiencies
measured by appearance examined the fitted amount of each isotope extracted onto the Media-Kap filter
whereas the efficiencies measured by disappearance examined the fitted amount of each isotope which was
lost from the aqueous solution. It can be seen that these two methods do not always give the same values
and this is discussed in the text. The more reliable efficiencies, as measured by disappearance, are plotted
against the pH of the solution during the extraction in Figure 4.4.

The errors on the efficiencies in Table 4.1 are the statistical errors based on the errors produced
by fitting the activity of each sample measured at different times after it was produced, to the initial
activities of 212Bi, 212Pb , 2?4Ra and 2?8Th. An example of such a fit for measurements in experiment
CLS9 is shown in Figure 4.3. The functional form to which the measured count rates were fit is given in
Equation 4.1 with definitions in Equations 4.2, 4.3, 4.4 and 4.5. In these equations P1, P2, P3 and P4
are the initial activities of 2!2Bi, 2!2Pb, 224Ra and 2?Th respectively. The derivation and explanation of
these expressions can be found in Appendix B.

decay rate = We ™ Bit 4 Xae 2Pt 4 YBye  rat 4 Z (4.1)

ABi =6.86 x 1071Ar~1 ; Apy =6.54 x 1072hr~! ; Ag, = 7.89 x 107 3hr~1 (4.2)
a=28 =111 ; B=28— =101 ; y=x2B—=114 (4.3)
Z=P4 ; Y=P3-P4 ; X=P2—-P3y+P4(y-1) (4.4)

W = P1 - P2a + P3y(a — 3) + P4(By — a(y—-1) - 1) (4.5)

From looking at the results in Table 4.1 it is clear that there are some disagreements between the
extraction efficiencies as derived from appearance and disappearance measurements. It is interesting to
note that the efficiencies as measured by disappearance are consistently lower than those measured by
appearance and this indicates that the differences are not due to losses of activity on apparatus. It is
possible that the reason for the differences is uncertainties in measuring the total volume of the solution
before filtration. If this is the case, the efficiencies as measured by disappearance are the most reliable
since in this calculation any error in the measured total volume of the solution cancels. These, more
reliable, efficiencies are shown graphically in Figure 4.4 plotted against the measured pH of the solution
during the extraction. The pH meter was not well calibrated during these experiments and so a reasonable
systematic error of 0.1 pH units has been included in this figure.
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Figure 4.3: An ezample of fitting the gamma counting measurements for experiment CLS9. The top plot
shows the measurements of the solution at pH 4 just prior to the removal of the precipitated HTiO, the
middle plot shows the measurements of the solution after the HTiO had been removed and the bottom plot
shows the measurements of the Media-Kap filter which performed the filtration. The fitted parameters are
to the initial activities, in counts per second, of the following isotopes in the 232 Th decay chain: P1=2'2Bj,
P2=212ph, P3=?2Ra and P{=>?8Th. (See Appendiz B for details.)
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The plots shown in Figure 4.4 show that 228Th, 212Pb and 2!2Bi are all extracted at about 100%
efficiency in the pH range of 4.0 to 4.9 whereas 22*Ra is extracted only slightly at pH 4.0 but about 60%
at pH 4.9. The seemingly linear relationship between the pH and the extraction efficiency for 224Ra is in
agreement with that discussed in the literature, see Figure 5.7 of [How94]. Despite the different strength
solutions of 224Ra which were produced in these experiments, each solution was found to contain less than
1% (95% CL) of 2**Th contamination by gamma counting the solution after all the 224Ra had decayed
away.

A brief investigation into an alternative method of producing ??“Ra solutions which contain very
small quantities of 228Th was conducted at Oxford. This alternative method was to extract 22Ra from
a source of 228Th so immobilised that the 22Th was not removed. In this way the 22Ra grows back
into the source, due to the radioactive decays of 228Th, and so can be extracted again at a later date.
This repeated extraction of an isotope while leaving the parent isotope unaffected is called ‘milking’ and
it is useful because no long-lived radioactive waste has to be generated. One technique by which this
can be achieved is to extract 228Th into an organic phase using a solvent-solvent extraction and then to
back-extract 224Ra produced by the decays of the 228Th into an aqueous phase.

The literature suggests that trioctylphosphine oxide (TOPO) is a reagent which extracts thorium
with a very high efficiency from solutions that are 1M in nitric acid but it does not form a complex with
radium [Whi61]. Therefore, an organic phase consisting of a 0.1M solution of TOPO in cyclohexane was
used to extract a few kilobecquerels of 228Th from a 1M nitric acid solution and then, after leaving it
for 11 days, the organic phase was shaken with an equal volume of 0.1M nitric acid in an attempt to
back-extract 224Ra. The 0.1M nitric acid solution was found to extract about 50% of the 224Ra which
had been in the organic phase and it contained less than 1.7% 228Th (95% CL).

This single experiment seems to indicate a possible alternative method of producing 2?“Ra solutions
containing very small amounts of 228 Th, without generating large quantities of radioactive waste, however
further systematic studies are obviously required before confidence can be placed in this technique.

4.4.3 Immobilising the ??Ra or *Th on MnO, Coated Beads

The extraction efficiency of radium by MnO; from solutions with a pH between 4 and 5 was measured
by the disappearance of ??4Ra from the aqueous solution in many experiments and it was found to be
consistently around 100% with an error of just a few percent.

As was noted in Section 4.4.1 experiments CLS10 and BCL1 omitted the first stage of the procedure
and loaded the MnO2 with a 228 Th solution which had a pH of between 4 and 5. It was therefore possible
in these two experiments to measure the extraction efficiency for MnOs of thorium, radium, lead and
bismuth by observing the disappearance of these isotopes from the solution.

The plots in Figure 4.5 show the measurements from experiment CLS10, conducted at Oxford, of
the aqueous solution before and after the addition of the MnO, and the results of fitting these measure-
ments to the initial activities of 21?Bi, 212Pb, 22Ra and 228Th. From these fitted activities extraction
efficiencies can be calculated and these are given in Table 4.2 along with similar calculations performed
on measurements taken in experiment BCL1 which was conducted at BNL.
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Figure 4.5: The fitted gamma counting measurements for the MnOy extraction in experiment CLS10. The
top plot shows the measurements of the solution just prior to the addition of the MnO, and the bottom
plot shows the measurements of the solution after the MnQO2 had been removed. The fitted parameters
are, as before, to the initial activities, in counts per second, of the following isotopes in the 232 Th decay
chain: P1=2'2Bi, P2=2'2Pb, P3=?'Ra and P/=%28 Th.(See Appendiz B for details.)

Exp Extraction efficiency of MnO»:

Name | 22Bi | 22Pb | 22Ra | 228Th
CLS10 || 60+5% | 96+4% | 98+5% | 73+£3%
BCL1 | 76+3% | 96+11% | 95+13% | 73+2%

Table 4.2: The extraction efficiencies by MnOsy at pH /-5 deduced from the observed loss of activity from
the aqueous solution. The values for experiment CLS10 are taken directly from Figure 4.5. A discussion
in the text explains why the extraction efficiency for 228 Th is actually only about 25-35%.
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hours of emanation. Again, the fitted parameters are to the following isotopes in the 232 Th decay chain:
P1=212B; pP2=212pp P38=2?*Ra and P{=>?%Th. (See Appendiz B for details.)

Unlike in the previous section it was not possible to measure the extraction efficiency for 2!?Bi and
212Ph by the appearance of activity on the MnOs cell since the MnO, beads took several hours to dry
before the cell could be made up. However, it was possible to measure the cell for 22Ra and 2?8Th
activity and although the amount of 224Ra activity on the cell did seem to be in agreement with the
amount that had disappeared from the solution, the amount of 228Th activity on the cell appeared to be
somewhat lower than expected. The activity of 228Th extracted by the MnO in experiment CLS10 can
be seen from Figure 4.6 to be 1.42+0.03 counts per second whereas from Figure 4.5 the activity of 2?®Th
that disappeared from the solution can be calculated to be 4.4+0.1 counts per second. A similar loss
of 228Th was measured in experiment BCL1 where only about half of the expected 223Th activity was
actually found on the cell. It must therefore be concluded that some ?22Th was lost on apparatus during
the extraction and that the true extraction efficiency of 228Th by MnO, from a solution of pH between
4 and 5 is only about 25-35%. These losses on apparatus could have been due to the thorium plating on
surfaces which is known to occur from solutions with a high pH.

4.4.4 The Emanation of 2°Rn

The effect of pumping air through a cell of MnO, which has extracted some ??Ra and some 228Th
can be seen in Figure 4.6 where the measurements of the activity of the cell used in experiment CLS10
are plotted against the time after a 24 hour emanation. The disequilibrium between the isotopes above
and below 22°Rn can be clearly seen and the fact that initially there was half as much 2'2Bi and 2!2Pb as
224R3 indicates an emanation efficiency of around 50%. This means that about half of the 22°Rn atoms
produced in the cell are displaced from it by the flow of air before they have time to decay to *!?Pb.

If the emanation rate of 22°Rn atoms from the MnO; cell is assumed to be constant during the
emanation process then Equation 4.6 gives a relationship between the deposition rate of 22Pb in atoms
per second, R, and the number of atoms of 2!2Pb on the tubing, N(t), after a time, t, of uninterrupted
emanation.

—djzt(t) — R— AmN(2) (4.6)
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Figure 4.7: The amount of 2'2Pb collected from the coil of tubing plotted against different times of
emanation. The fit is to a constant deposition rate of 212 Pb in the tubing as given in Equation 4.7 and
the result is 101 atoms of 2*2 Pb deposited per second.

By assuming that initially the tubing is free from 2!2Pb a solution to Equation 4.6 can be found and
this is given in Equation 4.7 where Apy = AppN(T'), is the activity of 2!2Pb in the tubing immediately
after T hours of uninterrupted emanation.

R=Apy(1 - e”\P*’T)’l 4.7)

An experiment was conducted to determine whether or not this relationship between the recovered
activity and the emanation time was followed. This experiment involved using the MnO; cell of experi-
ment CLS10 after it had been left for several weeks so that the 224Ra activity, and hence the production
of 220Rn, of the cell would remain constant over several days. The cell was then left in the pumping
circuit to emanate 22Rn for 5, 10, 20 and 40 hour periods. At the end of each period the tubing was
washed with 0.5M hydrochloric acid and the initial activity of the recovered 2'2Pb was measured by
gamma counting.

The results of this experiment, along with the statistical errors of the fitted initial amount of 2?Pb,
are shown graphically in Figure 4.7 where they are fitted to the expression in Equation 4.7. Despite the
large errors it seems clear that the time dependence of the amount of 22Pb recovered as a function of the
emanation time is in agreement with the expression given in Equation 4.7. It can therefore be concluded
that, approximately, the emanation of 22°Rn remains constant over a period of at least a few days.

The emanation efficiencies for all of the 2'2Pb sources produced at Oxford and BNL are given in
Table 4.3. It should be noted that experiment BCL5 was different from all of the other experiments in
that the volume of the coil of tubing used was only 30 millilitres and it was expected to trap only about
half of the 22°Rn that was normally trapped in the 90 millilitre coil. (This expectation is explained in
the next section.)

For those experiments where the pumping circuit was run according to the procedure in Section 4.4.1
on page 52 the emanation efficiencies can be seen to vary from about 30% to 70% and these differences
are assumed to be due to differences in the drying and packing of the MnO; beads. In experiments which
used the same cell the variation in emanation efficiency was typically much smaller: 56+5% for the cell
made in experiment CLS10, and 59+9% for the cell made in experiment BCL1.
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| Exp. —|TActivity of cell | Emanation Eff | Collection Eff ! 212pb Activity ] Overall Eff l

CLS4 53+1Bq 47+8% ~70% 6.4+0.2Bq 12%
CLS5 380+20Bq 31+8% ~80% 43+2Bq 11%
CLS6 235+35Bq 35+11% ~80% 47+2Bq 20%
CLS7 220+10Bq 58+6% 84+2% 49+2Bq 22%
CLS8 155+5Bq 33+4% ~80% 30+1Bq 19%
CLS9 205+5Bq 65+4% ~80% 37+1Bq 18%
CLS10 595+10Bq 54+5% 81+2% 153+7Bq 26%
CLS11 179+5Bq 53+2% 69+3% 24+1Bq 13%
CLS12 165+4Bq 62+4% ~70% 26+1Bq 16%
BCL1 306+£8Bq 71+4% 77+1% 116+2Bq 38%
BCL2 275+7Bq 52+3% 68+1% 73+1Bq 27%
BCL5 239+3Bq 39+2% 72+2% 33+3Bq 14%
BCL7 239+3Bq 52+3% 80+1% 48+1Bq 20%
BCLS8 239+3Bq 60+£3% 79+1% 78+2Bq 33%

Table 4.3: The efficiencies and activities measured in ezperiments which manufactured sources of *'2 Pb.
The ezperiments labelled CLS were conducted at Ozford whereas the experiments labelled BCL were con-
ducted at BNL. The cell used in experiments CLS11 and 12 was the one that was produced in experiment
CLS10 and the cell used in experiments BCL2, 5, 7 and 8 was the one that was produced in experiment
BCL1. The smaller amount of 2'2 Pb recovered in experiment BCL5 was expected and is ezxplained in the
text. In this table the loss of 1?2 Pb due to decays between stopping the pumping and counting the source
has been taken into account.

Washing time ” Measurements of Collection Efficiency: l

10 minutes 69+3%(CLS11) 72+2%(BCL5)
30 minutes || 77+1%(BCL1) 80+1%(BCL7) 79+1%(BCLS)
60 minutes 84+2%(CLS7) 81+2%(CLS10) 68+1%(BCL2)

Table 4.4: The measured collection efficiency for *'2Pb after leaving 0.5M hydrochloric acid circulating
in the coil of tubing for different times.

4.4.5 The Trapping of the ??Rn and the Collection of the *'?Pb

The 2!2Pb that was deposited in the coil of tubing was recovered by rinsing with 0.5M hydrochloric
acid at a flow rate of about 30 millilitres per minute. The volume of acid that was used to wash the
tubing was chosen to be most suitable for the counting technique which was to be used. Hence at Oxford
50 millilitres was used which was then measured initially for activity using gamma counting whereas at
BNL only about 10 millilitres were used to produce a more concentrated 212Pb source for alpha counting.
It was found that changing the volume of the acid does not noticeably alter the collection efficiency.

The time that the acid was left to circulate within the tubing was varied between 10 and 60 minutes.
The efficiency of the collection process was measured by washing the coil of tubing twice and examining
the ratio between the amount of 2!?Pb found in the first wash compared to that found in the second
wash. The measured efficiencies after different washing times are listed in Table 4.3 and they seem to
imply an increase in efficiency from 70%, when using a washing time of 10 minutes, to 80% when using
30 minutes or more. The result for experiment BCL2 does not seem to be in agreement with the rest of
the results and the reason for this is unclear.
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Coil Measured 2!2Pb : Volume | Residence | Calculated 2'2Pb
Order || Activity l Distribution || of Coil | Time of Coil Distribution

1st 51+1Bq 100% 25ml 50 seconds 100%
2nd || 29+1Bq 57+2% 26ml 52 seconds 55%
3rd 12+1Bq 2442% 20ml 40 seconds 24%

Table 4.5: The results of experiment BCLJ which, after a usual emanation procedure, divided the 90
millilitre coil into three coils and then measured the amount of 212 Pb deposited in each small coil. The
calculated activity that is expected in each coil uses the fact that the rate of flow of air was 30 millilitres
per minute and that 22° Rn has a 55.6 second half-life.

A further experiment, experiment BCL4, was performed to try to determine the distribution of the
deposition of 22Pb in the 90 millilitre coil after a usual 22°Rn emanation. This was done by dividing
the 90 millilitre coil into three separate coils of about 30 millilitres each before collecting and measuring
the amount of 2!2Pb in each small coil. The results of these measurements are shown in Table 4.5 along
with the results of calculating the expected deposition distribution of 22Pb between the three coils. To
perform this calculation the first step was to determine the distribution of *°Rn decays between the
three coils by taking into account the 55.6 second half-life of 2°Rn, the 30 millilitre per minute flow rate
through the coils and the volume of each coil. Knowing the distribution of ?2°Rn decays and by assuming
that a constant fraction of the 212Pb produced from decays of 22°Rn is deposited on the tubing at the
place where it is produced, the expected distribution of 2!2Pb between the three coils can be calculated.
A comparison of the measured distribution to the expected distribution shows very good agreement. In
the second coil 57£2% of the activity in the first coil was collected which compares well to the 55% which
was calculated, and in the third coil 24+2% of the activity was collected which, again, compares well to
the 24% which was calculated. This is good evidence that most of the 2!2Pb is deposited on the tubing
where the 22°Rn decays.

While emanating 229Rn from the MnO- cells, as described in Section 4.4.1 on page 52, a more standard
procedure to collect the 2!2Pb produced by the 22°Rn decays was investigated. In experiments BCL3 and
BCL6 conducted at BNL, the 22°Rn emanated from the MnO, cell was fed into a filter and then into
two, 20 millilitre bubblers in series each of which was filled with 0.5M hydrochloric acid. The amount of
212P} collected in each bubbler after about 24 hours of emanation was found to be very small. In fact
the overall efficiency of producing 2'2Pb into the combined 40 millilitres of both bubblers was measured
to be just 3% in experiment BCL3 and 5% in experiment BCL6. These efficiencies are about an order
of magnitude lower than the efficiencies measured when a coil of tubing was used to trap the >2Rn and
collect the 2!2Pb. Therefore the use of bubblers was not investigated further.
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4.5 The Overall Evaluation of the Procedure to Manufacture

212ph Sources

4.5.1 The Overall Efficiency of the Procedure

The overall efficiencies of producing each 22Pb source are shown in Table 4.3 by comparing the
amount of 212Pb collected with the measured activity of the MnO» cell during the emanation. It is clear
that this overall efficiency is less than the result of simply multiplying the emanation efficiency by the
collection efficiency and so there must be a further unidentified loss of 2!?Pb in the production process.
One possibility, already mentioned and the reason for usually running the pumping circuit in a closed
loop, is that when the 22°Rn decays some of the ?'?Pb atoms produced do not deposit onto the tubing
but remain in the flow of air. This 2!2Pb was not found to deposit in the filter of the circuit and, since
all the other surfaces and volumes in the circuit are small compared to the 90 millilitre coil, it must be
assumed that this 2!2Pb remains in the air and is flushed away from the circuit when the collection of the
212P}h commences. One other possible loss is that some of the 2!2Pb deposits out on the tubing in such
a way that 0.5M hydrochloric acid does not remove it. This possibility could be verified by varying the
type of acid used to wash the tubing and measuring if any further 212P} is collected but unfortunately
there was insufficient time to carry out such experiments.

Interestingly it can be seen that, for the 2'2Pb sources manufactured at Oxford, the average overall
efficiency is 1745% which is about half that which would have been expected from combining the measured
emanation and collection efficiencies. However, for the 22Pb sources manufactured at BNL, the average
overall efficiency is 30£8% which is about two thirds of that which would have been expected. This
difference between the efficiency of producing 2'2Pb sources at the two different institutes could be due
to the differences between the coil of tubing used at BNL and that which was used at Oxford. It has
already been noted that the coil at BNL was made from smaller diameter glass tubing than the plastic
tubing used at Oxford. This smaller tubing might encourage more >'*Pb to deposit from the flow of air
than the larger tubing or it could be that 2!2Pb adheres more readily to glass than to plastic. Either of
these effects could explain the differences in the overall efficiency of manufacturing a 212Pb source at the
two institutes.

The 212Pb sources that were manufactured in the experiments listed in Table 4.3 were all measured
for 228Th contamination but two very different techniques for measuring this contamination were used
at the two different institutes. At Oxford any 22Th contamination was measured using § — a counters
by allowing the 2!2Pb in the source to decay away and then measuring any residual, long-lived, activity.
At BNL any 2?8Th contamination was measured, at production, by examining the alpha spectrum of the
212pY, gource. These different techniques and the results they produce will be discussed in the sections
below.
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Figure 4.8: The fitted 8 — a counting measurements of two 60 minute washes of the coil of tubing in
ezperiment CLS10. The collection efficiency can be calculated to be 81+=2% by comparing the amount of
212Pb collected in the first wash to that collected in the second. The results shown on the plots use the
fitting technique explained in Appendiz D.

4.5.2 Cleanliness Measurements using § — a Scintillation Counting at Oxford

A small sample of each 22Pb source produced at Oxford was measured for activity using the 3 — «
delayed coincidence scintillation counters, the details of which have already been discussed in Section 3.2.1
on page 30 with more details in Appendix D. The results of a typical measurement are shown in Figure 4.8.
This figure shows the number of measured 8 — o counts against the time in hours of the measurement
for two sequential washes of the coil of tubing in experiment CLS10. The results of the fits displayed on
the plots are for the ?!2Pb activity and the 95% upper level confidence limits for the 224Ra and 228Th
contamination of the source. The ratio of the 2!2Pb activity in the first wash compared to the second wash
gives the collection efficiency to be 81+2% as is listed in Table 4.3. The result of counting 50 microlitres
from the first 50 millilitre wash in experiment CLS10 for 160 hours is that the ?28Th contamination of
the source can be limited to less than 0.04%. In fact, a much tighter limit of the 226 Th contamination in
this 212Pb source was found by counting a larger volume, 10 millilitres, of the source at least two weeks
after its production. This result is listed in Table 4.6 along with similar measurements of 10 millilitres of
all of the 2!2Pb sources produced at Oxford.
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Exp. || Initial 2!2Pb Max 228Th in source:
No. of source Activity IZEJ of 212Pb activity

CLS4 6.4+0.2Bq 0.33+£0.06mBq <0.008%
CLS5 43+2Bq 0.82+0.12mBq <0.003%
CLS6 47+2Bq < 0.54mBq <0.002%
CLS7 49+2Bq <0.41mBq <0.002%
CLS8 30+1Bq 0.38+0.08mBq <0.002%
CLS9 37+1Bq 0.31+0.07mBq <0.002%
CLS10 153+7Bq 0.20+0.06mBq <0.0003%
CLS11 24+1Bq <0.45mBq <0.002%
CLS12 26+1Bq 0.93+0.15mBq <0.005%

Table 4.6: The results of measuring the 212 Pb sources manufactured at Ozford for 228 Th contamination.
Each of these limits were found by measuring 10 millilitres of each 50 millilitre source on a 3 — a counter
for several days at least two weeks after the production of the source.

It can be seen that all of the 212Pb sources manufactured at Oxford had a 2?8Th contamination of less
than 1 part in 10,000. Since the measured 22*Th backgrounds do not change considerably in consecutive
runs and in particular show no sign of a build up in later sources it seems unlikely that the small 222Th
background is being produced by the emanation of the MnO,. All of the 212Pb sources manufactured at
Oxford were produced in a laboratory which has residual 228Th backgrounds from previous high activity
experiments and so it seems more likely that this residual activity is the cause of the measured 2?8Th
background.

The results in Table 4.6 also show no difference in the 228 Th background between experiments CLS10-
12 and CLS4-9 which is evidence that the initial >>Ra separation from 2283 Th is not required to produce
sources of 212Pb free from 228 Th. However, as has already been mentioned, it is obviously beneficial to
have more than one separation stage between the 2'2Pb and the ?28Th when a contamination of 228 Th
would be disastrous.

4.5.3 Cleanliness Measurements using Alpha Counting at BNL

The 2'2Pb sources that were produced at BNL were measured for any 228Th contamination immedi-
ately after production by alpha counting a 400 microlitre sample from each source for about 15 hours.
These alpha sources were prepared on platinum disks by Dr R.Hahn of BNL and measured as described
in Appendix C. The alpha spectrum generated by the 2!2Pb source manufactured in experiment BCL2 is
compared to an alpha spectrum generated by an equilibrium source of ?28Th in Figure 4.9. It can be seen
from this figure that none of the alpha peaks from isotopes above 212Pb in the decay chain are visible in
the 212Pb source.

It should be noted that the alpha spectrum from the 2!2Pb source produced in experiment BCL5 was
different to those produced in the other four experiments due to the appearance of large, low energy tails
to the alpha peaks. This effect was probably caused by an increase in the amount of scattering of the
alpha particles due to more impurities in the source. It is reasonable to expect more impurities to be
found in the 2!2Pb source manufactured in experiment BCL5 because this was the only experiment which
did not run the pumping circuit in a closed loop. It is quite possible that the large volumes of air which
were pumped into the coil of tubing deposited not only 2!2Pb but also impurities since this air was not
filtered in any way.
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Exp Net Number of Counts in: Branching Ratio
No 5.55-5.65MeV | 5.70-5.83MeV | 5.92-6.14MeV || 5.6MeV | 5.8MeV

BCL1 47 72 3420 1.4% 2.1%
BCL2 47 61 5093 0.9% 1.2%
BCL7 75 59 5306 1.4% 1.1%
BCLS 86 84 6973 1.2% 1.2%

Average: l 1.24+0.2% | 1.44+0.5% l

Table 4.7: The measurement of the relative branching ratios of two small 2'2 Bi peaks in the alpha spectra
from the 22 Pb sources manufactured in ezperiments BCL1, 2, 7 and 8. The branching ratios are all given
with respect to the two main unresolved 212 Bi peaks at 6.09MeV and 6.05MeV.

The 2!2Pb sources manufactured in all the experiments, except experiment BCL5, produced alpha
spectra with such good resolution that two tiny peaks were visible at around 5.6MeV and 5.8MeV and for
the source manufactured in experiment BCL2 these can be seen in Figure 4.9. These peaks were identified
as being alpha decays from 2!2Bi. A measurement was made of their branching ratios, as a percentage
of the number of counts in the two main unresolved 2'2Bi peaks, and the results are given in Table 4.7.
Previous, more accurate, measurements of the alpha decays of ?!?Bi are listed in [Fir96] and these show
that there are actually three 2'2Bi peaks at 5.607MeV, 5.626MeV and 5.768MeV with branching ratios,
as percentages of the branching ratio to the two main unresolved 212Bi peaks, of 1.23%, 0.17% and 1.84%
respectively. The results of the present measurement can be seen to be in good agreement with these
values.

Limits on the amount of ??Th in each source manufactured at BNL were made by measuring the total
number of counts in two energy regions around known alpha peaks in the 228Th spectrum and allocating
these counts to that alpha decay. The two energy regions that were selected were, firstly around the
main ?2Th peaks (5.00MeV-5.50MeV) and secondly, around the 22°Rn and the 26Po peaks (6.15MeV-
7.00MeV). In order to produce contamination levels as a percentage of the 2'2Pb activity remaining after
the alpha counting, the 212Pb activity was deduced by measuring the net number of counts in both the
two main unresolved 2!?Bi peaks and the 2'2Po peak. The results of these measurements for all of the
212Ph sources manufactured at BNL are given in Table 4.8.

The results in this table show a much higher ?28Th limit for the source manufactured in experiment
BCL5 which can be explained by the increased scattering observed in the alpha spectrum. This is because
the low energy tail of the two unresolved 2!?Bi peaks is pushed into the energy region around the 228Th
peaks. The close proximity of the 22 Th peaks to the 2!2Bi peaks is one of the reasons for also considering
the energy region around the ?2°Rn and the 2!6Po peaks to monitor contamination since they are well
separated in energy from both the 2!?Bi and 2!2Po peaks. It can be seen from Table 4.8 that the limit
to the amount of ??°Rn in the source manufactured in experiment BCL5 is very similar to those in the
other sources which is good evidence that the source does not actually contain any more 228 Th.

Since it is very hard to think of a mechanism which would allow 228Th and not ?24Ra (hence 22°Rn)
to be in a 2!2Pb source manufactured by the procedure explained in this chapter, the 0.2% upper limit to
the amount of ?°Rn contamination in each source can probably also be assumed to be an upper limit to
the amount of 228Th. However, by directly measuring any 22 Th contamination using the good resolution
alpha spectra it can be seen that 2!2Pb sources of around a few hundred millibecquerels were made which
contained less than 0.3% 228Th. The fact that the 228Th in the sources can be measured down to this
sort of level before they are used is a major achievement and means that these 2!2Pb sources provide a
very promising method for calibrating systems in the SNO experiment.

66



oyl
o
(@)

ZZARO 220R n

N
o
(@]

[oX]
o
o

216P0

ZZBTh

212PO

} J ———

1 T 1 T 1 T 1 1 I

5 6 7 8 9
An equlibrated ?*Th alpha source

—1IIIIIIIIIIllllllllllllllT

Counts per 2.6keV vs Energy in MeV

300

200

150 ZIZBI- 2|2Po

100

50

-1lilllll|llllll||ll|||l|||lllll(l|

e ] I R e S S SR e e et Sl T Thn] e aatte e -

5 6 7 8 9
A 400wl sample of the 10ml ??Pb source produced in experiment BCL2

Counts per 2.7keV vs Energy in MeV

Figure 4.9: The top alpha spectrum is that which was generated by a source of 228 Th in equilibrium with
all of its daughters. The lower alpha spectrum is that which was generated by a 400 microlitre sample of
the 2'2Pb source manufactured in ezperiment BCL2. It can be seen that the peaks of 228 Th, 224 Ra, 22°Rn
and 1€ Po are not present in the lower alpha spectrum indicating only the presence of 2Pb. The pile up
of counts on the high energy side of the 2'2Po peak in the lower spectrum is due to 3 — a coincidences
since the alpha source was positioned extremely close to the detector to increase efficiencies. Finally,
the very small peaks at around 5.6MeV and 5.8MeV are alpha decays from ?'2Bi which have very low
branching ratios. These peaks are analysed in Table 4.7 and discussed in the text.
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Exp. | Final 212Pb Max 228Th in source: Max 22°Rn in source:
No. Activity Activity I as % of 212Pb || Activity | as % of 212Pb
BCL1 0.34Bq 0.77mBq 0.23% 0.47mBq 0.14%
BCL2 0.48Bq 0.98mBq 0.20% 0.63mBq 0.13%
BCL5 0.43Bq 2.2mBq 0.51%* 0.67mBq 0.16%
BCL7 | 048Bq | 1.3mBq 0.27% 0.51mBq 0.11%
BCLS 0.58Bq 1.4mBq 0.24% 0.63mBq 0.11%

Table 4.8: The results of measuring the 2'2 Pb sources manufactured at BNL for ?*® Th and >*°Rn con-
tamination. The limits were found by alpha counting 400 microlitres of each source for about 15 hours
and measuring the total number of counts in energy windows around the known alpha peaks of 2?8 Th as
is discussed in the text. In experiment BCLS5 the higher limit for 28 Th contamination, which is marked
with an asterisk, is discussed in the text as probably being due to the poor quality of the alpha source.

4.6 Conclusions

In the last chapter it was explained that it is important to be able to calibrate the entire HTiO
SUF assay system for 2!2Pb without adding long-lived activity to the SNO detector. In Section 3.2.1
on page 29 it was explained that the amount of long-lived thorium decay chain activity in the heavy
water has to be less than 1 decay per day per tonne (1ddt) in order to produce neutrons at a rate less
than about one tenth of the rate that they are expected to be produced by NC neutrino interactions.
It is reasonable to insist that any calibration source to be used directly in the heavy water of the SNO
experiment must be shown, before use, to produce less that 0.1ddt of 228 Th if it is completely mixed with
the 1000 tonnes of heavy water. This corresponds to sources being shown to contain less than about 1
millibecquerel of 222Th before they can be used.

In this chapter a procedure for manufacturing sources of 212Pb free from 22Ra and 228Th has been
developed and tested with excellent results. The upper limit on the amount of 222Th in such sources was
measured to be as low as 1 part in 10,000 by counting the sources for activity after the 212Pb had decayed
away. More importantly, using alpha counting, the amount of >?8Th in a 2'?2Pb source ready to be used
has been measured to be less than 0.3%. Using this 0.3% upper level 222Th contamination limit it can be
calculated that up to about 300 millibecquerels of such a 22Pb source can be added to the heavy water
without adding more than 1 millibecquerel of 2?28 Th.

These 212Pb sources can be used to calibrate any extractive water system in SNO that is sensitive to
212PY, including the HTiO SUF assay system, and are used to calibrate 2!2Pb extractions in Chapters 6
and 7 of this thesis. By adding such sources to the heavy water in the SNO detector at different places
before the extractive water systems it may also be possible to determine whether or not lead plating is
occurring. The importance of being able to investigate plating effects was discussed in the last chapter.

An interesting use of 21?Pb sources would be to add them directly to the 1000 tonnes of heavy water
in the acrylic vessel. It has been calculated that for every 470 decays of 22Tl in the SNO detector one
neutron will be produced [McD87]. This means that a 300 millibecquerel source of 2!2Pb added to the
acrylic vessel would generate about 30 neutrons in the first 24 hours after it was added to the detector and
this would just be noticeable above the neutrino signal which is expected to produce about 10 neutrons
a day. However with more research, and by producing stronger 2!2Pb sources, it is expected that tighter
upper limits on the amount of 22Th in the 212Pb sources can be measured and hence it may be possible
to add stronger sources of 2!2Pb to the detector. If such sources were added to the heavy water in the
acrylic vessel it would allow investigations both into the mixing of the heavy water and also into the
effectiveness of other background analysis techniques which were described in Chapter 2.
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Chapter 5

The Secondary Concentration of
212Pb and 228Th from the SUF Eluate

5.1 Introduction

In Chapter 3 it was explained that an efficient method for the secondary concentration of lead and
thorium from the SUF eluate is needed to complete the HTiO SUF assay system for the SNO experiment.
This method has to satisfy the following requirements:

1. These procedures have to extract and concentrate minute quantities of 2!2Pb and 228Th from a
volume of up to 20 litres of 0.5M hydrochloric acid into just 12 millilitres of aqueous solution which
can be measured by a 8 — a delayed coincidence scintillation counter. Furthermore, the procedure
for 212Pb has to be completed within about an hour or losses due to the 10.6 hour half-life of 212Pb
will begin to be important.

2. The procedures have to be unaffected by the large quantities of titanium that it is expected will be
present in the 20 litres due to the dissolution of the HTiO ion exchange material in 0.5M hydrochloric
acid.

In this chapter are the details of many experiments designed to evaluate the suitability of the method
of solvent-solvent extraction to perform the secondary concentration of lead and thorium from the SUF
eluate. Firstly these experiments were conducted using small volumes and large quantities of 2!2Pb and
228Th, then they used large volumes and finally they used amounts of 2!2Pb and 22Th similar to the
extremely small amounts that it is hoped will actually be present in the SUF eluate.

During these experiments it proved necessary to develop methods both to back-extract the lead
and thorium from the organic phases used in the solvent-solvent extractions, and to provide a final
concentration to the required 12 millilitres. Finally, different techniques to perform large volume solvent-
solvent extractions were investigated and a 8 litre Prototype Rig was constructed and evaluated.

All of the experiments detailed in this chapter were carried out at Oxford University during 1995.
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5.2 Theoretical Possibilities for the Secondary Concentration of
22Pb and #?Th

5.2.1 A Possible Extraction Method

Solvent-solvent extraction is the process by which metal ions are extracted from an aqueous phase
into an organic phase. A concentration from an aqueous sample can thus be obtained by extracting into
an organic phase of a smaller volume.

This method of extraction works by using reagents which combine with metal cations to produce
molecules that are preferentially soluble in the organic phase. These reagents are often very selective as
to which cations they combine with and hence systems can be formed not only to extract certain metal
ions but also to separate them.

Solvent-solvent extractions are actually a better extraction system than the one used for the secondary
concentration of ??#Ra since in the latter case, unlike in the former, there is a precipitation stage which
could give difficulties of contamination due to co-precipitation.

Any solvent-solvent extraction can be characterised by a distribution ratio. This is a stoichiometric
ratio of the concentration of a component in the organic phase compared to the amount in the aqueous
phase irrespective of the species of the extracted component. If all the chemical reactions involved in an
extraction are known this ratio can be calculated, and it can also be measured by experiment.

In batch solvent-solvent extraction Equation 5.1 gives an expression for the percentage extraction
efficiency of a component from an aqueous phase into the organic phase, E, in terms of the distribution
ratio, D, the volume of the aqueous phase V and the volume of the organic phase v. The ratio of the
aqueous phase volume to the organic phase volume, V/v is often called the phase volume ratio.

-1
E(%) = 100 x <1 + %-‘3) (5.1)

In simple systems the distribution ratio is the same as the distribution coefficient, K, obtained by
examining the chemical reactions involved in the extraction. However, when reactions are going on within
the different phases themselves the distribution ratio and coefficient are not necessarily equal.

Many solvent-solvent extractions have distribution ratios large enough that good efficiencies can be
obtained even when phase volume ratios of as much as twenty are used. Since the SUF eluate may be as
large as 20 litres it seems unlikely that a solvent-solvent extraction by itself will produce a 12 millilitre
aqueous sample that can be measured by a single 8 — a counter. There are many known techniques,
specific to different reagents, to back-extract (or strip) metal ions from an extraction reagent in an organic
phase into an aqueous phase and these techniques together with possible extraction reagents for both
lead and thorium are listed in the following section and the most promising reagents are selected.
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5.2.2 Possible Extraction Reagents

For Lead Extraction:

Possible reagents for the solvent-solvent extraction of lead were obtained by consulting, amongst other
sources, the National Academy of Sciences report on the Radiochemistry of Lead [Gib61]. The following
is a summary of possible extraction reagents for lead:

e Cupferron

Using isoamyl alcohol as the solvent, lead can be separated from other elements using cupferron by
varying the pH of the solution. However, lead can only be extracted if the pH of the aqueous phase
is about 3. The 20 litres of SUF eluate is produced to be 0.5M in hydrochloric acid (a pH of 0.3)
and increasing its pH to around 3 is not a desirable alternative since this would involve the careful
addition of about 10 moles of alkali which would also generate a large amount of heat. Therefore
this reagent was not selected for further study.

e 2-Thenoyltrifluoroacetone

This reagent is widely used in the separation of metal ions but lead is only extracted from solutions
with pH greater than 4 and so again it was not selected for further study.

e Dithizone

Lead dithizone is selectively extracted into organic solvents. Unfortunately lead is only extracted
with dithizone from solutions with a pH above 3 and so this system was not selected for further
study.

e Diethyldithiocarbamic acid and related compounds

Diethyldithiocarbamic acid uses a similar method to that of dithizone but it reacts with more
elements and has a more limited pH range of extraction of its complexes and so it is generally less
useful than dithizone for separating lead from other elements. However, the lead complex can be
extracted from 0.5M hydrochloric acid.

The diethyldithiocarbamic acid can be generated in two different ways. Firstly, sodium diethyldithio-
carbamate can be dissolved in an aqueous phase and then itself and the lead complex extracted
into an organic phase, or secondly, an organic diethyldithiocarbamate compound can be dissolved
directly into the organic phase. This latter approach is most suitable when extracting from acidic
aqueous phases. Two available compounds have been used in the past which dissolve directly into
an organic phase. These are:

— Ammonium pyrrolidinedithiocarbamate (APDC)
— Diethylammonium diethyldithiocarbamate (DDDC)

The first of these compounds is generally more stable in acidic conditions than the second but it is
also less soluble in organic solvents. The solubility issue of the reagents is discussed alongside the
selection of a suitable solvent in the next section.

A very efficient method for back-extracting lead from both APDC and DDDC can be found in
[Mag81] which involves adding a small volume of concentrated nitric acid to the organic phase,
mixing for several minutes and then rinsing the lead out with water.
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For Thorium Extraction:

Possible reagents for the solvent-solvent extraction of thorium were obtained by consulting, amongst
other sources, the National Academy of Sciences report on the Radiochemistry of Thorium [Hyd60]. The
following is a summary of possible reagents for the extraction of thorium:

e Tributyl phosphate (TBP)

This reagent successfully extracts thorium only from high molarity nitric acid solutions or ones
which also contain large quantities of calcium nitrate. Altering the chemical consistency of the
SUF eluate by such margins would require large quantities of chemicals so this reagent was not
considered for further study.

e Trioctylphosphine oxide (TOPO)

Thorium is very highly extracted using this reagent from nitric acid solutions, particularly if the
nitric acid molarity is as much as 1M but unfortunately it does not extract from 0.5M hydrochloric
acid solutions. The addition of 20 moles of nitric acid to each SUF eluate before processing would
be very impractical and so this reagent is not really suitable for use in the secondary concentration

of thorium. !

e Di-(2-ethylhexyl)phosphoric acid (HDEHP)

This is an acidic ester of orthophosphoric acid and it is a reagent specifically designed for the
extraction of thorium. It is known that it extracts thorium with a high partition coefficient from
hydrochloric acid solutions of virtually all molarities, to a lesser or greater extent.

A number of methods to back-extract thorium from HDEHP were found in the literature and these
include using 6M hydrochloric acid [Sat68] or 2M ammonium carbonate [Sha77].

5.2.3 Possibilities for Organic Solvents

An organic solvent was required to perform the solvent-solvent extractions and at first it was hoped
for simplicity that the same solvent could be used for both lead and thorium. Firstly, the solvent had
to be safe to use from both a toxicity and a flamability standpoint which ruled out most usual solvents
such as carbon tetrachloride, toluene and chloroform. Secondly, the solvent had to dissolve or mix with
the selected extraction reagents and be compatible with the strong acids used in the back-extraction
procedures.

The HDEHP reagent was found to be readily miscible in a number of safe organic solvents, however
DDDC and APDC were not found to be readily soluble in these solvents. For example, kerosene was
tested for DDDC solubility and even after leaving for several hours an insufficient amount of DDDC was
dissolved to perform lead extractions. Due to this solubility difficulty the DDDC compound was chosen
for use in preference to the APDC compound since the latter was found to have an even lower solubility.

A safe solvent, investigated for use and found to dissolve a suitable amount of DDDC, was di-isopropyl
napthalene (DIN) which is the base of the scintillator cocktail used by the 8 — & counters. Unfortunately
this solvent could not be used in the back-extraction of lead as concentrated nitric acid was found to
decompose the solvent leaving unknown residues.

!Some small scale feasibility tests were conducted using TOPO by adding nitric acid to the aqueous phase before
extractions and good efficiencies for thorium were obtained, however no efficient back-extraction method was found and so
these tests were discontinued.
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After a considerable search a suitable solvent was found which would dissolve good quantities of
DDDC and was stable in the presence of concentrated acids. This solvent was 2-pentanone, a long chain
ketone. Unfortunately 2-pentanone was not found to have very good separation characteristics from
water and so another ketone with a longer chain length was sought. A solvent, 2-octanone, was found to
dissolve good quantities of DDDC, to be stable in the presence of concentrated acids and found to have
excellent separation characteristics from water. Further characteristics of 2-octanone are that it has a
high flash-point, is available from chemical suppliers at a fairly low cost and it has low toxicity.

Therefore 2-octanone was chosen to be used as the solvent in lead extractions and it was also used
initially for thorium extractions until it was found that kerosene had to be used to allow the back-
extraction of the thorium (see Section 5.4.5).

5.2.4 The Theory of the Selected Chemical Extractions

The chemical mechanisms by which the selected reagents extract lead or thorium have been studied
in the literature. Below is a brief summary of the chemical reactions involved in these extractions and
an indication of their extraction abilities, as determined by other authors.

e The diethyldithiocarbamate extraction of lead, eg DDDC:

When the DDDC is dissolved in an organic phase it forms diethyldithiocarbamate ions which
have the following chemical formula: (CyHs); NCS(S—). When shaken with an acid solution, the
diethyldithiocarbamate ions are converted to diethyldithiocarbamic acid which reacts with Pb(II)
ions. This reaction requires two acid molecules per Pb(II) ion and produces two hydrogen ions
which are released into the aqueous phase. The distribution coefficient for this process is given by:

P [(Pb — complez)|o[H*]%
[P 4[DDDC]S

Where the square brackets denote the molar concentration of that species in the organic (O) or
aqueous (A) phase.

The lead diethyldithiocarbamate molecule can be hydrolysed using a strong acid into carbon disul-
phide and an amine which releases Pb(II) ions back into the aqueous phase and this is the rec-
ommended back-extraction method as is described in Section 5.2.2 on page 71. Lead has been
extracted from a solution at pH 4.5 and then back-extracted with virtually 100% overall efficiency
using a few percent weight to volume (w/v) solution of DDDC [Mag81].

One concern about the suitability of DDDC for extracting from 0.5M hydrochloric acid is the
instability of the diethyldithiocarbamic acid formed but the literature indicates that DDDC can be
used to extract lead from aqueous solutions up to about 1M in hydrochloric acid [Bod60]. Indeed,
when equal phase volumes of DDDC in carbon tetrachloride and 1M hydrochloric acid are mixed
together it requires 20 minutes of mixing to reduce the concentration of the dithiocarbamate ion in
the organic phase by a factor of two [Bod59]. It should be noted that this characteristic time for
decomposition is dependent upon the solvent used since it depends upon the distribution coefficient
of the DDDC reagent between the organic and aqueous phases. However, it would seem likely
that mixing times of the order of a few minutes can easily be tolerated when using other solvents,
including 2-octanone, and this is all that is required to extract lead.
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Figure 5.1: This figure is taken from [Sat68] and it shows a log-log plot of the variation of partition
coefficient with hydrochloric acid concentration in the extraction of thorium by solutions of HDEHP in
kerosene. The numerals on the curves indicate the molar HDEHP concentration. The decrease of the
partition coefficients for all HDEHP molarities at about 6M hydrochloric acid indicates a possible back-
extraction method.

o The extraction of thorium using di-esters of orthophosphoric acid, eg HDEHP:

The reagent HDEHP is a di-ester of orthophosphoric acid and it has the following chemical for-
mula: (CgH;70)2 PO(OH). When thorium is extracted by such a reagent the hydrogen ion of the
phosphate group is replaced with a fraction of the thorium ion. The dominant reaction requires
three HDEHP molecules per Th(IV) ion and it produces four hydrogen ions which are released into
the aqueous phase. The distribution coefficient for this dominant reaction is given by:

P [Th — complez])o[Ht]4
= “Th | [HDEHF},

In fact the chemical reactions are more complicated than this dominant reaction and the distribution
ratio has been found to include another term involving the concentration of other anions in the
aqueous phase [Pep60].

The measured partition coefficient for thorium extractions using HDEHP from solutions of hy-
drochloric acid is shown in Figure 5.1 which contains a plot taken from [Sat68]. This figure indicates
that good extraction efficiencies are possible when extracting from 0.5M hydrochloric acid and that
back-extractions using 6M hydrochloric acid may be possible.
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5.3 An Introduction to Experimental Techniques

5.3.1 Methods of Assay

In order to determine the efficiency of lead and thorium extractions and back-extractions it was
necessary to have techniques to assay these elements. There were two techniques available at Oxford
which could measure 2'2Pb and 2?8Th. Firstly, there were the 8 — o delayed coincidence scintillation
counters whose operation has already been explained in Section 3.2.1 on page 30 and are also discussed
in Appendix D. Unfortunately the 8 — a counters developed at Oxford could not be used to measure
samples of 2-octanone and so their use in researching solvent-solvent extractions was quite limited. The
second counting technique available was that of gamma counting using a Ge(Li) detector and details of
this can be found in Appendix B. The sensitivity of the Ge(Li) counter is much lower than that of the
B — a counters and so kilobecquerel quantities of 212Pb and 228 Th have to be used to measure efficiencies.
However, it was not expected that there would be any difference between measuring efficiencies using
kilobecquerel or millibecquerel amounts of 2*2Pb and 228Th but this is investigated briefly in Section 5.7.1
which starts on page 86.

The Ge(Li) detector allows the measurement of any liquid sample and in particular both organic
and aqueous samples can be measured. At first the counting bottles were washed in acid and re-used
but experiments showed that this did not remove all traces of 228Th which therefore introduced some
cross-contamination of experimental results. The effected results were discounted and new, clean bottles
were used for all other experiments in order to eliminate this problem.

Unless otherwise stated statistical errors on counting measurements were about 10% and estimates
of the initial amounts of 2!2Pb, 22Ra and 2?8Th in each sample were made by counting each sample at
certain times after the experiment was performed. In later experiments a best fit of such measurements
was used to determine initial activities more precisely. Both of these techniques are described in detail
in Appendix B.

5.3.2 Sources of Chemicals

The acids and chemicals used in the experimental investigation detailed in this thesis were all pur-
chased from standard chemical suppliers. The DDDC reagent and the 2-octanone (98%) were purchased
from Aldrich? whereas the HDEHP was purchased from Sigma® and the kerosene (as heavy distillate)
was purchased from Merck?.

It should be noted that the HDEHP used in all of the experiments was not purified as was suggested
in the literature. This process was omitted to allow for easier experimentation and initial results showed
that good extraction efficiencies could be obtained from the reagent used straight from the bottle. (The
discussion in Section 5.7.3 on page 91 mentions some possible problems that could result.)

In order to measure extraction efficiencies a spike of 228Th in equilibrium with all of its daughters,
including 2!2Pb, was added to aqueous phases just prior to extractions. This was taken from a 300
becquerel per millilitre stock solution of 223Th in 1M nitric acid which itself had been diluted from a
228Th source purchased from Amersham®.

2 Aldrich Chemical Co, The Old Brickyard, New Road, Gillingham, Dorset, SP8 4BR
3Sigma Chemical, Fancy Road, Poole, Dorset, BH12 4XA

4Merck Ltd, Hunter Boulevard, Magna Park, Lutterworth, Leicestershire, LE17 4XN
5 Amersham International PLC, White Lion Road, Amersham, Bucks, HP7 9LL
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5.4 Small Scale Feasibility Studies using Solvent-Solvent Batch

Extraction

5.4.1 Introduction and General Procedure

The reagents selected and examined in previous sections were tested experimentally for extraction and
back-extraction efficiencies initially by using just 0.5 litres of aqueous phase. This volume was chosen
primarily for practical purposes and it means that the experiments in this section were all carried out
at about one fortieth of the scale of the volumes needed for the secondary concentration from the SUF
eluate. For all of the experiments this aqueous phase was made chemically similar to the SUF eluate by
making it 0.5M in hydrochloric acid and by adding several milligrams of titanium.

All of the extractions in this section were carried out in a 1 litre separating funnel by allowing the
phases to mix for a certain amount of time. This mixing was achieved either by tilting the separating
funnel by hand a number of times, 10 tilts being carried out in approximately 1 minute, or by mechanically
shaking the funnel for a number of minutes. The phases were then allowed to separate, which took only
a few minutes, before the aqueous phase was removed and the less dense organic phase collected.

A sample of the aqueous phase was taken before and after each extraction for gamma counting so
that extraction efficiencies calculated by measuring the appearance of activity in the organic phase could
be checked by comparing them to the disappearance of activity from the aqueous phase.

In the following sections the results of small scale batch experiments using DDDC and HDEHP are
listed along with some more specific experimental details.

5.4.2 The Extraction and Back-Extraction of ?'2Pb using DDDC

The details of several small scale batch solvent-solvent extractions using a solution of DDDC in 2-
octanone are given in Table 5.1. Alongside each description of the extraction is the overall extraction
efficiency for 212Pb as determined by gamma counting. The gamma counting results also showed that the
DDDC reagent did not extract any 224Ra or 2?8Th which is what one would expect from the literature.

The results in Table 5.1 show that overall extraction efficiencies for lead of about 60-80% can be
obtained using a solution of DDDC in 2-octanone when phase volume ratios of around 50 are used. This
overall efficiency is the combination of two or three extractions each using a small organic volume and a
very short amount of contact time, typically only a minute or two. This efficiency was lower than that

Exp Conc in w/v | Volume | Time | Number Extraction

no of DDDC of Org | of Ext | of Ext | Efficiency in %
CEL5 sat sol 10ml | 20 tilts 2 79
CEL6 2% 5ml 20 tilts 2 63
CEL7 2% 15ml | 20 tilts 2 70
CEL9 sat sol 8ml 20 tilts 3 72
CEL10 sat sol 8ml 20 tilts 3 77

Table 5.1: The results of extraction experiments using a solution of DDDC in 2-octanone. The concentra-
tion of DDDC is expressed as a weight to volume percentage in the 2-octanone solvent and the saturated
solution which was used was estimated to be about 2.5% w/v ie 25 milligrams per millilitre. The overall
extraction efficiency is the combined efficiency of all of the individual extractions carried out in each
experiment. The aqueous phase used in each of these erperiments was 0.5 litres of 0.5M hydrochloric
acid.
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which had been expected from the literature however it was considered sufficient for the needs of the
SNO experiment. An indication that it was not the chemistry of the extraction that was failing comes
from the fact that the results for the experiments are all quite similar despite varying the organic phase
volume and the number of extractions. These lower efficiencies can be explained if the organic phase
was not completely collected after each extraction which was possible in these experiments because the
apparatus was not well rinsed.

For most of the extraction experiments a back-extraction was also carried out. This involved adding
a certain volume of concentrated nitric acid to the organic phases of all of the extractions mixed together
and shaking the result on a mechanical shaker for a number of minutes. The aqueous phase was then
rinsed with a volume of water and separated from the organic phase for gamma counting. The details of
these back-extractions and the results that they gave are given in Table 5.2.

The results show that the back-extraction technique works well, being about 60-80% efficient at
stripping the lead from the DDDC in the organic phase into a small aqueous volume of high acid strength.
Again, these efficiencies are lower than those seen in the literature and they can be explained by inadequate
rinsing of the apparatus leading to an incomplete collection of the aqueous phase.

Combining the extraction and back-extraction efficiencies gives an overall efficiency of only 40-60%
but it was expected that this could be increased by optimising the techniques involved.

5.4.3 The Extraction and Back-Extraction of **Th using HDEHP

The details of several small scale batch solvent-solvent extractions using a solution of HDEHP in 2-
octanone and kerosene are given in Table 5.3. Alongside each description of the extraction is the overall
extraction efficiency for 222Th as determined by gamma counting.

Experiment CPEL3 was an attempt to combine the lead extraction and the thorium extraction and
so the organic phase was also saturated with DDDC. Although the 223Th extraction was unaffected by
the DDDC there was no observable 2!2Pb extraction and it is unclear exactly why this was true but it
could have been due to the decomposition of the DDDC since the HDEHP reagent itself is acidic.

The results in Table 5.3 show that good extraction efficiencies for ?28Th using HDEHP in 2-octanone
and kerosene can be achieved when phase volume ratios of around 50 are used. This efficiency does not
seem to be increased by increasing the number of extractions, however there is a correlation between the
efficiency and the length of contact time in the extraction. Experiments PEL4, 5 and 9 all have notably
higher extraction efficiencies than the other experiments and it can be seen that these experiments all
used more than 10 minutes extraction time in comparison to the much smaller times used in the other
experiments. Hence it would seen that extraction times of at least 10 minutes are needed to efficiently
extract 228Th using HDEHP.

The details and results of several attempts to back-extract thorium from HDEHP are shown in Ta-
ble 5.4. Firstly, it can be seen that thorium cannot be back-extracted from HDEHP using strong nitric
acid. Also, back-extractions using 6M hydrochloric acid are unsuccessful when 2-octanone is the solvent.
However, the results of experiments PEL7 and 9 show that when kerosene is used as the solvent variable
back-extraction efficiencies into 6M hydrochloric acid can be achieved as had been indicated in [Sat68].

77



Exp Total Vol of | Time of | Vol of || Back-Extraction
no Org Vol | HNOj3 | Shaking | H,O Efficiency in %

CEL6 30ml 0.2ml | 10mins | 10ml 65
CEL7 60ml 0.6ml | 20mins | 10ml 81
CEL9 60ml 0.6ml | 20mins | 6ml 64
CEL10 60ml 0.6ml | 20mins | 10ml 83

Table 5.2: The results of back-extracting 2'2 Pb from DDDC in 2-octanone using concentrated nitric acid.

Exp HDEHP Volume | Time | Number || Extraction

no Conc of Org | of Ext | of Ext Eff in %
PEL1 1.5M in 2-octanone | 10ml | 20 tilts 2 57
PEL3 1.5M in 2-octanone 10ml 20 tilts 3 58
CPEL3 || 1.5M in 2-octanone | 10ml 2mins 3 64
PEL4 1.5M in 2-octanone 8ml 10mins 3 85
PEL5 1.5M in 2-octanone 8ml 5mins 3 58
PEL7 0.1M in kerosene 10ml 15mins 2 89
PEL9 0.05M in kerosene 15m! | 30mins 2 71

Table 5.3: The results of extraction experiments using a solution of HDEHP in 2-octanone. The overall
egtraction efficiency is the combined efficiency of all of the individual extractions carried out in each
ezperiment. Experiment CPELS was an attempt to combine a 228 Th extraction with a 2'2 Pb eztraction and
so the organic phase was also saturated with DDDC. The aqueous phase used in each of these experiments
was 0.5 litres of 0.5M hydrochloric acid.

Exp HDEHP Total Method for Back-Extraction
no Conc Org Vol Back-extraction Efficiency in %
PEL3 1.56M 60ml +3ml conc HNOj3 for
in 2-octanone 20mins then H5O rinse 0
CPEL3 1.5M 60ml +3ml conc HNO3 for
in 2-octanone 20mins then H,O rinse 0
PEL5 1.5M 60ml 2x(20ml 6M HC1
in 2-octanone shaken for 5mins) 0
PEL7 0.07T™M 30ml 30ml 6M HCl
in kerosene shaken for 20mins 31
PEL9 0.06M 30ml 30ml 6M HCl
in kerosene shaken for 30mins 100

Table 5.4: The results of back-extracting 2?8 Th from HDEHP wusing concentrated nitric acid and 6M
hydrochloric acid.
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5.4.4 Titanium Extraction Results

Some samples from lead extractions were analysed for titanium using a spectrophotometric technique
as detailed in [How94]. Less than 1% of the titanium initially present was found in any back-extracted lead
sample and the titanium content of the aqueous phase remained the same before and after lead extractions.
This indicates that DDDC does not extract titanium and that extractions and back-extractions using
DDDC are not only insensitive to the amount of titanium in the SUF eluate but they also separate the
212P} from the titanium.

Samples from experiments PEL4 and PEL5 of the last section, which involved the HDEHP extrac-
tion of thorium, were also analysed spectrophotometrically for titanium and in this case some titanium
extraction was observed at an efficiency of about 40% but this did not interfere with the 222Th extrac-
tion. Furthermore, measurements of back-extracted thorium solutions using the 6M hydrochloric acid
showed that less than 1% of the titanium present in the initial aqueous phase makes its way into the
back-extraction solution. Therefore HDEHP could be used to separate 228Th from the titanium excess
in the SUF eluate.

In conclusion, both DDDC and HDEHP were seen to extract 212Pb and 228Th from a titanium excess
into solutions which do not contain titanium and so it is likely that these techniques will still work even
if the amount of titanium in the SUF eluate varies considerably.

5.4.5 Conclusions of Feasibility Studies

The results given in the previous sections show that the chosen reagents for the extraction of thorium
and lead are suitable. Using a solution of DDDC in 2-octanone 2!12Pb can be efficiently extracted from a
0.5M hydrochloric acid containing titanium and back-extracted into a smaller aqueous volume. Using a
solution of HDEHP in kerosene the same can be achieved for 228Th. In the next section these extraction
systems are further investigated in experiments which start from 2 litres of 0.5M hydrochloric acid.

5.5 Medium Scale Studies Using Continuous Extraction Tech-

niques

5.5.1 The Need for a Third Stage for Extractions from the SUF Eluate

Unfortunately if the lead and thorium extraction and back-extraction procedures which were inves-
tigated in the last section are used to extract from 20 litres of SUF eluate they would produce aqueous
phases which are too acidic and too large to be measured directly by a single 3 — a counter. Therefore
it became clear that a further, final concentration stage had to be developed.

In the last section results showed that virtually no titanium remains in the back-extracted solutions
after HDEHP and DDDC extractions. This means that it is now possible to use the hydrous titanium
oxide (HTiO) ion-exchange method, as is used in the secondary concentration of radium, to perform a
final concentration stage. The details of the procedure used for the secondary concentration of radium is
given in Section 3.2.3 on page 31.

In the experiments in this section such an HTiO stage is used, in conjunction with a solvent-solvent
extraction and back-extraction, to concentrate the 2!2Pb and 228Th from 2 litres of a liquid chemically
similar to the SUF eluate into a 12 millilitre sample.
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Figure 5.2: Apparatus for continuous solvent-solvent extractions.

5.5.2 The Method of Continuous Extraction for Large Volumes

The method of solvent-solvent batch extraction, as used so far, is unsuitable for much larger volumes
since large separating funnels are difficult to purchase and become unwieldy to shake. A different approach
to perform the extraction was developed and this was to pump the more dense aqueous phase onto the top
surface of a layer of an organic phase thereby allowing it to pass through the organic layer under gravity.
The advantages of this form of continuous extraction are that the pumping rate can be standardised and,
if small enough droplets are produced, one would expect good contact between the two layers.

Some experiments using 2 litres of aqueous phase were performed using the apparatus as shown in
Figure 5.2. For each experiment, one extraction at a time was carried out by injecting a volume of organic
phase into the separating funnel and spraying the aqueous volume onto it at a rate of about 1 litre per
minute.

In each of the three experiments the number of extractions was varied but all of the organic volumes
were combined before the '2Pb and 2?8 Th were back-extracted according to the methods determined in
the previous section.

Each back-extracted acidic solution was then concentrated using an HTiO extraction and elution stage.
This involved adding a tenth of a millilitre of a 15% w/v titanium tetrachloride solution and increasing
the pH of the solution to around 8 or 9 using sodium hydroxide. This precipitates the titanium as
HTiO which extracts any lead, radium and thorium in the solution. The HTiO in this solution was then
collected on a Media-Kap 10 filter and eluted using 3 samples of 4 millilitres of 0.5M hydrochloric acid.
In experiment CC5 each acid sample was left in contact with the HTiO for just a few minutes whereas
in the other two experiments each sample was left for 10 minutes.

Although the final solution produced was suitable for measurement by a 8 — a counter they were
in fact measured by gamma counting along with other samples from the experiment so that extraction,
back-extraction and final HTiO stage efficiencies could all be calculated.

To measure efficiencies using gamma counting a 2?®Th spike of a few kilobecquerels in equilibrium
with its daughters was added to the aqueous phase before extractions. In other respects this aqueous
phase was chemically similar to the SUF eluate.
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Exp Extraction Procedure Efficiencies in %: Overall

No. Procedure: Extraction | Back-Ext I HTiO || Efficiency in %

CC5 || 2x(50ml of 1% w/v DDDC in 2-oct) 16+2 89+9 6717 10+1
Each left pumping for 20 minutes

CC6 || 2x(50ml of 2% w/v DDDC in 2-oct) 61+10 96+8 81+8 48+8
Each left pumping for 8 minutes

CC8 || 4x(50ml of 2% w/v DDDC in 2-oct) 108+22 57+6 69+9 4249
Each left pumping for 8 minutes

Table 5.5: Results for the three stage secondary concentration of 2*2Pb from 2 litres of mock SUF eluate.

5.5.3 Summary of ??Pb Three Stage Concentration Experiments

The extractant used in these experiments was a 1% or 2% w/v solution of DDDC in 2-octanone and
the back-extraction method used a volume of concentrated nitric acid equal to one hundredth of the
total organic phase volume. This acid was added to the organic phase and the mixture shaken for 10
minutes before standing for 10 minutes and washing the 2!2Pb out with a few hundred millilitres of water.
Table 5.5 shows the 21?Pb efficiency for each of the three stages along with the overall efficiency for each
of the three experiments. The results and the errors, as given in this table, were obtained by fitting
several gamma counting measurements of samples taken at different times after the experiment to give
the initial activities of ?!?Bi, 212Pb, 224Ra and 2*Th in each sample as is explained in Appendix B.

The results of experiment CC5 show a much lower extraction efficiency for 2!2Pb than the other
experiments and this must have been due to the longer mixing time that was used. This experiment
indicates that the DDDC reagent in 2-octanone suffers from decomposition when it is left mixing in
0.5M hydrochloric acid for times of 20 minutes or more. This can be compared to the 20 minute half-
life of DDDC in carbon tetrachloride when mixed with an equal volume of 1M hydrochloric acid (see
Section 5.2.4 on page 73).

It is clear that with four extractions of 50 millilitres for 8 minutes each, good overall lead extraction
efficiencies of virtually 100% can be achieved. Furthermore, good back-extraction efficiencies of 90-100%
efficiency were obtained in the first two experiments. This back-extraction efficiency is larger than those
measured in the last section which is presumed to be due to using a larger relative volume of water
to rinse out the nitric acid which minimises the effect of losses in its collection. It is unclear why the
back-extraction efficiency in experiment CC8 was smaller than in the other two experiments but it may
have been due to the larger organic volume that was used.

The results in Table 5.5 also show that the HTiO stage worked very well and gave efficiencies of about
60-80%. It can be noted that the efficiency of this stage did not alter between the experiments which
used 10 minutes for each elution (experiments CC6 and CC8) and the one which used only a few minutes
(experiment CC5). It can therefore be deduced that the elution of lead from HTiO takes only a few
minutes when using 0.5M hydrochloric acid.

5.5.4 Summary of ?*Th Three Stage Concentration Experiments

The extractant used in these experiments was a solution of HDEHP in kerosene of varying molarity.
The back-extraction method used was to shake the organic phase with an equal volume of 6M hydrochloric
acid for 30 minutes. In each of the three experiments the organic phase was diluted to 200 millilitres with
kerosene and so the HDEHP molarity for back-extraction was 0.025M.
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Exp Extraction Procedure Efficiencies in %: Overall

No. Procedure: Extraction | Back-Ext ] HTiO | Efficiency in %

CC5 || 2x(50ml of 0.05M HDEHP in kerosene) 93+5 664 3612 2242
Each left pumping for 30 minutes

CCr7 50ml of 0.1M HDEHP in kerosene 85+13 6618 78+16 4445
Each left pumping for 30 minutes

CC8 || 2x(50ml of 0.05M HDEHP in kerosene) 90+13 68+8 80+5 49+5
Each left pumping for 20 minutes

Table 5.6: Results for the three stage secondary concentration of 228 Th from 2 litres of mock SUF eluate.

The results of these experiments obtained by fitting several gamma counting measurements of samples
taken at different times after the experiment to give the initial activities of 212Bi, 2!2Pb, 22¢Ra and 228Th
in each sample as is explained in Appendix B are given in Table 5.6. These results show that thorium
extraction efliciencies of about 90% can be obtained using either 0.05M or 0.1M HDEHP in kerosene
and pumping times of more than 20 minutes. These results also show that the back-extraction efficiency
from 0.025M HDEHP in kerosene is around 70%. This can be compared to the 100% efficiency when
back-extracting from a 0.05M HDEHP solution and the 30% efficiency from a 0.07M HDEHP solution
which were measured in Section 5.4.3 on page 77. There appears to be some variation in this efficiency
which is difficult to explain, however good back-extraction efficiencies were obtained by using HDEHP
concentrations less than 0.05M in kerosene.

It can also be seen from the results in Table 5.6 that the HTiO stage gives good efficiencies of around
80% for ?®Th when individual elution times of 10 minutes are used (experiments CC7 and CC8) but
this efficiency drops to 40% when only a few minutes are used for each elution (experiment CC5). It can
therefore be deduced that the elution of thorium from HTiO takes more than a few minutes when using
0.5M hydrochloric acid.

5.5.5 Conclusions of the Three Stage Concentration Technique

The results in this section show that the ?!2Pb and 228Th in 2 litres of a solution which is chemically
similar to the SUF eluate, can be extracted and concentrated into a sample that can be counted on a
single 8 — a counter. The overall efficiency for this three stage procedure for 228Th is about 50% and for
212Pb is as much as 80% if all the stages are optimised together.

Unfortunately there is a problem when the results of these experiments are scaled to extracting from
20 litres volumes, because the time required to concentrate the 212Pb from such a volume would be far
too long. In the most efficient experiment for 2!?Pb (experiment CC8), four extractions each lasting 8
minutes were carried out. With 20 litres this means that forty, 8 minute extractions are needed which
makes over 5 hours of processing time which would cause large losses of 212Pb due to decay.

One method of speeding up the continuous extraction would be to use a higher pumping speed but
one would expect this to also decrease extraction efficiencies since the contact between the phases would
be less and thus it does not solve the difficulty in producing a fast and efficient extraction. It was clear
that a quicker method was needed for performing a solvent-solvent extraction when volumes of up to 20
litres are involved.
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Figure 5.3: Diagram of a large volume mizer including appropriate relative dimensions for the baffle and
stirrer paddle in relation to the diameter, D, of the mizer.

5.5.6 Alternative Methods for Large Volume Solvent-Solvent Extraction

Since solvent-solvent extractions using volumes greater than 20 litres are used in industry, the lit-
erature was consulted and expertise was sought. This effort produced a number of possible alternative
methods resulting in good extraction efficiencies in a small amount of time. Two of these are discussed
below:

e A counter-current continuous extraction column:

This involves pumping two phases past each other in a column in a similar, if more sophisticated
way to the 2 litre experiments detailed in the last section. The lighter phase is pumped in near
the bottom of the column, the heavier near the top. One phase is then dispersed and the two
allowed to mix for most of the length of the column. The lighter phase then collects at the top of
the column and the heavier phase at the bottom from where each is pumped away. The different
types of counter-current columns are described in the section beginning on page 672 in volume 9 of
[Kir84]. Unfortunately the equipment needed to use this technique is both bulky and costly.

o A large scale batch extraction system:

This method was previously disregarded as it was felt that good mixing between 20 litres of aqueous
phase and a small volume of organic phase would be very difficult to achieve in one vessel. However,
advice from Dr R.C.Darton of the Engineering Department at Oxford University, a chemical engi-
neer, suggested that this presupposition is not true. A system using mechanical stirrers in large,
drainable vessels is used in industrial applications to produce good mixing and allow adequate
separations when phase volume ratios of up to 20 are used.

A design of a large volume mixer for solvent-solvent batch extractions is shown in Figure 5.3. The
mixing vessel shows the presence of a baffle which is needed to introduce turbulence in order to
obtain good mixing. It was suggested that using such apparatus mixing times of only a few minutes
would be required to produce high extraction efficiencies.

In the next section this second method of using a large scale batch extraction and a mechanical stirrer
is developed into a Prototype Rig which was then tested for 22Pb and 228Th extraction efficiencies.
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5.6 Large Scale Studies Using Mechanical Stirrers

5.6.1 Experimental Details and the Construction of the Prototype Rig

The previous section suggested apparatus for large scale solvent-solvent extractions using a mechanical
stirrer. Using polypropylene, a Prototype Rig was constructed which would use this technique both for
the solvent-solvent extraction of 212Pb and 228Th and for their back-extraction.

It was known that polypropylene is not fully resistant to 2-octanone and that fluorinated plastics
should be used for a durable system, however to test the feasibility of the method the Prototype Rig was
constructed out of the cheaper plastic.

The Prototype Rig had an 8 litre mixer to perform the solvent-solvent extraction which could be filled
by a pump from a reservoir. The mixer could then drain either back to the reservoir or into a 1 litre
separating funnel where the back-extraction would be carried out. Both of these mixers had baffles and
stirrers of suitable dimensions.

The speed of mixing in the main vessel was adjusted until visual inspection indicated that good,
uniform mixing had been obtained. After mixing for 2 minutes the phases were left to stand for a period
of about 5 minutes before separating the organic phase and performing a back-extraction.

Two experiments were carried out to extract ?2Pb and 223Th from 8 litres of 0.5M hydrochloric acid
which also contained 1 gram of titanium. In the first experiment two sequential extractions, each using
0.2 litres of organic phase, were carried out. In the second experiment, just one extraction using 0.4 litres
of organic phase was carried out.

To extract *'?Pb a 2% w/v DDDC solution in 2-octanone was used and this was back-extracted
by mixing the organic phase, for two minutes, with 25 millilitres of concentrated nitric acid. For the
?28Th extractions an organic phase consisting of 0.05M HDEHP in kerosene was used and the 225Th
back-extracted into a few hundred millilitres of 6M hydrochloric acid.

The Prototype Rig was not sealed from the atmosphere and so only high level experiments were carried
out as it was expected that airborne contamination would dominate any low level 22Pb results. (See
Appendix F for more details about airborne 2!2Pb contamination.) Therefore about a kilobecquerel of
?28Th in equilibrium with its daughters was added to the aqueous phase prior to extractions and samples
were measured using gamma counting, as before.
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Lead Results: Thorium Results:
Exp No Vol of Extraction | Back-Ext Vol of Extraction | Back-Ext
DDDC sol Eff (%) Eff (%) HDEHP sol Eff (%) Eff (%)
MA1 2% 200ml 88+12 53+6 2x200ml 89+9 83+7
MA2 400ml 88+17 99+20 400ml 81+7 21+4

Table 5.7: The results for the extraction and back extraction of both lead and thorium from 8 litres of
mock SUF eluate using the Prototype Rig.

5.6.2 Results of Experiments using the Prototype Rig

The overall results for the *>Pb and *?8Th extractions and back-extractions using the Prototype Rig,
with their statistical errors obtained after fitting many individual measurements, are given in Table 5.7.

The two experiments differed in how the back-extractions were carried out, as the results suggest. In
experiment MA1 a mechanical stirrer was used in the 1 litre separating funnel to provide the required
mixing for the back-extraction. This worked very well for the back-extraction of thorium, giving an 80%
efficiency, but unfortunately in the lead back-extraction a much smaller aqueous phase was present, and
the stirrer did not agitate the bottom of the funnel sufficiently to give good mixing between the two
phases.

In experiment MA2, the back-extractions were performed by pumping air up into the bottom of
the separating funnel after a suggestion by Dr R.K.Taplin. The air was seen to form large bubbles
on emergence from the stop-cock and was then channelled to the surface by the curved shape of the
separating funnel and it can be seen from the results of experiment MA2 in Table 5.7 that this method
of mixing gave good back-extraction efficiencies for lead but not for thorium. It is not clear why the
back-extraction efficiency for thorium was so low when using this mixing method but it may have been
due to a slower reaction rate.

It can be seen that in both experiments good extraction efficiencies of around 90% for both 212Pb
and ?28Th were obtained after only 2 minutes of stirring.

5.6.3 Conclusions from the Prototype Rig Experiments

It is clear from the results in Table 5.7 that a quick and efficient method has been found to extract
kilobecquerel quantities of both 22Pb and 228Th from 8 litres of a solution chemically similar to the SUF
eluate into 0.4 litres of an organic phase. It is also clear that there are very efficient methods for the
back-extraction of both lead and thorium, even if two different mixing techniques are needed.

If the results of these experiments are scaled to using 20 litres of SUF eluate then the 2!2Pb and 228Th
can be extracted at about 90% efficiency into 1 litre of organic phase and then back-extracted with near
100% efficiency for *'2Pb, and 85% efficiency for 22Th, into an acidic aqueous phase. Using the HTiO
stage as tested in Section 5.5 on page 79 the *!*Pb and 228Th could then be concentrated efficiently to
produce a sample to be measured on a single 3 — a counter.

The time required to complete the ?'2Pb extraction and back-extraction was under 1 hour in both
experiments using the Prototype Rig but with the additional time required by the HTiO stage, and when
20 litres instead of 8 litres are used, the total time would be greater. It was noticed that the overwhelming
contribution to the time of the extractions came from the filling of the large mixer using a Peristaltic
pump with a flow rate of 1 litre per minute and the draining of the vessel under gravity through two 6
millimetre diameter pieces of tubing. It is clear that the flow rates involved in these two processes need
to be increased to meet the time requirements for the secondary concentration of 2!2Pb and this is also
a good reason to limit the final procedure to just one solvent-solvent extraction.

85



5.7 Further Investigations into the Extraction Techniques

5.7.1 Experiments using very Small Amounts of 2!2Pb and 228Th

The previous experiments detailed in this chapter all used kilobecquerel quantities of 226Th and 2!2Pb
to determine extraction and back-extraction efficiencies. In Section 3.2.1 on page 29 it was stated that
the amount of ?Th and 2!2Pb in the heavy water of the SNO experiment is hoped to produce less
than 1 decay per day per tonne. In the entire 1000 tonnes of heavy water this corresponds to about 10
millibecquerels of ??*Th and *'2Pb. Three small scale experiments were carried out to verify that the
extraction and back-extraction techniques for ?!?Pb and 222Th developed using kilobecquerel amounts of
activity also work for millibecquerel amounts of activity. The measurements for these experiments were
all made using the 8 — a delayed coincidence scintillation counters, the details of which were discussed
in Section 3.2.1 on page 30 with more details in Appendix D.

The first experiment was a blank run in which no activity was added so that any background contribu-
tion from the reagents themselves could be measured. A second experiment had about 10 millibecquerels
of 228Th in equilibrium with its daughters added to the original aqueous phase, and a third experiment
had about 100 millibecquerels of > Th in equilibrium with its daughters added to the aqueous phase.

These experiments were all carried out in a 1 litre separating funnel and the solvent-solvent extractions
used 0.5 litres of aqueous phase and 10 millilitres of organic phase. As usual the aqueous phase contained
several milligrams of titanium and was 0.5M in hydrochloric acid. All the mixing of the two phases was
carried out by shaking the separating funnel by hand.

These were low level experiments and thus required careful and clean experimental procedure and
so all reagents and apparatus that were used were either new or previously had only been used for low
level work. Since samples produced were to be measured by the 8 — a delayed coincidence scintillation
counters it was known that each sample could be only 12 millilitres in volume and less than about 0.5M
in acid or salt concentration and so all the samples were made to be 0.5M in hydrochloric acid and known
fractions were taken for counting.

It was found, during the second experiment, that the scintillator cocktail is actually quite sensitive
to 0.5M hydrochloric acid since one sample, when mixed with scintillator cocktail, turned cloudy and
could not be measured for activity whereas all of the other samples were fine. Therefore, for the third
experiment this was corrected by ensuring that counting samples were no more than 0.25M in hydrochloric
acid.

Low Level Results for 2!2Pb:

In each experiment for 212Pb only one extraction was carried out using a 2% w/v solution of DDDC
in 2-octanone. The back extraction was performed by mixing the organic phase with 1 millilitre of
concentrated nitric acid for 2 minutes, leaving to stand for 2 minutes and then washing the 2!2Pb out
with a low molarity hydrochloric acid solution.

A sample of this low molarity hydrochloric acid solution and of the initial solution were immediately
measured for *'’Pb activity using the 8 — & counters. The number of 8 — a delayed coincidence events
that the counters recorded between times T; and T, for each sample are shown in Table 5.8.

It should be noted that the value given for the stock of experiment DF3 is not a measured value as
this sample could not be measured by the 8 — a counters due to incompatibilities with the scintillator
cocktail, as described in the section above. The value given is derived from the stock of experiment DF4
since it was known that this experiment used ten times the activity used in experiment DF3.
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Fraction | Time Interval | Integration | Total Counts || Total Rate
Experiment | Sample || of Sample T: T, Factor in Interval in cts/hr
Measured | in hrs | in hrs (I for Fraction || for Sample
Background | Back-Ext 1/10th 1.12 | 45.93 13.45 5 3.7+0.2
DF3 Stock - - - - DF4/10 21+1
DF3 Back-Ext 1/20th 1.12 | 45.93 13.45 16-2.5=13.5 20+6
DF4 Stock 1/20th 1.68 | 70.57 - 709 206+8
DF4 Back-Ext 1/20th 1.68 | 70.57 13.55 127-2.5=124.5 184+16

Table 5.8: The results of three 2'2 Pb extractions and back-extractions. The extractions used 10 millilitres
of 2% DDDC solution in 2-octanone and extracted from 0.5 litres of 0.5M hydrochloric acid. The back-
extraction was completed by adding Iml of concentrated nitric acid and then rinsing with water.

The count rate for ?’?Pb can be determined, if it is assumed that there is no 224Ra present, by
dividing the total number of counts recorded in a given time interval by the integrating factor, I, as given
in Equation 5.2.

T2
I= / e~ Petdt (5.2)
T

The background experiment gave about 4 counts per hour above a counter background of one count
per day and this is assumed to be due to airborne contamination since although steps were taken to
minimise this background it was impossible to completely seal the apparatus from the air.

The overall efficiency of the second experiment was 95+29% and for the third experiment, with more
activity and better statistics, it was 90+9%. These efficiencies are actually higher than those seen in
similar scale experiments which used high-level activity whose results are given in Tables 5.1 and 5.2 on
pages 76 and 78 respectively. This difference is believed to have been due to differences in the procedures
used to collect the phases.

Low Level Results for 228Th:

In each experiment for 2?2 Th only one extraction was carried out using a 0.05M solution of HDEHP in
n-dodecane, the main constituent of kerosene. The back-extraction was performed by mixing the organic
phase with 10 millilitres of 6M hydrochloric acid for 2 minutes, leaving to stand for 2 minutes and then,
after being separated, it was diluted with water.

A sample of this low molarity hydrochloric acid solution and of the initial aqueous phase before and
after the extraction were measured for activity using the 8 — a counters after the 228Th had time to grow
in and these results are shown in Table 5.9. More samples could be measured for 228Th than for 212Pb
because the counting did not have to occur at the same time and so there was no limit as to how many
B — a counters could be used.

It should be noted that the stock for experiment DF3 is the measured value, unlike that given for the
?12Pb results, since after two weeks the sample lost its cloudiness and could be measured by the 8 — a
counters. Finally, no integration is needed to evaluate results as after 2 weeks all the samples should
be in radioactive equilibrium. Therefore the 8 — a coincidence rate gives a direct measurement of the
amount of 228Th in each sample.

The background result for the first 28 Th extraction indicates no reagent contamination of 228Th since
the sample had the same count rate as the counter background.
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Experiment | Sample l Fraction of Sample I Time(hrs) | Counts } Total Rate(cts/hr) I
Background | Back-Ext 1/10th 67.1 1 at bkg

DF3 Stock 12/488th 67.1 37 22.44+3.7

DF3 Aqueous 12/488th 67.1 1 at bkg

DF3 Back-Ext 1/20th 67.1 32 9.5+1.7

DF4 Stock 1/20th 48.4 443 183.1+8.7

DF4 Aqueous 6/494th 48.4 11 18.7+5.6

DF4 Back-Ext 1/20th 48.4 195 80.6+5.8

Table 5.9: The results of three 228 Th extractions and back-eztractions. The extractions used 10 millilitres
of 0.05M HDEHP in n-dodecane and eztracted from 0.5 litres of 0.5M hydrochloric acid. The back-
extraction was completed by mizing with 6M hydrochloric acid.

By considering the amount of 222Th left in the aqueous phase after the extraction, the efficiency for
the extraction can be determined. This was around 100% for the second experiment and around 90%
for the third. The overall efficiencies however were only 424+10% for the second experiment and 44+4%
for the third which indicates that the back-extraction efficiency was only about 40%. This is lower than
the 100% that was achieved in similar high level back-extractions but it should be noted that a different
bottle of HDEHP was used for this experiment and in Section 5.7.3 on page 91 it will be explained why
this might have caused differences in efficiencies.

5.7.2 Experiments to Reduce the Cost of Required Reagents

If the results of the 8 litre experiments in the previous section are scaled to give the amounts of
reagents required to concentrate '?Pb and ??*Th from 20 litre volumes, the predicted costs can be
calculated. In each concentration one Media-Kap filter is expected to be required which costs about £14
(including taxes) and this is the majority of the cost in the case of a 228Th concentration. However for
a *'2Pb concentration the main cost is the £33 (including taxes) for the 25 grams of DDDC needed to
make a saturated solution in 1 litre of 2-octanone.

To try to reduce the cost of concentrating ?!2Pb from 20 litre volumes an experiment was carried
out to determine whether or not a lower concentration solution of DDDC in 2-octanone could be used.
This experiment consisted of five, 2 minute 2!2Pb extractions with an aqueous phase equal to ten times
the volume of the organic phase. The efficiencies of these extractions were measured, as usual, by
gamma counting however it was found that the most accurate efficiency measurements were determined
by examining the amount of >'?Pb that disappeared from the aqueous phase during the extraction. These
extraction efficiencies, as measured by disappearance, for the different concentrations of DDDC that were
used are given in Table 5.10 and show no decrease in extraction efficiency when the DDDC concentration
is reduced from a saturated solution, about 2.5% w/v, to 0.5% w/v. It was therefore decided that, in order
to reduce costs, extractions from 20 litre volumes would use 0.5% w/v DDDC solutions in 2-octanone.

The breakdown of the costs to concentrate 212Pb and 228Th from 20 litres of SUF eluate when a 0.5%
w/v solution of DDDC in 2-octanone is used are shown in Tables 5.11 and 5.12 respectively. It can be
seen that the total cost for 2!?Pb is about £41 (including taxes) whereas the total cost for 228Th is about
£24 (including taxes).
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Concentration of || Extraction Efficiency
DDDC in w/v and Statistical Error
0.5% 75+12%
1.0% 75+09%
1.5% 79+12%
2.0% 74+10%
2.5% 72+10%

Table 5.10: The extraction efficiencies, as determined by the disappearance of *'2Pb activity from the
aqueous phase, when using varying concentrations of DDDC and an aqueous phase ten times larger than
the organic phase.

Consumable H Amount || Company Number l Cost ]
2-octanone 1 litre Aldrich 0-470-9 £14
DDDC 5 grams Aldrich 31, 811-6 £8
Acids/Alkalis 2 litres - - £5
Media-Kap 10 filter one Microgon | ME2M-100-18S || £14
Total | £41

Table 5.11: The breakdown of the cost of concentrating >*2Pb from 20 litres of an SUF eluate as of early
1997, including tazes.

L Consumable ” Amount ” Company Number ” Cost l
kerosene 1 litre Merck 28673LJ £4
HDEHP 20ml Sigma D 1509 £1

Acids/Alkalis 2 litres - - £5
Media-Kap 10 filter one Microgon | ME2M-100-18S || £14
Total | £24

Table 5.12: The breakdown of the cost of concentrating 228 Th from 20 litres of an SUF eluate as of early
1997, including tazes.
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Conc. of HDEHP ” Extraction Eff | Back-Extraction Eff H Overall Eff

0.10M 100423 10+5 10£5
0.06M 95+17 41+11 3919
0.04M 99421 64+18 63£13
0.02M 7915 8917 70+14
0.01M 80412 90+18 72411

Table 5.13: The measured results for thorium extractions using HDEHP from 0.5M hydrochloric acid
and back-eztractions using 5M hydrochloric acid. The organic phase was a varying molarity solution of
HDEHP in kerosene. In the extraction the aqueous phase volume was ten times the organic phase volume
whereas in the back-extraction the phases had the same volume.

Conc. of Extraction: Back-Extraction: Overall
HDEHP || V/v | D [E%) [[V/v] D | 1-E(%) || Efficiency
0.10M 10 | 105 | 91% 1 0.6 62% 56%
0.05M 10 | 2.7 | 21% 1 [012| 89% 19%
0.02M 10 1 035 | 3% 1 ]10.02| 98% 3%

Table 5.14: The calculated expected efficiencies using values of D, the partition coefficient taken from
Figure 5.1 on page 7{. The phase volume ratio, V/v, is the volume of the aqueous phase divided by the
volume of the organic phase. The efficiency of extracting thorium into the organic phase in both eztraction
and back-extraction is calculated using Equation 5.1 given on page 70.

5.7.3 A Final Investigation into the HDEHP System

To try to characterise the HDEHP extraction and back-extraction system a final experiment was
performed in which extractions and back-extractions were carried out using a solution of HDEHP in
kerosene whose molarity varied from 0.10M down to 0.01M. The extractions were all from an aqueous
phase which was made similar chemically to the SUF eluate but which also contained a few kilobecquerels
of ??*Th and the volume of this aqueous phase was always ten times the volume of the organic phase.
The back-extractions were performed using a volume of 5M hydrochloric acid equal to the volume of the
organic phase. The acid used in the back-extractions was therefore less acidic than the prescribed 6M
hydrochloric acid and this was because it was known that it would be easier to obtain sufficient quantities
of radioactively clean 5M hydrochloric acid for large scale extractions and back-extractions.

The extraction, back-extraction and overall efficiencies when using the different molarities of HDEHP
in kerosene, as measured by gamma counting, are given in Table 5.13. These results show that reasonable
overall efficiencies can be achieved when using a 0.01-0.04M solution of HDEHP in kerosene.

Measurements of the variation of the partition coefficient with hydrochloric acid molarity has been
studied in the literature and were reproduced earlier in this chapter in Figure 5.1 on page 74. From this
figure, values of the partition coefficient when using 0.10M, 0.05M and 0.02M HDEHP in kerosene can be
deduced when the aqueous phase is 0.5M and 5M in hydrochloric acid. The knowledge of these partition
coeflicients allows expected extraction and back-extraction efficiencies for the experiments whose results
are shown in Table 5.13 to be be calculated using Equation 5.1 given on page 70. These calculated,
expected efficiencies are shown in Table 5.14 and by comparing them to the measured efficiencies as given
in Table 5.13 it can immediately be seen that the measured extraction efficiencies are much higher than
expected and the back-extraction efficiencies are generally lower than expected.
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It seems that there are two difficulties with this HDEHP system. Firstly, it has been observed that
the efficiencies are not very reproducible from one experiment to another especially when using different
bottles of HDEHP, eg see Section 5.7.1 on page 88. Secondly, the measured efficiencies are very different
from those calculated using published values of partition coefficients.

Both of these difficulties can be explained by the presence of mono-ester impurities within the HDEHP
reagent itself. It has been noted previously, in Section 5.3.2 on page 75, that the HDEHP was not purified
prior to use and so these impurities were present to a lesser or greater extent in all of the experiments.
The literature states that mono-ester impurities in HDEHP have been seen to greatly enhance extraction
efficiencies for thorium [Pep60], which is what has been observed. These mono-esters occur to a varying
degree in every sample of HDEHP which could explain why the results of experiments using different
bottles of HDEHP are not in agreement.

All of the impurities in the HDEHP can be removed using a purification technique given in the
literature and then one would expect to see extraction and back-extraction efficiencies similar to those
calculated in Table 5.14. Using these calculated values schemes for extracting and back-extracting 228Th
from 20 litres of 0.5M hydrochloric acid using pure HDEHP can be suggested, but without the mono-ester
impurities the overall efficiency will never be more than about 60%. A known amount of mono-ester could
be added to the purified HDEHP before its use to increase the overall efficiency but this would need much
further investigation.
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5.8 Conclusions

The experimental results of this chapter have led to the development of procedures for the secondary
concentration of >'?Pb and ??8Th from the SUF eluate which have been shown to be unaffected by an
initial presence of large quantities of titanium. The procedure for 212Pb and for 228Th both have three
stages and these are:

1. A solvent-solvent extraction using a solution of diethylammonium diethyldithiocarbamate (DDDC)
in 2-octanone for lead and a solution of di-(2-ethylhexyl)phosphoric acid (HDEHP) in kerosene for
thorium.

2. A back-extraction using concentrated nitric acid for lead and 5M or 6M hydrochloric acid for
thorium.

3. A final concentration stage using the HTiO ion-exchange to produce a sample which can be measured
by a single 8 — a delayed coincidence scintillation counter.

These procedures have been shown to be relatively successful in concentrating kilobecquerel quantities
of 212Pb and 2%Th from 2 litres of a solution chemically similar to the SUF eluate into a 12 millilitre
sample. The first two stages have also been shown to be very efficient at extracting and back-extracting
kilobecquerel quantities of *?Pb and 2*Th from 8 litres of mock SUF eluate using the Prototype Rig.
This rig used the method of large scale batch extractions and mechanical stirrers which were successful
in carrying out fast extractions. These techniques have also been verified using amounts of 2!2Pb and
228Th close to those that it is hoped will be present in SUF eluates that are produced by eluting the
HTiO coated SUF membranes after they have been used in an extraction from the heavy water in the
SNO experiment.

Unfortunately some final research into comparing measured efficiencies of the HDEHP system with
those in the literature have shown some difficulties. The conclusion from this research is that much more
work is needed to produce a reliably efficient method for the secondary concentration of thorium from
the SUF eluate. In Section 2.5.3 on page 27 it was explained why the most important isotope in the
thorium decay chain to assay is *Pb. This is because ?!2Pb can be in disequilibrium with 224Ra and
228Th in the heavy water due to sources emanating 22°Rn. It was therefore decided that work should
cease on developing procedures for the secondary concentration of thorium and instead be directed toward
finalising procedures for the secondary concentration of lead.

It can be noted that the amount of >Th in an SUF eluate can be measured indirectly using the
secondary concentration procedures for 2Pb. This can be done by leaving the SUF eluate isolated from
radioactive sources for two weeks and then measuring the amount of 212Pb that it contains. After two
weeks have passed any ?'?Pb in the solution will be in radioactive equilibrium with the 228Th. This
method will allow the HTiO SUF assay system to measure the amount of 228Th in the heavy water but
with much lower statistics than would be expected if the 228Th itself could be concentrated.

In the next two chapters the results of numerous experiments to concentrate 212Pb from 20 litres of
mock SUF eluate using the procedures developed in this chapter are detailed.
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Chapter 6

The Evaluation of the
Solvent-Solvent Extraction Rig

6.1 Introduction

In the last chapter techniques to extract lead from up to 20 litres of 0.5M hydrochloric acid into a
12 millilitre sample which can be measured by a single 8 — o counter were developed. These techniques
are in three stages. Firstly, a solvent-solvent extraction using 1 litre of 2-octanone containing 5 grams
of diethylammonium diethyldithiocarbamate (DDDC), secondly a back-extraction of the lead into an
aqueous phase using concentrated nitric acid and a final concentration stage using HTiO.

The research that is discussed in this chapter is of the design, construction and evaluation of a full
scale Solvent-Solvent Extraction Rig to carry out concentrations of 2!2Pb from 20 litres of SUF eluate.
To be used in the SNO experiment the procedures carried out on this rig must meet the following three
requirements:

1. The overall efficiency of extracting and concentrating 2'2Pb from 20 litres of SUF eluate to a 12
millilitre sample must be reproducibly high.

2. The procedural 212Pb background must be low with respect to the extremely low levels of 2'2Pb
that it is hoped will be present in the heavy water of the SNO detector.

3. The total time it takes to carry out the concentration of 2!2Pb must be less than about one hour
to prevent losses in the overall processing time due to decay.

The first version of the Solvent-Solvent Extraction Rig was constructed in the middle of 1996 and the
research in this chapter details the evaluation and development of this rig that was carried out during
the next year.
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6.2 Methods of Evaluating the Solvent-Solvent Extraction Rig

The three aims of the Solvent-Solvent Extraction Rig detailed in the introduction to this chapter are
evaluated in the rest of this chapter using both stable lead and the 2!2Pb sources that were manufac-
tured to be free from any 22*Ra and 228Th in the experiments detailed in Chapter 4. Efficiencies and
backgrounds were therefore measured both by analysing samples for stable lead and for 212PY activity.
The stable lead measurements were carried out by Mr C.Jackson of the Geography Department at Ox-
ford University using Atomic Emission Spectroscopy. The 212Pb measurements were carried out using
the B — a delayed coincidence scintillation counters whose operation was described in Section 3.2.1 on
page 30 with more details in Appendix D.

In order to evaluate the 212Pb background of the rig, as compared to that required to measure the
neutral current background in the SNO experiment, a ratio, R, is defined. This is a comparison of
the measured background to the procedures to concentrate 212PY, as carried out by the Solvent-Solvent
Extraction Rig, to the expected 2!2Pb signal.

In Section 3.2.1 on page 29 it was explained why it is hoped that the amount of >!?Pb in the 1000
tonnes of heavy water in the SNO detector will produce less than 1 decay per day per tonne. In a 15
hour assay with a flow rate of 200 litres per minute, as was suggested in Chapter 3, about 180 tonnes of
heavy water can be processed by the HTiO SUF assay system. The amount of *!*Pb expected to be in
the 20 litres of SUF eluate after such an assay can therefore be estimated to be that which would produce
about 2 counts per hour on the 3 — o counters if it were all concentrated into a 12 millilitre sample.

Hence to determine R, the background to signal ratio, the measured background for any full 212pp
concentration from 20 litres was divided by the overall efficiency and then also divided by 2 B — a counts
per hour. To be useful to the SNO experiment this value of R must be shown to be less than 1.

6.3 The Original Design of the Solvent-Solvent Extraction Rig

6.3.1 Introduction

The original design for the Solvent-Solvent Extraction Rig which indicates the positions of all of the
individual components and valves is shown in Figure 6.1.

In the rest of this chapter the details and results of numerous experiments designed to evaluate the
Solvent-Solvent Extraction Rig are given. Some experimental results led to adaptations and alterations
of the original design producing two other distinct versions of the rig that were eventually used. Hence,
the original version is labelled Version A, and the next two are labelled Versions B and C respectively.
It should be noted that these other versions were not newly constructed rigs but upgrades of the original
version.

In the following sections the individual components of the original version (Version A) of the Solvent-
Solvent Extraction Rig are discussed and a description of the procedure to concentrate 212Pb ysing this
version of the rig is given.

6.3.2 The Main Reaction Vessels

The two main reaction vessels of the Solvent-Solvent Extraction Rig are shown in Figure 6.1 and
are labelled M1 and M2. The first of these, M1, is a 20 litre mixer in which the initial solvent-solvent
extraction is carried out. The second, M2, is a 2 litre mixer in which the back-extraction is performed.
The use of two mixers to perform large extractions and back-extractions was verified using the Prototype
Rig which was described in the last chapter in Section 5.5.6 on page 83. The use of 2-octanone required
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Figure 6.1: The original design (Version A) of the Solvent-Solvent Extraction Rig. The two inputs to
the diagram are for nitrogen cover gas and pressurised nitrogen, the output is for waste fumes. The thick
lines show half inch diameter pipework whereas the thin lines show quarter inch diameter tubing. The
20 litres of SUF eluate starts in vessel C1 and is then forced into vessel M1, the large mizer, where the
solvent-solvent extraction is carried out. The organic phase passes to M2 which is the small mizer for
the back-extraction. The final HTiO stage is carried out in container C3 and the waste organic phase is
drained to vessel C2 for disposal. The individual valves are labelled according to their type: needle valve
(NV), ball valve (BV), gas valve (GV), three way gas valve (3G), stop cock (SC), three way liquid valve
(3V) and check valve (CV).
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that both mixers be made of fluorinated plastics. They also had to be sealed to the air since it was known
that there is a 212Pb background due to 2>°Rn emanating from the concrete in walls. (See Appendix F
for more details about airborne ?!?Pb contamination.)

The smaller mixer, M2, was purchased as a standard 2 litre Teflon FEP separating funnel from Fisher!
but the larger mixer for the extraction from 20 litres of liquid had to be constructed specially from sheet
stainless steel which was then coated with Halar (a fluorinated plastic) by Plastic Coatings?.

This coating of the 20 litre mixer was not translucent which meant that it could not be used to perform
careful phase separations. The careful phase separation of the 1 litre of organic phase and the 20 litres of
aqueous phase after the solvent-solvent extraction was therefore designed to be carried out in two stages.
Firstly, after leaving the phases to separate for a few minutes, 19 litres of liquid is drained from M1 to
C1 using valve BV-1 as shown in Figure 6.1 and then the remaining 2 litres of liquid is drained to M2
using valve 3V-3. Since the 2 litre mixer, M2, is translucent a careful separation of the two phases can
be made using the stop-cock SC-5. The 1 litre of aqueous phase transfered to M2 along with the organic
phase can then be added to the 19 litres drained to C1 using valve 3V-1.

These two mixers required stirrers, labelled S1 and S2. This introduced a further difficulty since these
stirrers needed seals resistant to 2-octanone and air tight. This was accomplished by purchasing the
PTFE bearings made for the stirrer shafts and then adapting the lids of the two mixers to accept this
fitting. These stirrers and bearings were purchased from Safelab3.

Finally, it can be seen from Figure 6.1 that the bottom of the 2 litre mixer, M2, can be attached (via
a number of valves) to a source of pressurised nitrogen gas. This is to allow the back-extraction mixing
to be performed as it was in the Prototype Rig which was discussed in the last chapter in Section 5.5.6
on page 83. This mixing method bubbles gas through the lower acidic solution into the upper organic
phase. This method was found to be a very efficient method for mixing a small volume of acid with a
large volume of organic phase.

6.3.3 The Movement of Liquids around the Rig

In order to minimise contamination by airborne 2!2Pb, the entire movement of liquids around the rig
was designed to be carried out using sealed tubing and pipe work which drained under gravity.

One of the main requirements for 212Pb concentrations carried out on the rig is that they have to be
completed in a time short compared to the 10.6 hour half-life of >*?Pb. In Section 5.5.6 on page 83 of
the last chapter, experiments using the Prototype Rig showed that to obtain short processing times it is
important that the 20 litre mixer is filled and drained quickly. It was decided that the cheapest way of
doing this, since fluorinated pumps are very expensive, would be to fill the 20 litre mixer using nitrogen
pressure and to drain it using gravity. It was clear that the draining time is a function of the drainage
pipe of the mixer and so a calculation was made which showed that for a 20 litre vessel to drain under
gravity in only a few minutes a half inch diameter drainage pipe is required. This calculation is detailed
in Appendix E.

Therefore, as can be seen from Figure 6.1, the 20 litre mixer is designed with a half inch drainage
pipe. The Teflon valve with a half inch bore used to control this draining without slowing down the
drainage rate (BV-1) was purchased from a specialist supplier, Production Techniques*. The part of the
rig which deals with the back-extraction was designed to use quarter inch tubing to reduce costs since
the volumes that are moved around this part of the rig are much smaller and so draining times are not as

IFisher Scientific UK, Bishop Meadow Road, Loughborough, Leicestershire, LE11 ORG

2Plastic Coatings Limited, Southern Division, Woodbridge Industrial Estate, Guildford, Surrey, GU1 1BG
3Safelab Systems Limited, 2 Vines Industrial Centre, High Street, Nailsea, Bristol, BS19 1BW
4Production Techniques Limited, 13 Kings Road, Fleet, Hants, GU13 9AU
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important. The valves for the quarter inch tubing were purchased as standard items from Cole Palmer®.
The half inch pipe, valve and connections all used compression fittings whereas the quarter inch tubing
system used flare fittings and so the two systems were joined using standard thread pipe adapters.

6.3.4 Details of the Final HTiO Stage

Since it had already been decided that pressurised nitrogen gas was going to be used on the rig both
to fill the large mixer, M1, and to perform the mixing in the back-extraction it was also decided to use
nitrogen pressure to push the back-extracted solution, after the precipitation of the HTiO in the final
HTiO concentration stage, through a 0.2 micron Media-Kap 10 filter. It can be seen from Figure 6.1
that the solution back-extracted in M2 can drain into vessel C3. There titanium will be precipitated in
solution as HTiO by raising the pH of the solution to between 8 and 9 using the 10M sodium hydroxide
from a stock tank on the rig.

In Section 5.5.3 on page 81 this HTiO stage has been shown to be very efficient at extracting 2'2Pb.
It was also shown that when three samples of 4 millilitres of 0.5M hydrochloric acid were used, for a few
minutes each, most of the 212Pb could be eluted from the filter. Experiments in Section 5.7.1 on page 86
which used the 3 — a counters showed that 0.5M hydrochloric acid can be too acidic for the scintillator
cocktail, so instead of using three 4 millilitre samples to elute the filter, it was decided to use two 4
millilitre samples for 8 minutes each.

6.3.5 The Addition of Reagents

Most of the reagents used to concentrate the 2!?Pb are placed in stock tanks on the rig and are
connected to a nitrogen cover gas to prevent the addition of air with the reagents. However, special
treatment was required for DDDC solutions since the reagent can decompose on standing. A way was
needed to allow the addition of the organic reagent to the large mixer, M1, which would not involve
opening the rig up to the air. To accomplish this task two Teflon vessels were purchased from Techmate
Limited®. The design of these vessels is shown in Figure 6.2. They have a 1 litre volume, a drain port
at the bottom controlled by a stopcock and a port for the nitrogen cover gas at the top. The solution of
DDDC in 2-octanone is made in one of these vessels and added to M1 through a further stopcock, SC-3,
as is shown in Figure 6.1.

6.3.6 The Total Cost of the Rig

The components needed to construct the initial version of the Solvent-Solvent Extraction Rig were
all purchased, as discussed in the preceding sections, and the costs incurred are shown in Table 6.1. The
total cost of constructing the Solvent-Solvent Extraction Rig was £3640 (including taxes).

5Cole Palmer Instrument Company Limited, PO BOX 22, Bishops Stortford, Hertfordshire, CM23 3DX
6Techmate Limited, 10 Bridgeturn Avenue, Old Wolverton, Milton Keynes, MK12 5QL
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Figure 6.2: The 1 litre container for dispensing the solution of DDDC in 2-octanone to the 20 litre mizer.

I Item I Cost, “ Item | CostJ
20 litre mixer £330 2 litre mixer £190
Other Containers £110 Teflon Stock Vessels £500
1/2” Valves and piping | £760 || 1/4” Valves and tubing | £620

Stirrers and bearings | £340 Magnetic Stirrer £200
pH meter and probe | £200 Gas regulators £300
Stirrer motors £90

Table 6.1: The breakdown of the costs of the Solvent-Solvent Eztraction Rig as purchased in early 1996,
including tazes.

98



6.3.7 Overview of the Procedure to Concentrate 2'?Pb

The procedures used to extract and concentrate 2!2Pb from 20 litres of SUF eluate using Version A
of the Solvent-Solvent Extraction Rig are given below.

Firstly, the 20 litres of SUF eluate which starts in vessel C1 is forced up into the 20 litre mixer, M1,
using 10 psi nitrogen gas. A 1 litre solution of 2-octanone containing 5 grams of DDDC (a 0.5% w/v
solution) is then made up in its special container as shown in Figure 6.2 and attached to the rig as shown
in Figure 6.1 so that the organic phase can drain into M1.

The solvent-solvent extraction is then carried out by mixing the 1 litre of DDDC solution and the 20
litres of SUF eluate in M1 for 2 minutes using stirrer, S1. After standing for 10 minutes the two phases
are separated in the two stages that were discussed in Section 6.3.2 on page 96. The first stage drains
19 litres of liquid directly from M1 to C1 and the second stage is the fine separation of the remaining 2
litres which is carried out in the translucent mixer, M2. This extraction stage is expected to take about
20 minutes to complete.

The back-extraction is performed in M2 by the addition of 0.1 litres of concentrated nitric acid which
also contains 3 milligrams of titanium for use in the final HTiO stage. The concentrated acid and the 1
litre of DDDC solution is then mixed for 2 minutes by passing nitrogen gas at 10 psi into the bottom of
M2. The concentrated acid is then be diluted to 1 litre using ultra-pure water while continuing to mix
for 10 minutes using both the nitrogen gas and stirrer, S2. After leaving the solutions in M2 to stand
for 5 minutes the aqueous phase is then drained into vessel C3 to perform the final HTiO concentration
stage. This back-extraction stage is expected to take about 10 minutes to complete.

The precipitation of the titanium in the final HTiO stage is completed by adding 10M sodium hy-
droxide from a stock tank on the rig to the back-extracted solution in C3 until the pH of the solution is
measured to be between 8 and 9. Once this is achieved the solution is forced through a Media-Kap 10
filter by pressurising vessel C3 with nitrogen gas. Any lead extracted onto the HTiO is held up on the
filter and it is eluted back into solution by using two 4 millilitre samples of 0.5M hydrochloric acid left
in the filter for 8 minutes each. A 12 millilitre sample for a 8 — a counter is made from 10 millilitres of
0.5M hydrochloric acid containing these elutions and 2 millilitres of ultra-pure water. It is expected that
it will take about 20 minutes to produce a 8 — a source from the 1 litre of acid using the HTiO stage.

The expected overall processing time needed to extract and concentrate lead from 20 litres of SUF
eluate to a single 8 — a counting sample is about 50 minutes.

6.4 Details of Experiments Using Version A of the Rig

6.4.1 Description of Experiments

Two experiments were carried out using Version A of the Solvent-Solvent Extraction Rig, shown in
Figure 6.1 on page 95. Both of these experiments started from the same 20 litres of mock SUF eluate in
vessel C1. This mock SUF eluate used 20 litres of ultra-pure water made to be 0.5M in hydrochloric acid
and to contain about 2 grams of titanium.

In the first experiment, experiment SSR1, 1 milligram of stable lead was added to the 20 litres of
mock SUF eluate and an entire lead concentration was carried out. The final sample that was produced
was analysed for both stable lead and for 2!2Pb to determine the efficiency and the background of the
procedure. Unfortunately it was found that the Media-Kap filters blocked and each one could only filter
about a third of the back-extracted solution. Three filters were therefore used to process the entire volume
and these were eluted producing 32 millilitres of 0.5M hydrochloric acid.
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A second experiment, experiment SSR2, used the same 20 litres of mock SUF eluate after a further
100 milligrams of stable lead had been added and performed just the solvent-solvent extraction. Samples
of the 20 litres were taken before and after the extraction for stable lead analysis to determine the stable
lead efficiency of the extraction stage.

6.4.2 Results of Experiments

The amount of stable lead that was found in the final eluate of experiment SSR1 was 77+3 micro-
grams. Since 1 milligram of lead had been initially added to the 20 litres this gives an overall rig efficiency
of just 7.740.3%. In experiment SSR2 the 20 litres of mock SUF eluate initially contained 5.140.1 parts
per million (ppm) of stable lead and after the extraction this was reduced to 4.6+0.1ppm. This means that
the extraction efficiency in experiment SSR2 was only 10+3% which explains why the overall efficiency
measured in experiment SSR1 was so low.

The 2'2Pb background for experiment SSR1 was found to be quite high at 30 counts per hour.
Together with the very low efficiency of this experiment this gives a value for R (as defined in Section 6.2
on page 94) of around 160. However it should be noted that the >!?Pb in the final eluate contained no
observable 22¢Ra, or 228Th, which means that the background could have been entirely due to airborne
212Ph contamination.

The time needed to concentrate 212Pb from the 20 litres in experiment SSR1 was 97 minutes which
was longer than the expected 50 minutes due to the unforeseen problems in the HTiO stage.

6.4.3 Conclusions and Design Improvements

The overall efficiency of Version A of the Solvent-Solvent Extraction Rig was measured to be less than
10% which is very poor when compared to the 80% which had been measured using the Prototype Rig
of the last chapter, see Section 5.5.6 on page 83. The source of this problem was located to be in the
extraction stage. The reason for this poor extraction efficiency was suspected to be due to inadequate
mixing of the two phases in M1 and so the stirrer speed was examined.

The stirrer speed for the 8 litre Prototype Rig was about 400 revolutions per minute, however this
motor had failed before the construction of the Solvent-Solvent Extraction Rig and a new motor was
used. It was found that this new motor was not the same as the first, as had been assumed, since it had a
maximum speed of only 220 revolutions per minute. It was decided that this speed was too low for good
mixing and so a new motor with a maximum speed of 2000 revolutions per minute was purchased and
mounted in its place. It was found experimentally that this motor produced much more effective mixing
and that the phases separated after standing for only five minutes, instead of 10 minutes.

Apart from the low extraction efficiency, the other difficulty that needed to be resolved was the
practical one of why the Media-Kap filters kept blocking. It was thought that this problem could have
been due to the high pH of the solution which was pumped through the filter since it is known that the
filters are damaged by solutions which have a pH greater than about 11. The intention was to raise the
pH of the solution to between 8 and 9 but it was very difficult to accurately control the pH using 10M
sodium hydroxide and it in fact ended being above pH 10.

Therefore, it was decided that a known quantity of 10M sodium hydroxide would be added to vessel
C3 via a syringe to raise the pH to about 3 and then final adjustments to the pH would be made using
1M sodium hydroxide added from a stock tank. It was observed that the back-extraction seemed to
occur quite quickly with 100 millilitres of concentrated acid and so it was decided that less acid would be
used in future experiments. It was also decided to add the titanium directly to vessel C3, via a syringe,
rather than to the nitric acid before the back-extraction in order to avoid some unnecessary possible
complications such as the settling of the titanium in the stock tank.
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vessels M2 and C3 to perform the back-extraction and the HTiO extraction.

A further experimental concern arose related to the addition of the concentrated nitric acid through
the valve labelled 3V-3 on Figure 6.1. It was observed that some of the concentrated nitric acid could
end up in vessel M1 during the procedure and so the tubing was altered so that the nitric acid could be
added, via a syringe, directly into the second mixer, M2. Finally, for safety purposes, some of the gas
valves were removed so that it would be impossible to pressurise M1 or M2 by accident.

All of these alterations were made to the existing version of the rig and a new version, Version B was
produced which is shown in Figure 6.3. The procedure to carry out a 212Pb concentration from 20 litres

of SUF eluate using Version B of the rig is very similar to that used on Version A.
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One main difference with the procedure for Version B is the use of only 40 millilitres of concentrated
nitric acid in the back-extraction of the lead from the DDDC solution which is added, via a syringe,
directly to M2 rather than from a stock tank. Also, the titanium needed for the final HTiO stage is no
longer added together with the nitric acid but is added in the form of 0.1 millilitres of a 15% titanium
chloride solution directly to the 1 litre of back-extracted solution after it has drained to vessel C3. Finally,
the pH of the solution in vessel C3 is increased firstly by adding a fixed quantity of 10M sodium hydroxide
to raise the pH to about 3 and then by carefully adding 1M sodium hydroxide to adjust the pH to be
between 8 and 9.

6.5 Details of Experiments Using Version B of the Rig

6.5.1 Description of Experiments

The first experiment of the two that were carried out using Version B of the Solvent-Solvent Extraction
Rig was designed to test the efficiency, background and practicality of just the final HTiO stage. The
second experiment tested the 2'2Pb background and the stable lead efficiency of the entire process and
the efficiency of just the extraction stage. The details of these experiments are given below and the results
are shown in Table 6.2.

e Experiment SSR3:

Three runs were performed sequentially for this experiment and each of these runs started from 40
millilitres of 16M nitric acid containing 0.1 milligrams of stable lead. This was diluted to 1 litre
with ultra-pure water and then the HTiO concentration was carried out. After each run the final
eluate was measured for stable lead and in the last run it was also analysed for 212Pb. These eluates
are labelled SSR3a, SSR3b and SSR3c respectively.

e Experiment SSR4:

In this experiment three runs were performed sequentially, the first two runs tested all of the stages
of the rig whereas the final run just tested the initial solvent-solvent extraction. The solvent-solvent
extractions were carried out using 1 litre of a 0.5% w/v solution of DDDC in 2-octanone.

The first run used a completely blank 20 litres of mock SUF eluate, as in experiment SSR1. The
second run used the same 20 litres of mock SUF eluate but prior to extraction 0.1 milligrams of
stable lead was added so that an efficiency could be determined. For these first two runs the final
eluates (labelled SSR4a and SSR4b) were analysed for both 2!2Pb activity and stable lead. In the
third run a further 100 milligrams of stable lead was added to the same 20 litres of mock SUF
eluate and a solvent-solvent extraction was performed. Samples of the 20 litres were taken before
and after the extraction for stable lead analysis to determine the extraction efficiency.

6.5.2 Results of Experiments

These experiments showed that the pH of the solution in the HTiO stage could be far more easily
controlled using Version B of the Solvent-Solvent Extraction Rig than had been the case with Version A
and just one filter was needed to process the total neutralised volume for each run in experiment SSR3
and the first run of experiment SSR4. Unfortunately, the blocking of the filters returned in the second
overall run of experiment SSR4 and three filters were once again needed. It was noted that the pH of the
solutions in all of the runs was in the range 10.6 to 10.9 when it was forced through the filter and this
included the last run where three filters were needed. Although all of the solutions had a pH above that
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Name of Description Initial Activity in cph of Stable Lead
Eluate of Eluate 212pp | 224Ra | 228Th || Added | Recovered
SSR3a | The eluate after HTiO stage only - - - 100pg | 94%1pug
SSR3b | The eluate after HTiO stage only - - - 100pg | 96+1ug
SSR3c | The eluate after HTiO stage only 15 6 4 100pg | 100+1ug
SSR4a The eluate after all 3 stages 40 24 12 Opg 14+2ug
SSR4b The eluate after all 3 stages 15 12 12 100pug | 82+4ug

| SSR5 | The eluate after HTiO stage only “ 7 | 1 { 0.3 H - I - l

Table 6.2: The stable lead and activity measurements for the elutions of the Media-Kap filters used in
ezperiments SSR3, 4 and 5. The three runs of experiment SSR3 were identical runs with the same
amount of stable lead added to each run. The two runs shown for experiment SSR4 both used the overall
procedure to concentrate lead from the same 20 litres but 100 micrograms of stable lead was added before
the extraction in the second run. Ezperiment SSR5 was a measurement of the background to the HTiO
stage after some cleaning and alterations of the rig.

which had been intended the fact that they were all so similar indicates that the high pH of the solutions
is probably not the reason for the filters blocking.

The results of experiment SSR4 showed that the total time needed to concentrate lead from 20 litres
of SUF eluate using Version B of the rig was about 65 minutes, whether or not there was a problem of
filters blocking. This is a reduction of about a third from the time that it took using Version A of the
rig and is quite close to the original 50 minutes that was expected.

The stable lead and activity measurements for the elutions of the Media-Kap filters used in experiments
SSR3 and 4 are given in Table 6.2. The stable lead results for the three runs of experiment SSR3 show
that the efficiency of the HTiO stage is virtually 100%, within errors. The fact that more lead is recovered
on later runs is due to a small amount of stable lead being carried over from one run to another because
the apparatus was not rinsed sufficiently between runs.

By assuming the same efficiency for the two runs in experiment SSR4, the carry over of stable lead
between the runs can be determined to give an overall efficiency for the concentration of lead using Version
B of the rig of 80+10%. In the final run of experiment SSR4 the mock SUF eluate was found initially to
contain 6.2+0.1ppm lead and after a single solvent-solvent extraction this was reduced to 1.0+0.1ppm,
thus indicating an extraction efficiency of 84+4%. The back-extraction efficiency and the efficiency of
the final HTiO stage must therefore have both been nearly 100%.

The results for the initial activity of 212Pb in the eluates show similar amounts to the 30 counts per
hour which were measured using Version A of the rig. However, since the efficiency of the overall process
has increased this lowers the background to signal ratio, R, (as defined in Section 6.2 on page 94) from 160
when using Version A to around 30 when using Version B. Unfortunately, the radioactive contamination
that was found when using Version B contained large amounts of both ?24Ra and ?22Th as well as 212Pb
and so it could no longer be attributed purely to 2!2Pb airborne contamination.

6.5.3 Conclusions and the Cleaning of the Rig

It is clear from the results that some of the problems incurred when using Version A of the rig were
resolved when using Version B. Firstly, the total time needed to concentrate lead from 20 litres of SUF
eluate into a 12 millilitre sample was reduced by a third to an acceptable length of time. Secondly, the
HTiO stage was, although still not ideal, much easier to control and the blocking of filters was reduced.
Thirdly, the overall efficiency for concentrating the lead using Version B of the Solvent-Solvent Extraction
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Rig was now, as originally expected, about 80%.

The outstanding problem of the rig was now one of a long-lived component to the radioactive contam-
ination. This contamination must have been introduced during the rig alterations since they were not
present when Version A of the rig was evaluated. The source of the ??Ra and 228 Th contamination had
to be physically near the HTiO stage because, unlike the solvent-solvent extraction stage, the HTiO stage
extracts radium and thorium as well as lead. It was therefore suspected that the background sources
were in the tubing and connectors added during the rig alterations which are located near vessel C3.

An attempt was made to clean the rig which involved leaving it filled with 0.5M hydrochloric acid for
one week and replacing all of the non-Teflon tubing, connectors and valves. There were also some further
alterations to the rig. Firstly, the addition of titanium was changed so that it could be added through
the same syringe port as the 10M sodium hydroxide. Secondly, a 3-way valve was introduced so that the
16M nitric acid could be added directly to M2 without any losses in tubing.

After these minor alterations, and the attempted cleaning of the rig, the HTiO stage was tested for
background activity by doing a single experiment, experiment SSR5. This was performed in the same way
as experiment SSR3 but no stable lead was added since the efficiency had been seen to be reproducibly
high. The fitted 8 — o measurements of the produced eluate showed a rig background of about 7 counts
per hour 2'2Pb, about 1 count per hour 224Ra and about 0.3 counts per hour 223Th. These results are
shown in Table 6.2 for a comparison to the results prior to the cleaning.

These results show that the acid soak and the replacement of non-Teflon components reduced 2'2Pb
background by a factor of two and, more importantly reduced the background due to ??Ra and 22*Th by
a much larger factor. The remaining excess of 212Pb activity when compared to that of 224Ra and 2?Th
means that the major source of activity is either due to airborne ?'2Pb contamination or it is due to some
thorium embedded in the material making up the rig which itself is emanating 22°Rn. The remaining
radium and thorium activity could have been due to contaminated reagents or, more probably, it could
have been some residual contamination of components of the rig.

Experiment SSR5 showed that the pH of the solution in the HTiO stage could be more easily controlled
by adding the low molarity alkali via a syringe directly into C3 rather than from a stock tank. This minor
alteration to the rig together with the other alterations made to Version B of the rig between experiments
SSR4 and SSRS5 led to the production of a new version of the rig, Version C, and this is shown in Figure 6.4.

The procedure to concentrate 2'2Pb from 20 litres of SUF eluate using Version C is very similar to
that when using Version B as the only\difference is that all of the reagents needed in the final HTiO stage
are added to vessel C3 directly through the same syringe port.

6.6 Details of Experiments Using Version C of the Rig

6.6.1 The First Set of Experiments Performed on Version C

The experiments that used Version B of the Solvent-Solvent Extraction Rig showed that the HTiO
stage had 22Ra and 228Th as well as 212Pb contamination. Most of this long-lived contamination was
reduced by the cleaning of the rig prior to experiment SSR5 but some residual contamination remained.
The objectives of this set of experiments were to eliminate the long-lived activity from the rig and to
reduce further the 212Pb background.

The first two experiments performed on Version C of the Solvent-Solvent Extraction Rig (experiments
SSB1 and SSB2) investigated whether the nitrogen gas supply or container C3 were sources of contami-
nation. These experiments were performed using lower strength chemicals than are needed to perform a
back-extraction and so the next experiments (experiments SSB3, SSB4 and SSB5) investigated the effect
of using the full strength chemicals and also of any possible contamination from the mixing vessel M2.
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Figure 6.4: Version C of the Solvent-Solvent Extraction Rig. In this version all of the stock tanks have
been removed and all reagents apart from the organic phase are added via syringes which can be attached
at just the two ports labelled A and B in the diagram.
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Sample Summary of Experiment: Activity of sample for:
Name Starting | Pumping | Reagents | Reagent in cph
Container Gas Used Addition || #?Pb | 224Ra | 22*Th
SSB1(1) old C3 air less normal | 3.5+0.5 | 1.3+£0.3 | <0.3
SSB1(2) || new C3 air less normal | 1.8404 | <04 <0.2
SSB2(1) old C3 N, less normal || 2.2404 | <0.7 <0.2
SSB2(2) || new C3 N, less normal <1l.2 <0.3 <0.2
SSB3(1) || new C3 N. less normal || 1.4+0.3 | <1.0 <0.2
SSB3(2) || new C3 N, normal normal <13 <0.3 <0.1
SSB3(3) M2 N, normal normal | 1.5+0.3 | <0.8 <0.1
SSB3(4) M2 Ny normal normal 1.3+0.3 <0.6 <0.2
SSB4(1) M2 N, normal clean 12403 | <0.7 <0.2
SSB4(2) M2 N, normal clean 1.0+£0.3 | <0.8 <0.2
SSB5(1) M2 N, clean clean 1.3+0.3 | <0.8 <0.3

Table 6.3: Results of the first set of experiments performed on Version C of the Solvent-Solvent Extraction
Rig which measured the backgrounds of the HTiO stage. The rates shown are in counts per hour and were
estimated from the number of counts recorded by the B — a counters in 24 hour time slots at different
times after the experiment, as described in Appendiz D. In the erperiments which started in vessel M2
only the new C38 vessel was used to carry out the HTiO stage. The normal method of adding reagents was
to reuse pipettes but in the last three runs only new, clean pipettes were used. Also, in the final run the
reagents were freshly made up and can therefore be assumed to be free from contamination.

The details of these experiments are given below and are summarised along with the measured 2!2Pb
backgrounds in Table 6.3. Unless stated otherwise, all the runs in a particular experiment were performed
in the order they are listed with a negligible time delay between them.

e Experiments SSB1 and SSB2

The first run of experiment SSB1 used the old C3 container which was left sealed with 1 litre
of ultra-pure water for a day so that any unsupported 2!2Pb would have time to decay. To this
container 5 millilitres of 16M nitric acid and 0.1 millilitres of a 15% w/v titanium tetrachloride
solution was added and the pH of the solution adjusted using 1M sodium hydroxide. This solution
was then forced through a Media-Kap filter using a peristaltic pump which fed air into vessel C3 at
about 200 millilitres per minute. This air was taken directly from the room in which the experiments
were being conducted and air could only enter this room through dust filters. This Media-Kap 10
filter was eluted using two samples of 4 millilitres of 0.5M hydrochloric acid to produce sample
SSB1(1) for measurement on a 3 — a counter. The same procedure was carried out using a new C3
container to produce sample SSB1(2).

In experiment SSB2 a similar procedure was carried out except that, instead of pumping air into
the C3 container, the nitrogen gas supply was connected and 10 psi pressure used to force the
solution through the Media-Kap filter. Sample SSB2(1) was produced using the old C3 container
and sample SSB2(2) was produced using the new C3 container.

The results in Table 6.3 for experiments SSB1 and 2 show that the old C3 container gave a contam-
ination of 2'2Pb which was reduced by about a count per hour when using the new C3 container.
It was therefore decided that the old vessel should be discarded and the new C3 container used in
its place.
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The difference between the 2!2Pb activities in samples SSB1 and SSB2, shows that using air to
push the liquid through the filter, rather than nitrogen gas does add to the 2!?Pb background, as
one would expect if there is an airborne 2!2Pb contamination.

e Experiments SSB3, SSB4 and SSB5

These experiments used only the new C3 container. In each experiment, 1 litre of acid was produced
and the HTiO concentration stage was carried out. Sample SSB3(1) was prepared using an initial
acid concentration which was lower than that expected to be produced by a back-extraction, whereas
sample SSB3(2) used the correct amount of acid. After a few hours two more samples were prepared
using full strength chemicals but starting in M2 and transferring liquids into the new C3 container
before carrying out the HTiO concentration. Concerns were raised over the cleanliness of the
pipettes that were being used and so in experiment SSB4 samples were prepared using clean,
disposable syringes and two HTiO extractions were completed. A further concern was that the
acids and alkalis may have become contaminated and so in a final experiment, experiment SSB5, a
sample was produced using freshly prepared reagents and clean pipettes.

The results for experiments SSB3, 4 and 5 are shown in Table 6.3 and can all be seen to give similar
levels of activity which indicates that the source of this remaining activity is not due to the acid
or alkali reagents or the pipettes that were used. The ?!2Pb background to the HTiO stage, as
measured in these experiments, was less than 2 counts per hour which shows a reduction from the
7 counts per hour which was measured in experiment SSR5 and given in Section 6.5.3 on page 104.
This reduction was achieved primarily by replacing the C3 container which at some point must
have become contaminated with 228Th.

6.6.2 The Second Set of Experiments Performed on Version C

The purpose of this set of experiments was to evaluate the overall operation of Version C of the rig
while continuing to try to lower backgrounds and increase efficiencies. The efficiencies in these experiments
were not normally measured using stable lead since the analysis for stable lead carried out at Oxford took
at least a week to produce resuits and this did not allow the analysis of one experiment before starting
another. Instead, sources of 212Pb manufactured free from any 2?4Ra and 228Th as detailed in Chapter
4 were added to the 20 litres before an extraction. Efficiencies were calculated by measuring the activity
of the 212Pb source itself and the 2!2Pb activity recovered in the final 12 millilitres. Listed below are the
details and results of experiments which tested the overall procedure of the rig.

e Experiments SSC1 and SSC2

For both of these experiments 2!2Pb was concentrated from 20 litres of a mock SUF eluate into 12
millilitres.

In experiment SSC1, the first run used a blank 20 litres of mock SUF eluate to allow a measurement
of the overall background. The second run used the same 20 litres of mock SUF eluate but about
10 millibecquerels of 212Pb was added to it prior to the extraction so that the efficiency of the
procedure could be determined.

In experiment SSC2, the first run used 20 litres of mock SUF eluate which also contained 0.1
milligrams of stable lead but no ?!2Pb. The second run had a further 0.1 milligrams of stable
lead added to the same 20 litres and also about 100 millibecquerels of 2!2Pb. This would allow
a determination of the background of the process and its efficiency as measured using both stable
lead and 2'?Pb.
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Unfortunately the spike of 10 millibecquerels of 22Pb used in experiment SSC1 was too small
to determine the efficiency of the procedure since the 2!2Pb background was relatively high. For
experiment SSC2 the efficiency was measured by stable lead to be 5243%, for the first run, and
43+2% for the second run. The efficiency for the second run was also measured by 2!2Pb and found
to be 4245% which is in good agreement with that which was measured by the stable lead and is
good evidence that stable lead does act an effective carrier for extremely small amounts of 212pp,
It is reasonable to assume that the efficiency in experiment SSC1 was also about 45% since the
procedure was identical.

The efficiency of these experiments is lower than the expected 80%, at only 45+£5%. This was found
to be due to the slipping of the motor on the shaft of stirrer S1 and this fault was rectified before
the next experiments were performed.

The 212Pb background for experiment SSC1 was 4.0+0.6 counts per hour and for SSC2, 3.6+1.6
counts per hour which are in good agreement.

Experiments SSC3 and 4

Experiment SSC3 was designed to measure the efficiencies of both the extraction and back-extraction
stages of the rig. Therefore a large 2!2Pb spike of about 10 becquerels was added to 20 litres of
mock SUF eluate before two sequential solvent-solvent extractions were performed. The extraction
efficiencies were determined by measuring the 2'2Pb content of samples taken from the SUF elu-
ate before and after each extraction. A back-extraction stage was performed for both extractions
and the efficiency of the back-extraction stage was determined by weighing the final solution to
accurately determine its volume and measuring the 2!2Pb content in a sample of it.

The extraction efficiency in the first run was measured to be 79+5% and on the second run, 71£16%
thus giving an average value of 78+5%. This efficiency compares very well to the 84+4% extraction
efficiency given in Section 6.5.2 on page 103 which was measured using stable lead in experiment
SSR4 performed using Version B of the rig. The fact that these efficiency measurements agree is
evidence that large quantities of stable lead and extremely small quantities of >?Pb behave the
same. The back-extraction efficiency for both runs was consistent with 100%.

Experiment SSC4 measured the overall efficiency by adding 40 millibecquerels of ?!2Pb to the
20 litres of SUF eluate and performing two sequential runs of the overall procedure. This gave an
overall efficiency of 7846% for the first run and 70+19% for the second, hence an average of 77+6%.
This efficiency also compares very well to the 80+10% overall efficiency measured using stable lead
in experiment SSR4 performed using Version B of the rig and given in Section 6.5.2 on page 103.

By comparing this overall efficiency to the 78+5% extraction efficiency, as measured in experiment
SSC3, the HTiO stage must, like the back-extraction stage, be virtually 100% efficient which agrees
with the measurements of the HTiO stage efficiency using stable lead in experiment SSR3 performed
using Version B of the rig and given in Section 6.5.2 on page 103.

Experiments SSC5 and 6

Experiment SSC5 used three runs and measured the background of 2!2Pb in the different stages
of the rig. The first run measured the HTiO stage only by adding 40 millilitres of 16M nitric acid
together with 0.96 litres of ultra-pure water to M2 and performing an HTiO concentration. This
gave a 212Pb background of 2.140.4 counts per hour which, as expected, is comparable to the
1.3+0.3 counts per hour found in the similar experiment, experiment SSB5 whose results are listed
in Table 6.3. The second run passed an organic phase, which had not been used in an extraction, into
M2 and then performed a back-extraction and HTiO concentration. This gave a 222Pb background
of 9.641.0 counts per hour indicating that the organic reagent itself adds a ?'*Pb background of
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several counts per hour. The final run of experiment SSC5 measured the background of all three
stages of the procedure using a completely blank 20 litres of mock SUF eluate. This gave a 2!2Pb
background of 12.7+1.2 counts per hour which indicates that a further 3 counts per hour are added
by mixing with the 20 litres of mock SUF eluate.

Experiment SSC6 used the same 20 litres of mock SUF eluate as had been used in experiment SSC5
several days after the initial experiment had been carried out to determine the overall background
to the process. The difference between this experiment and the last run of experiment SSC5 was
that the DDDC and 2-octanone were measured out and left sealed for 3 days before mixing in order
to reduce any 2'2Pb background which had accumulated from the air. This was found to reduce
the overall background to 4.2+0.7 counts per hour from the 12.7+1.2 counts per hour which was
measured in experiment SSC5. This reduction is good evidence that airborne 2!2Pb contamination
getting into the DDDC solution is a major source of 2'2Pb background.

e Experiments SSC7, 8 and 9

These three experiments all concentrated 212Pb from the 20 litres of mock SUF eluate which had
been used in experiment SSC5 but the DDDC solutions were prepared by mixing the DDDC and 2-
octanone a period of time before it was used to further minimise the effect of airborne 2!2Pb. It was
known that DDDC decomposes when it is left in solution, however small scale solvent-solvent batch
experiments, which used a few kilobecquerels of 2!2Pb, showed that a 0.5% w/v DDDC solution
can be left for at least a few days without any observable loss of extraction efficiency.

In experiment SSC7 the organic phase was left mixed for 3 days and then two background runs
of the entire procedure were carried out. The first run of experiment SSC8 was the same as the
runs in experiment SSC7 but in the second run of experiment SSC8 about 100 millibecquerels of
212Pb was added to the 20 litres so that the overall efficiency of the procedure could be measured.
Unexpectedly this efficiency was found to be only 244+2% which was much lower than the 80%
which was measured in experiment SSC4. It was thought that this could have been due to the
DDDC decomposing with time even though the small scale experiment had suggested this to be
unlikely and so in the next experiment, experiment SSC9, the DDDC and 2-octanone were mixed
and left for only 24 hours before being used. In this experiment three runs were carried out, the
first two measured the 212Pb background of the process and the third run used a spike of 2'2Pb to
measure the overall efficiency which was found, again, to be only 27+2%.

The 212Pb background and efficiency results measured in this second set of experiments performed on
Version C of the Solvent-Solvent Extraction Rig are summarised in Table 6.4. The experiments whose
efficiencies are marked by an asterisk denote values which are assumed from other experiments. For
experiment SSC1 it was clear that the efficiency had to have been the same as in experiment SSC2,
however for experiments SSC5, SSC6 and SSC7 it was not clear whether the efficiency had been the 80%
which was measured in experiment SSC4, or the 25% which was measured in experiment SSC8, therefore
the two possible efficiencies for these experiments are listed.

For all of the experiments listed in Table 6.4 the value for R, the background to SNO signal ratio
as defined in Section 6.2 on page 94, is calculated and listed alongside the other results in the table.
By considering these calculated values of R and assuming that it was roughly the same in all of the
experiments means that it is likely that the loss of efficiency occurred after experiment SSC5 and before
experiment SSC6.

The low efficiency measured in experiment SSC2 has already been discussed as it was due to a failure
of the stirrer. When the stirrer operated correctly, in experiment SSC4, the efficiency for lead extraction
returned to the expected value of about 80%. However, the reason for the drop of efficiency in experiments
SSC8 and 9 is unknown. It was concluded not to be due to the fact that the DDDC solution was left
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Experiment | Time the Organic || Measured Background in cph of: 212pp R
Number Phase was Left 212py, | 224Ra, | 228Th Efficiency
SSC1 no time 4.0+£0.6 | <0.19 <0.13 45%* 5
SSC2 no time 3.6x1.6 | <0.42 <0.86 45+2% 442
SSCs no time 12.7+£1.2 | <0.24 <0.19 25% or 80%* | 25 or 8
SSC6 3 days, unmixed 4.24+0.7 | <0.40 <0.11 25% or 80%* | 8 or 3
SSC7(1) 3 days, mixed 2.9+0.5 | <0.22 <0.08 25% or 80%* | 6 or 2
SSC7(2) 3 days, mixed 1.4+0.3 | <0.04 <0.09 25% or 80%* | 3orl
SSC8 3 days, mixed 4.1+£0.6 | <0.21 <0.08 24+2% 8+2
SSC9(1) 1 day, mixed 4.5+0.6 | <0.14 <0.13 27+2% 812
SSC9(2) 1 day, mixed 3.41+0.5 | <0.04 <0.07 27+2% 7+2

Table 6.4: The results of the second set of experiments performed on Version C of the Solvent-Solvent
Extraction Rig. The values for the activities of each isotope were found by fitting the output of the f — o
counters as is explained in Appendiz D. The background to SNO signal ratio, R, is defined in Section 6.2
on page 94 and calculated by dividing the measured background by both the efficiency and the 2 counts
per hour expected signal from the SNO detector. The efficiencies which are marked by an asterisk are
assumed efficiencies from other experiments since they were not measured directly in these ezperiments
and the reasons for giving two efficiencies for some experiments is discussed in the text.

to stand for a number of days prior to use since there was no increase in efficiency in either experiment
SSC9, where the DDDC solution was only left for 24 hours, or in a further rig experiment which used
a freshly prepared DDDC solution. The reason for this drop in efficiency had to be investigated before
work on the rig could continue and the results of this investigation are given in the next section.

The time to perform the secondary concentration of 22Pb in this set of experiments was between
70 and 80 minutes which is an acceptable time compared with the half-life of 2!2Pb but was longer
than had been expected due to some outstanding problems with the final HTiO stage. In this series
of experiments 16 full 212Pb concentrations were completed and each of these produced about 1.5 litres
of a back-extracted solution with a pH of about 10 which was pushed through Media-Kap filters using
nitrogen pressure. In total, 38 Media-Kap filters were used which means that, on average, 2 or 3 filters
are needed to concentrate 2!2Pb from 20 litres of SUF eluate. These filters were eluted by using the acids
of the first elutions in the second elutions so that a sample small enough to be measured on a single 8 — «
counter was produced, but this is obviously not an ideal solution.

Alongside the difficulties with the HTiO stage and the unexplained drop in efficiency measured in
experiments SSC8 and 9, it can be seen from the values of R in Table 6.4 that there is still a 2!2Pb
background on the rig which is about 8 times larger than the expected signal from the SNO detector.
In experiment SSC5 it was found that about 2 counts per hour of 22Pb activity is produced in the
final HTiO stage and a large amount is introduced through making up the DDDC solution in air. In
experiments SSC6 through SSC9 attempts were made to reduce the amount of 212Pb in the organic phase
but it can be seen that these results are inconclusive due to the unexpected loss of efficiency in these
experiments.
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6.7 An Investigation into the Unexpected Loss of Rig Efficiency

6.7.1 Small Scale Solvent-Solvent Batch Extraction Experiments

The unexpected drop in efficiency experienced in the last experiments conducted using Version C of the
Solvent-Solvent Extraction Rig was investigated by performing small scale batch extraction experiments
with 0.5 litres of mock SUF eluate and 25 millilitres of organic phase. The extractions were carried out
in a 1 litre separating funnel and the phases were mixed by shaking the funnel for 2 minutes. This was
the same procedure as that which had been used in the preliminary tests detailed in Chapter 5 and, as
in those experiments, about a 1 kilobecquerel of 228 Th in equilibrium with its daughters, including ?'2Pb
was added to the aqueous phase before extractions so that efficiencies could be determined using gamma
counting.

The first experiment used a 0.5% w/v DDDC solution in 2-octanone and this produced less than 1%
212P} extraction and so more experiments were carried out to trace the cause by a process of elimination.
Firstly, the DDDC was taken from an old batch and secondly the ultra-pure water source was changed
but neither of these changes had any effect upon the extraction efficiency. However, when the DDDC
concentration in the 2-octanone was increased to 2% w/v, a good extraction efficiency of 87+3% was
measured. Initial experiments had used this concentration of DDDC but the concentration was lowered
to reduce costs for rig experiments since an experiment had shown that the lower concentration would
work just as well, see Section 5.7.2 on page 88.

This experiment was repeated and efficiencies measured by observing the disappearance of 2!2Pb
from the aqueous phase are compared directly to those of the previous experiment in Table 6.5. It should
be noted that in the extractions carried out in the present experiment the aqueous phase volume was
twenty times larger than the organic phase volume. Furthermore, in the present experiment much greater
care was taken to ensure the complete collection of the phases and this is probably the explanation of
the higher measured efficiencies when the DDDC concentration was greater than 1.5% w/v. The major
differences between the previous and present experimental results are when the DDDC concentration is
less than 1.5% w/v. In the previous experiment good extraction efficiencies were measured when the
DDDC concentration was reduced to 0.5% w/v but in the present experiment the measured extraction
efficiency was found to decrease rapidly to a poor 7+8% at a DDDC concentration of 0.5% w/v.

Concentration of 212Pp Extraction Efficiency:
DDDC in 2-octanone || Previous Exp I Recent Exp
0.5% w/v 75+12% 7+8%
1.0% w/v 75+£09% 24+10%
1.5% w/v 79+12% 97+5%
2.0% w/v 74+10% 97+4%
2.5% w/v 72+10% >98%

Table 6.5: A comparison to compare the results of two experiments designed to measure the extraction
efficiency of 212 Pb when using varying concentrations of DDDC 2-octanone. The results of the previous
ezperiment are taken from Section 5.7.2 on page 88. The differences between the results of the two
experiments are discussed in the text.
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These results suggest that the reagents used in this present experiment have changed from those
used in the previous experiment. It was found that when high purity, 99+%, 2-octanone was used high
extraction efficiencies with a 0.5% w/v solution of DDDC were once again achieved. It must therefore
be concluded that different batches of the 98% 2-octanone contain varying amounts of some unknown
impurity that inhibits lead extractions using DDDC.”

The solution to the decrease in efficiency was clearly to use only the high purity 2-octanone but it
should be noted that it is more expensive than the low purity 2-octanone. The 99+% 2-octanone can be
purchased from Acros® and 1 litre costs about £28 (including taxes). This is about twice the cost of the
98% 2-octanone sold by Aldrich and so this increases the cost to concentrate 2!2Pb from 20 litres of SUF
eluate from the £41 quoted in Section 5.7.2 on page 88 to about £55, assuming that only one Media-Kap
filter is used.

6.7.2 A Rig Experiment Using High Purity 2-Octanone

The previous section suggested that if high purity 2-octanone is used, high extraction efficiencies for
212Pb can be obtained when using a 0.5% w/v solution of DDDC. It was decided that this should be
verified by performing a single experiment consisting of two complete 2!2Pb concentrations using Version
C of the Solvent-Solvent Extraction Rig. Firstly, a complete, blank 2!2Pb concentration from 20 litres
of mock SUF eluate was carried out to measure the 2!2Pb background of the rig and then immediately
afterwards a known quantity of 212Pb was added to the same 20 litres and a further 2!2Pb concentration
conducted to measure the rig efficiency.

It should be noted that in this experiment the HTiO stage failed to produce a sample that could be
measured by a single 8 — a counter and this was due to the Media-Kap filters blocking at an even higher
rate than previously noted. In the first run five filters, and almost 30 minutes, were required to filter the
back-extracted solution after the HTiO had been precipitated. The total elution volume for these five
filters was too large to be measured by a single 8 — a counter and so a sample of it was taken and the
result multiplied by a volume ratio. In the second run the filtration was stopped after three filters had
been used and about a third of the back-extracted solution had been filtered. These three filters were
eluted and the eluate measured using a  — a counter. The overall efficiency was then determined by
accurately measuring the volume of the total back-extracted solution and comparing it to the amount
that was actually filtered.

The efficiency of Version C of the rig when using the high purity 2-octanone was calculated to be
73+5% which is in good agreement with the 77+6% efficiency as measured in experiment SSC4, when the
rig was also functioning correctly. The background measurement showed very little 224Ra or 2?8Th and a
212P} activity of 8+1 counts per hour. Combining these measurements gives a value of R, the background
to SNO signal ratio, of 5+1 which is a similar figure to those found in the last set of experiments.

7Independent experiments by Dr K.Rowley of the Brookhaven National Laboratory showed that 2-octanol is such an
inhibitor. However the 98% 2-octanone used at Oxford was not found to contain large enough quantities of 2-octanol to
account for the lower efficiencies and so another inhibitor must have been present.

8 Acros Organics, Fisher Scientific UK, Bishop Meadow Road, Loughborough, Leicestershire, LE11 5RG
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The difficulties that were found in these experiments in completing the final HTiO stage were very
concerning since the number of filters was too great to produce a sample small enough to be measured
by a single 8 — a counter and the time taken to complete this stage was much too long. It is interesting
to note that the problem of blocking filters was not seen in experiments SSB1-5 performed on Version
C of the rig in Section 6.6.1 on page 104 when a back-extraction from an organic phase had not been
completed and it was also seen to get worse as more experiments were carried out. This indicates that
the possible source of the problem is trace amounts of 2-octanone which make their way through the
phase separation in the back-extraction and build up in vessel C3. It is known that the cellulose fibres of
the Media-Kap filters are not resistant to 2-octanone and even trace amounts could cause the fibres to
swell which would lead to the observed blocking.

If the blocking of the filters is indeed due to trace amounts of 2-octanone then a simple solution to
the problem will be hard to find since there will always be trace amounts of 2-octanone present in the
solution after the back-extraction. The entire suitability of the HTiO to perform the final concentration
of the ?!2Pb must therefore be brought into question.

6.8 Conclusions

The results of this chapter indicate that, generally, the chemical techniques used on the Solvent-
Solvent Extraction Rig, as developed in Chapter 5, efficiently concentrate lead from a solution chemically
similar to the SUF eluate into a sample which can be measured by a single 8 —a counter in an appropriate
amount of time. However some difficulties still remain and these are discussed below.

Firstly, the efficiency of the initial extraction stage was found to drop considerably both when the
SUF eluate and the organic phase were not mixed sufficiently and when certain 2-octanone was used.
These drops in efficiency were resolved by fixing the stirrer in the 20 litre mixer and by using high
purity 2-octanone, however these efficiency reductions were unexpected and not identified as soon as they
occurred which raises concerns over the reproducibility of the efficiencies of the procedures carried out
on the rig.

Secondly, the experiments of this chapter showed a major difficulty arising in the final HTiO stage.
This stage, previously measured to have a very high efficiency, underwent many changes trying to improve
it but the problem of the Media-Kap filters blocking has not been resolved. This raises concerns over the
suitability of HTiO to perform the final concentration of 21?Pb.

The final difficulty with the Solvent-Solvent Extraction Rig, as used in this chapter, is that the
procedural 212Pb background is larger than the expected 2!2Pb signal from the SNO detector. It should
be noted that much successful work was completed to both lower the background on the rig and increase
the efficiency for concentrating 2!?Pb. Indeed the background to SNO signal ratio, R, has been decreased
from 160, as measured using Version A of the rig, to around 8, as measured using Version C, but this is
still at least an order of magnitude too high.

In the next chapter are details of the further research that was carried out to determine solutions to
the difficulties that are outlined above.

113



114




Chapter 7

The Final Development of a 212py
Assay For the SNO Detector

7.1 Introduction

In the last two chapters procedures have been developed to perform the secondary concentration of
lead from up to 20 litres of SUF eluate using the Solvent-Solvent Extraction Rig. The completion of
these procedures will enable the HTiO SUF assay system to measure the amount of 212Pb in the heavy
water of the SNO detector.

The three outstanding difficulties with these procedures are:

1. The final HTiO stage has to either be modified or replaced to solve the problem of blocking filters.
2. The overall efficiency of the rig has to be shown to be reproducibly high.
3. The 212Pb procedural background of the rig has to be reduced by an order of magnitude.

The results of experiments described in the last chapter clearly show the difficulties in investigating
the backgrounds to the secondary concentration procedures when the efficiency of these procedures were
later found to have changed. It was decided that it would have been highly beneficial to measure the
efficiency of the these procedures while simultaneously measuring the 212Pb background. This could have
been achieved by adding a stable lead carrier to each experiment and measuring the stable lead yield in
the final eluate. Unfortunately the analysis for stable lead carried out at Oxford took at least a week to
produce results and this did not allow the analysis of one experiment before starting another which is
why the technique was not extensively used.

The need for immediate stable lead analysis, amongst other reasons, led to the transportation of the
Solvent-Solvent Extraction Rig to the Brookhaven National Laboratory (BNL), New York, USA, which
is a co-collaborator in the SNO experiment. Numerous experiments were carried out at BNL in the
latter half of 1997 under the supervision of Dr K.Rowley to develop a reliable secondary concentration
procedure for 212Pb using the Solvent-Solvent Extraction Rig and the results of these are detailed in this
chapter.

The first area of research that is discussed in this chapter is that of finding an alternative final
concentration stage to replace the HTiO method. This involved the development of an alternative back-
extraction technique and the use of an ion-exchange column to produce a sample suitable for measurement
by a single 3 — a counter. Secondly an investigation into airborne ?!2Pb activity is made in order to try
to reduce 2!2Pb backgrounds. Lastly, the final version of the Solvent-Solvent Extraction Rig together
with the new techniques is evaluated using several experiments to measure efficiencies and backgrounds.
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7.2 The Development of an Alternative Final Concentration

Stage

7.2.1 Possible Methods

The previous chapter explained the difficulties in using HTiO as the final concentration stage for
212PY. These were mainly due to the fact that the Media-Kap filters, used to collect the HTiO, were
found to be unsuitable when filtering solutions containing trace amounts of 2-octanone. Initial research
was therefore directed at finding an alternative method to back-extract and concentrate the lead from
the DDDC solution into a 12 millilitre sample which is less that 1M in either salt or acidity and can
therefore be measured by a single 8 — a delayed coincidence scintillation counter.

Some small scale experiments had shown that 6M nitric acid instead of 16M concentrated nitric acid
could be used to back-extract lead from DDDC very effectively, however 6M nitric acid is, like 16M nitric
acid, not measurable by a single 3 — a counter and so even when using the lower strength acid a reduction
in acid content is likely to be needed. Furthermore, it seemed infeasible to try to perform an effective
back-extraction from the 1 litre of DDDC solution into a volume less than about 40 millilitres. Therefore
a method reducing both the volume and acidity of the back-extracted solution was required.

Due to the presence of the strong nitric acid in the back-extracted solution it was difficult to find
chemical methods to extract and concentrate the lead. One possibility that was considered was to
evaporate the liquid to dryness and then dissolve residues in a small quantity of low molarity nitric acid.
The use of such a procedure would produce small volume samples suitable for measurement by a single
B — a counters however it would take a few hours to evaporate the 40 millilitres to dryness in a controlled
fashion and this would lead to losses of 2!2Pb due to decay.

The difficulty in further concentrating the lead from a solution of strong nitric acid led to a search for
an effective alternative back-extraction procedure which would leave the lead in 40 millilitres of a solution
suitable for further chemical processing. It was noticed by Mr B.Knox that the order of decreasing sta-
bility of various metal diethyldithiocarbamates has been determined to be: mercury(II), palladium(II),
silver(I), copper(Il), thallium(III), nickel(II), bismuth(III), lead(II), cadmium(II), thallium(I), zinc(II),
indium(III), antimony(I1I), iron(III), tellurium(IV) and manganese, see [Sta64] and [Bod57]. This sug-
gests that if enough copper(II) or nickel(II) were present in an aqueous phase which was mixed with a
DDDC solution, the DDDC would become saturated and any lead would be displaced into the aqueous
phase. The use of copper to displace metal ions from their dithiocarbamates is a known procedure, see
[Sed52).

A small scale test experiment was performed using both copper and nickel to investigate whether this
procedure would be useful to back-extract lead from a 0.5% DDDC solution in high purity 2-octanone.
Since two DDDC molecules react with each divalent ion, see Section 5.2.4 on page 73, half the number
of copper ions or nickel ions are needed to saturate a given number of molecules of DDDC. The amount
required was calculated and added to an aqueous phase which was then shaken with a small volume of
DDDC solution after it had undergone an extraction of lead from 0.5M hydrochloric acid. Unfortunately
nickel was observed to not displace the lead which indicates that nickel might be lower than lead in
the stability order when 2-octanone is used as the solvent. However, copper was found to be extremely
efficient at displacing the lead into the aqueous phase.

Since the aqueous phase used to back-extract the lead can be made more or less concentrated with
copper as needed, the results of this preliminary experiment suggested that it would be likely that, using
an excess of copper, the lead could be back-extracted from 1 litre of a DDDC solution into about 40
millilitres of aqueous phase. Since this 40 millilitres must also contain a large amount of copper needed
to saturate the DDDC, it would be preferential to extract the lead from this solution to make a 12 millilitre
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sample which can be measured by a single 8 — a counter. Research into the literature on ion-exchange
materials suggested that the lead in a copper solution could be extracted and then collected into a smaller
volume using an ion-exchange column containing a strong base anion-exchange resin, Dowex-I, provided
that the original copper solution was made to be 1M in hydrochloric acid. Since the back-extraction
using copper was relatively insensitive to the acid molarity in the aqueous phase it seemed possible that
a copper back-extraction followed by an ion-exchange stage would obtain the required final concentration
of 212Pb.

In the next two sections experiments investigating the reliability of the copper back-extractions and
the feasibility of a final ion-exchange concentration are detailed.

7.2.2 Feasibility Studies for Copper Back-Extractions

Several small scale experiments were performed to try to understand and characterise the back-
extraction of lead from DDDC using copper. In each experiment a solvent-solvent extraction from 0.5
litres of 0.5M hydrochloric acid was performed using 25 millilitres of a solution of DDDC in 2-octanone.
These were shaken in a 1 litre separating funnel for 2 minutes and then the two phases were separated
and the back-extraction carried out in a 100 millilitre separating funnel by adding a solution of copper
and shaking for 2 minutes.

These experiments were therefore very similar to the original small scale feasibility studies detailed
in Chapter 5, however there were a few differences. Firstly, the 2-octanone used was the high purity
2-octanone purchased from Acros since in the last chapter it had been shown that using lower purity
2-octanone could cause decreases in efficiency, see Section 6.7.1 on page 112. Secondly, no titanium was
added to the 0.5M hydrochloric acid since it had previously been shown that titanium does not play
a role in the extraction of lead using DDDC. Thirdly, all of these experiments were conducted in glass
apparatus, using appropriately sized separating funnels and a standardised rinsing procedure to eliminate
losses of efficiencies due to incomplete phase collection as had been observed in the small scale feasibility
experiments in Chapter 5.

The results of these experiments were determined by adding 104 micrograms of stable lead to each
aqueous phase before an extraction and measuring the amount of stable lead in the back-extracted
solution. The amount of copper extracted was determined by adding a known quantity of copper to
perform the back-extraction and then measuring the amount remaining in the aqueous phase. These
measurements were made using Atomic Absorption Spectroscopy using the 283.3 nanometer absorption
line for lead and the 324.9 nanometer absorption line for copper.

The results of several such experiments using copper back-extractions are shown in Table 7.1. The
results show that although the lead recovery is always above 95%, there is quite a large variation in the
amount of copper that was extracted during the back-extraction. Interestingly, the amount of copper
that was extracted is not enough to saturate the initial amount of DDDC that was present since one
would expect a DDDC/Cu molar ratio of 2 and the results show molar ratios of between 10 and 20.

The likely explanation for the observed high molar ratios is that some of the DDDC in the 2-octanone
decomposes before or during the back-extraction. If it is assumed that the DDDC has decomposed
and that the remaining DDDC is fully saturated with copper then the amount of DDDC remaining as
a percentage of that initially added can be calculated and these percentages are shown in Table 7.1
alongside the other results.

It is unclear exactly where the decomposition of DDDC was occurring but in Section 7.4.4 on page 134
experimental results show that some of the DDDC decomposes during the extraction stage. There is also
some evidence for decomposition within the back-extraction in the results in Table 7.1 itself since there
appeared to be more DDDC remaining when 0.1M nitric acid was used in the back-extraction (experiments
BMB2-4) than when 1M hydrochloric acid was used (experiments BMB6-10). Naively one would expect
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Exp Organic Aqueous Ext/Back-Ext Copper | Molar | DDDC

No Phase Phase Efficiency Extracted | Ratio Left
BMB2 0.5% DDDC 0.1M HNO3 94+1% 2.5mg 14 14%
BMB3 0.5% DDDC 0.1M HNO3 97+1% 4.1mg 9 23%
BMB4 0.5% DDDC 0.1M HNO3 95+2% 4.6mg 8 26%
BMB6 0.5% DDDC 1M HCI 99+1% 1.2-3.2mg | 11-30 || 7-18%
BMB7 0.5% DDDC 1M HCl 95+1% 1.6-1.8mg | 20-22 || 9-10%
BMBS8 0.5% DDDC 1M HCI 98+1% 2.7mg 13 15%

(in CCly)
BMB9 1.0% DDDC 1M HCI 97+1% 3.7Tmg 19 10%
BMB10 0.5% DDDC 1M HCI 95+1% 2.2mg 16 12%
(in 4 day old 2-oct)

Table 7.1: The results of several lead back-extractions using copper. In all of the experiments 105 mi-
crograms of stable lead was extracted from 0.5 litres of 0.5M hydrochloric acid into 25 millilitres of an
organic phase and the lead was then displaced from the DDDC with copper using 1-2 millilitres of aqueous
phase. The overall extraction and back-extraction efficiencies for these experiments were determined by
analysing the final back-extracted solution for stable lead.

more decomposition in the stronger acid, as was observed.

It is interesting to see that when carbon tetrachloride was used as the solvent and a similar copper
back-extraction carried out (experiment BMB8) the amount of copper needed was not significantly higher
than that when 2-octanone was used. This is strange because this is a well understood system and it
is known that the DDDC decomposition in this system takes times much longer than the few minutes
of mixing used in this experiment [Bod59]. This indicates that there must be more complicated effects
taking place.

In experiments BMB6 and BMB7 a small amount of copper was initially added to try to back-extract
the lead and then successive back-extractions were carried out each containing an additional amount of
copper. The results of these experiments showed that the lead was released over a very small range of
added copper. For example, in experiment BMB7, only 7% of the lead was released when 1.6 milligrams
of copper was added but by adding a further 0.2 milligrams 88% of the lead was released. The remaining
few percent of lead were released on adding a further 0.2 milligrams of copper.

The results of experiments BMB7 and BMB9 can be compared to see the effect of increasing the
amount of DDDC in the original organic phase. In the first experiment the usual 0.5% w/v solution was
used whereas in the second a 1.0% w/v solution was used. In both experiments good lead recovery was
found and the amount of copper needed was found to increase approximately in proportion to the amount
of DDDC present. This result suggests that the findings of these small scale experiments can successfully
be scaled to experiments at the 20 litre scale. Finally, in experiment BMB10 the DDDC solution was
left, mixed for 4 days prior to the experiment and the results imply that no further DDDC decomposition
takes place during this time. This is in agreement with the results of an experiment conducted at Oxford
which was discussed in Section 6.6.2 on page 109.

A final small scale back-extraction using copper was carried out in Oxford which measured the back-
extraction efficiency by adding a kilobecquerel of 222Th in equilibrium with all of its daughters, including
212PY, to the aqueous phase before the extraction. The efficiencies for 212Pb were measured using gamma,
counting, as described in Appendix B. The back-extraction was performed with about the same amount
of copper as had been needed in the experiments at BNL and the back-extraction efficiency was found
to be 98+3%. This showed that the copper back-extraction technique is very effective even when the
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amount of lead present in the organic phase is reduced by several orders of magnitude.

It should be noted that the distinctive brown colouring of the copper-DDDC complex made it easy to
see when the copper was extracted and that this extraction seemed to occur very quickly. Furthermore in
all of the experiments it was found that if a blue colouring remained in the aqueous phase this indicated
that there was a copper excess and hence that the lead had been displaced.

In the above experiments the amount of copper that was needed to perform the back-extraction of lead
was calculated by observing the disappearance of copper from the aqueous phase. A brief investigation was
conducted to determine whether the copper extracted by the DDDC could be quantitatively recovered.
Firstly, the acid back-extraction method that had been used for lead was used for copper. This involved
shaking the organic phase left from experiment BMB9 with a few millilitres of 6M nitric acid for 2
minutes. Unfortunately this was found to recover only about a third of the copper and further water
rinses of the organic phase continued to show a green colouring which indicated that the back-extraction
was not complete. So, for experiment BMB10 the acid was initially shaken with the organic phase for
2 minutes and then the mixture was left to stand for 1 hour to allow the reaction to proceed before a
final shaking for 2 minutes and a separation of the phases. It is interesting to note that during this hour
the dark brown colour of the copper-DDDC complex changed to a green colour which then faded to a
persistent yellow colour which was not removed from the organic phase despite several water rinses. The
hour long method of back-extracting copper from DDDC was found to be very effective and the amount
of copper recovered was in good agreement with the amount calculated to have disappeared from the
aqueous phase.

A further experiment, experiment BRT1, was conducted to verify the copper back-extraction method
at full scale. A solvent-solvent extraction from 20 litres of 0.5M hydrochloric acid containing 400 micro-
grams of stable lead was performed using 1 litre of 0.5% w/v solution of DDDC in high purity 2-octanone.
This extraction was performed using mixer, M1 and stirrer, S1 of Version C of the Solvent-Solvent Ex-
traction Rig as shown in Figure 6.4 on page 105. The extraction lasted for 5 minutes and then the phases
were left to stand for a further 5 minutes before the organic phase was separated into mixer, M2. To this
1 litre of 2-octanone, 40 millilitres of 1M hydrochloric acid containing about 80 milligrams of copper was
added and the phases mixed for 5 minutes by bubbling nitrogen gas into the bottom of M2. The phases
were separated and then a second, identical back-extraction was carried out. Both of the 40 millilitres
of back-extracted solutions were analysed for stable lead and copper content using Atomic Absorption
Spectroscopy, as before.

After both extractions the copper was back-extracted from the organic phase by adding 200 millilitres
of 6M nitric acid, mixing for 5 minutes then standing for 1 hour. After this time the phases were once
again mixed for 5 minutes before the acid was removed, evaporated down and analysed for copper. All
of the copper and stable lead measurements for this experiment are shown in Table 7.2.

These results show that the overall extraction and back-extraction efficiency for lead was virtually
100%. The amount of copper found in the organic phase was 34 milligrams which is consistent with that
which disappeared from the aqueous phase in the first lead back-extraction. The copper results show that
only 0.54 millimoles of copper were needed to completely back-extract the lead from 22.5 millimoles of
DDDC. This is a molar ratio of 42 which would indicate that only 4.8% of the DDDC that was initially
added to the 2-octanone was present after the back-extraction. This is a much lower fraction than that
measured in the small scale experiments but this is to be expected if DDDC decomposition is occurring
in the extraction stage since the mixing time had been increased from 2 minutes to 5 minutes and the
method of mixing was significantly different.
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Sample || Lead Content LCopper Content
1st back-extraction using copper 406 g 44mg
2nd back-extraction using copper 7.2ug 75mg
final back-extraction using 6M nitric acid - 34mg

Table 7.2: The results of a 20 litre extraction into 1 litre of a 0.5% w/v DDDC solution using high purity
2-octanone followed by two back-extractions using 40 millilitres of 1M hydrochloric acid containing about
80 milligrams of copper. The acid back-extraction was carried out after the two copper back-extractions
by leaving 200 millilitres of 6M nitric acid with the 1 litre of organic phase for over 1 hour. The initial
20 litres of acid contained 400 micrograms of stable lead and so the overall efficiency can be seen to be
virtually 100%.

7.2.3 Ion-Exchange Feasibility Studies

In the introduction to this section it was explained that the Dowex-I anion-exchange resin offers the
possibility of separating lead from a 1M hydrochloric acid solution containing a large amount of copper.
The literature states that the Dowex-I anion-exchange material extracts lead from 1M hydrochloric acid
solutions but does not extract copper. This can be seen in Figure 7.1 which contains the two relevant
figures from [Kra53] and [Kra54]. This figure shows that from 1M hydrochloric acid the Dowex-I material
has a distribution coefficient for lead of about 24 suggesting that about 10 column volumes of 1M hy-
drochloric acid can be passed through a column before the lead begins to breakthrough. The figure also
shows, from the low elution constant for copper, that copper in 1M hydrochloric acid is hardly absorbed
at all by an ion-exchange column made from Dowex-I.

The combination of these two results would seem to suggest that, using a 4 millilitre column of Dowex-
I, the lead in 40 millilitres of 1M hydrochloric acid would be adsorbed by the column whereas the copper
would pass straight through.

This theory was put to the test by an experiment which used 90 millilitres of 1M hydrochloric acid
containing both half a milligram of stable lead and one milligram of copper. This 90 millilitres was
passed, in 10 millilitre samples, through a 4 millilitre ion-exchange column made up with 100-200 mesh
Dowex-I X8 resin. Each 10 millilitres which passed through the column was analysed for stable lead
and copper so that the cumulative breakthrough as a percentage of the amount of the ion passed into
the column could be calculated. The results of this experiment are shown graphically in the top plot of
Figure 7.2. This figure shows that after 10 millilitres all of the copper passes through the column whereas
only after about 40 millilitres does a significant amount, about 7%, of the lead pass through the column.
This significant breakthrough of lead after only ten column volumes of 1M hydrochloric acid indicates a
lower distribution coefficient than that which is suggested in [Kra54]. This difference may have been due
to using a coarser mesh material.

This experiment showed that the lead from 1M hydrochloric acid could be held up on a Dowex-I
ion-exchange column and so the next stage was to demonstrate that the lead could be recovered into a 12
millilitres sample suitable for counting on a 8 — a counter. To ensure that the lead is well separated from
the copper the first step was to wash the column with a small volume of 1M hydrochloric acid to remove
any remaining copper. This was tested experimentally by firstly passing 30 millilitres of 1M hydrochloric
acid containing 105 micrograms of stable lead and 1 milligram of copper through a 4 millilitre column.
All but a few percent of the lead remained on the column whereas about 90% of the copper was found
to have passed through the column. The column was then eluted using three 2 millilitre samples of 1M
hydrochloric acid and these were measured for stable lead and copper content.
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Figure 7.1: The plot on the left is taken from [Kra53] which gives the elution constants of some divalent
transition elements for a Dowez-I column in hydrochloric acid. This figure includes the curve for copper
and this gives an elution constant, E, of about 1.7 for copper in 1M hydrochloric acid. The plot on the
right is from [Kra54] which gives the adsorption of lead and bismuth on Dowez-I from hydrochloric acid
in terms of the distribution coefficient. The distribution coefficient, D, for lead in 1M hydrochloric acid
can be seen to be about 24. It should be noted that E = 1/(i+ D) where i is the fractional interstitial space
of the column which is usually about 0.4. This means that 40% of the column volume is not occupied by

the anion-exchange resin.
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The results of these three copper elutions, in terms of the percentage of the lead and copper that had
been left on the column, are shown graphically in the middle plot of Figure 7.2. It can be seen that after
just 4 millilitres almost 90% of the copper left on the column was eluted along with only about 3% of the
lead.

A method for removing the lead from the column had been suggested in [Kra54] but this involved
an elution with 8M hydrochloric acid which would not produce a sample which could be measured by
a single 8 — a counter. However, if one observes carefully the curve for lead against hydrochloric acid
molarity in Figure 7.1, it can be seen that the distribution coefficient for lead reduces greatly both at high
hydrochloric acid molarity and at very low hydrochloric acid molarity. Therefore, it seemed possible that
an elution of a Dowex-I column with water would successfully remove any lead which had been extracted
onto it. This was tested experimentally using the same column as that which had had the copper elutions
by eluting the column next with six 2 millilitre samples of water and analysing each for copper and lead.
The results of this experiment, in terms of the percentage lead and copper left on the column before the
copper elutions, are shown graphically in the bottom plot of Figure 7.2. This plot shows that after about
8 millilitres of water over 90% of the lead is eluted and that this elution contains less than 3% of the
copper that had been left on the column after the 30 millilitres of sample had passed through it. Since
only about 10% of the copper in the 30 millilitres of 1M hydrochloric acid was left on the column this
means that only 0.3% of the copper initially present ends up with the lead after this ion-exchange stage.

The results of these experiments were encouraging as they seemed to suggest that lead can indeed
be separated from a copper solution in 1M hydrochloric acid into a small volume of weak hydrochloric
acid. (The final sample ends up being about 0.1M in hydrochloric acid due to the washing off of some
acid left in the column.) Indeed, when initially using 30 millilitres of 1M hydrochloric acid, after a 6
millilitre 1M hydrochloric acid wash, a lead yield of 90% was achieved by washing the column with 12
millilitres of water. Unfortunately, increasing the initial volume from 30 millilitres was seen to produce
large reductions in the overall efficiency due to the lead breakthrough from the ion-exchange column. For
example, when 40 millilitres were passed through the column the overall efficiency decreased to 85% and
when 50 millilitres was passed through the column the overall efficiency was reduced further to just 75%.
It is clear that although promising this column itself was not ideal for the final concentration of the lead
from the back-extracted solution since a back extraction into a volume less than 40 millilitres from 1 litre
has already been discussed as infeasible.

Further development work was completed by Dr K.Rowley and a new column was made which used
5 millilitres of 200-400 mesh Biorad AG I-X8. This is the same material as Dowex-I but a larger amount
of a smaller mesh size was used. The results of experiments using this column were similar to those using
the old column but larger initial volumes could be passed through the column before lead breakthrough
was observed. Typically, virtually 100% overall efficiencies for the extraction and elution of lead were
found when starting from a 40 millilitres volume, using a 5 millilitre 1M hydrochloric acid copper wash
and eluting the lead with 12 millilitres of water.

Unfortunately, it was found that under gravity the flow rates through the column were too slow for the
concentration of 212Pb and so the column was adapted so that it could be pressurised to give flow rates
of about 3 millilitres per minute and this allowed the entire ion-exchange procedure to be completed in
about 20 minutes. Further experiments of Dr K.Rowley showed that flow rates between 2 and 5 millilitres
per minute could be tolerated without any major losses in efficiency. A diagram of the pressurised column
which was used in these, and future, experiments is shown in Figure 7.3.

122



100 ] = i o O 5] [] 5] 8]
E Copper
75 B PP °
r L]
S0 = ® Lead
o )
25
- L]
O _‘ 11 1 I,I 11 I,I 11 I,l 11 1 ?1 11 1 l B ]J 111 I 111 1 [ 11 11 l
0 10 20 30 40 50 60 70 80 90
Percentage of ion passed through vs amount of 1M HCl in ml
80 E— e Copper
60 F e
40
20 & Lead
0 | IR T RS ST 2SR ST R S S U, JA T S S S S S S ?
1 2 3 4 5 6
Percentage of ion eluted vs amount of 1M HCI in ml
100 t 'Y [} L]
E ° Lead
75 |
50 F
25 F
F * Copper
o &, , & 6 e, 0, v ,® v P o
0 2 4 6 8 10 12

Percentage of ion eluted (after 6ml 1M HCI wash) vs amount of H,0 in ml

Figure 7.2: The results of the characterisation of the ion-exchange column. The top plot gives the results
of a breakthrough experiment. It shows how much lead (circles) and copper (squares) is passed through a
4 millilitres Dowez-I column when different volumes of 1M hydrochloric acid containing lead and copper
are used. The middle and lower plots give the results of two elution experiments performed one after the
other on a pre-loaded ion-exchange column. The middle plot shows how much copper and lead are eluted
using different volumes of 1M hydrochloric acid. The bottom plot shows how much lead and copper are
eluted using different volumes of water.
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Figure 7.3: The pressurised ion-exchange column which was used in the final concentration of lead to
produce a 12 millilitre sample suitable for 8 — a counting.
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7.2.4 An Investigation into the Compatibility of Copper with Scintillation
Counting

The previous two sections have shown that lead can be back-extracted from 1 litre of a DDDC solution
and concentrated into a 12 millilitres sample which, in terms of acidity, is chemically suitable for counting
on a single B — a counter. However it is expected that this sample will contain some copper and due to
the blue colouring of copper salts it was not clear whether or not small amounts of copper would effect
the efficiency of detecting a 3 — a coincidence using scintillation counting. Therefore an investigation was
conducted to determine any systematic effect of copper on the counting efficiency of the 8 — « counters
which were described in Section 3.2.1 on page 30 with more details in Appendix D.

It is expected that 80 milligrams of copper will be added to the organic phase for the back-extraction
of lead from 1 litre of a 0.5% w/v solution of DDDC in 2-octanone. However, only about half of that
is extracted, the rest remains in the back-extracted solution along with the lead. The ion-exchange
separation has been shown to reduce the amount of copper in the final 12 millilitres volume to less than
a percent of that which was originally present and so it is not expected that a sample for measurement
by the 8 — a counters will contain more than about 1 milligram of copper.

Three samples for measurement on the S—a counters at Oxford were prepared each of which contained
the same amount (about 70 millibecquerels) of 222Th and either no copper, 2 milligrams of copper or 4
milligrams of copper in the form of a copper chloride solution diluted to be 0.4M in hydrochloric acid.
Each sample was measured on three 8 — a counters and the results of these measurements are given in
Table 7.3.

B -« Copper Content
Counter || blank | 2mg | 4mg
3 132+4 | 12445 | 12643
4 125+4 | 12444 | 126+5
) 149+5 | 16244 | 159+4

Table 7.3: The results of measuring samples with the same amount of 2?8 Th but different amounts of
copper on the B — a counters in Ozford. The count rates are in counts per hour and the errors quoted
assume VN errors.

Any effect on counter efficiency of the copper can be calculated by determining the ratio of the count
rate when copper was present to that when there was no copper present for each counter. An average
of all three counters can be made for the sample containing 2 milligrams of copper and for the sample
containing 4 milligrams of copper. These average ratios come to 1.01+0.03 for 2 milligrams and 1.0140.02
for 4 milligrams which indicate that there was no effect due to the presence of the copper. It can therefore
be concluded that the 3 — a counters can tolerate at least 4 milligrams of copper with no noticeable effect
on the efficiency of detecting a delayed 3 — a coincidence.
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7.3 Investigations of ?'?Pb Backgrounds

7.3.1 The 2'?Pb Background in the Ion-Exchange Stage

The final ion-exchange stage was evaluated for backgrounds and efficiencies by carrying out two
identical experiments, experiments BRT4A and BRT4B. These experiments performed a mock back-
extraction from 1 litre of 2-octanone which had been used previously in an extraction and back-extraction.
This mock back-extraction was performed in mixer M2 of Version C of the Solvent-Solvent Extraction
Rig (see Figure 6.4 on page 105) and used 35 millilitres of 1M hydrochloric acid containing both 75
milligrams of copper and 1 milligram of stable lead. After mixing with the 2-octanone the aqueous phase
was transferred by beaker to the pressurised ion-exchange column as shown in Figure 7.3 on page 124.
This column was then washed with 5 millilitres 1M hydrochloric acid to remove most of the remaining
copper from the column and finally the lead was removed by eluting twice, each time with 12 millilitre
samples of water.

All of the samples that were taken, along with a rinse of M2, were measured for stable lead and copper
content using Atomic Absorption Spectroscopy, as before. The first lead elutions were also measured for
212Pb activity using the 3 — o delayed coincidence scintillation counters which were set up at BNL (see
Appendix D for details). This first lead elution was weighed and then divided into two samples, a 1
millilitre sample for Atomic Absorption Spectroscopy and an 11 millilitre sample for measurement on a
B — a counter. This process of dividing the final 12 millilitre sample to allow a measurement of both its
stable lead content and its 212Pb content is used extensively in the rest of this chapter.

The results of all of the measurements made in experiments BRT4A and BRT4B are shown in Ta-
ble 7.4. It can be seen that the overall lead recovery is very high at 97-99% and that more than 90% of
the lead was recovered in the first lead elution. The 2!2Pb background results for these two experiments
showed that the first lead elution in experiment BRT4A contained 2.5+0.4 counts per hour of ?!2Pb
and the first elution from experiment BRT4B contained 2.1£0.5 counts per hour of 2!2Pb. Since these
backgrounds were higher than expected two pairs of experiments were performed to try to determine their
cause. These experiments all started from 40 millilitres of 1M hydrochloric acid containing 1 milligram
of stable lead. The lead was then extracted using the ion-exchange column and eluted from it using 12
millilitres of water.

The first pair of experiments, experiments BRTS5 and BRT®6, operated the ion-exchange column in the
usual way using standard experimental equipment. This meant that the column was opened up to the
air to add reagents which were decanted from stock bottles in the air and the lead elutions were collected
in loosely covered beakers. In the second pair of experiments, experiments BRT7 and BRTS, steps were

Sample BRT4A BRT4B
Stable Lead | 2!2Pb | Stablelead | 2!2Pb
Copper fraction 0.7% - 1.1% -
1st lead elution 91.3% 2.5+0.4cph 92.5% 2.14+0.5cph
2nd lead elution 0.8% - 0.6% -
Rinse of M2 4.3% - 4.6% -

Table 7.4: The stable lead efficiency results and the *'? Pb background results for experiments BRT/A and
BRT/4B. The 2'2Pb results are for the initial activity of ' Pb in the sample in 8 — a counts per hour
(cph). In these experiments a full scale mock back-extraction and an ion-exchange stage were carried out.
The sample labelled ‘copper fraction’ in the table is the analysis of the 35 millilitre solution which passed
through the column along with the 5 millilitre 1M hydrochloric acid wash of the column. The lead elutions
both consisted of 12 millilitres of water.
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Description 212Ph Activity in 8 — a cph:

of No syringes Syringes
Sample BRT5 | BRT6 | BRI7 | BRTS
1st lead elution || 2.3+0.7 | 0.9+0.3 || 0.1£0.2 | 0.4+0.2
2nd lead elution || 0.2+0.3 | 1.5+0.4 || 0.3£0.1 | 0.0+0.2

Table 7.5: The 2'2Pb background results of two pairs of experiments which used just the ion-exchange
concentration stage. The 212 Pb results are for the initial activity of 2*2Pb in the sample in 8 — a counts
per hour (cph). In experiments BRT5 and BRT6 a standard procedure was carried out which involved
some air contact whereas in experiments BRT7 and BRT8 syringes were used to transfer liquids thus
virtually eliminating any air contact and any backgrounds due to airborne 2'2Pb contamination.

taken to try to virtually eliminate any contact to the air in the experiments.

Firstly, all of the required chemicals were prepared three days in advance and left in sealed syringes so
that any 2!2Pb introduced in making up the solutions would have decayed away before the experiment.
Secondly, these solutions were added to the column using these same syringes and the addition port shown
in Figure 7.3 on page 124 so that the column never had to be opened up to the air. Finally, the lead
elutions were collected in 20 millilitre syringes by using the nitrogen pressure to force the 12 millilitres
of water through the column and directly into the syringe.

In all four experiments two lead elutions of the ion-exchange column were made and each of these was
measured for 2!2Pb activity on the 8 — a counters at BNL and these results are shown in Table 7.5.

It can be seen from these results that when the air contact was virtually eliminated by using the
syringes the measured 2!?2Pb background in the elutions were all very low whereas when syringes were
not used some samples had a low 2!?Pb background but some had a very large 2'2Pb background.
Furthermore the sample with a high 2!2Pb background in experiment BRT5 does not correspond to the
sample with a high 212Pb background in experiment BRT6 which was performed identically. This random
distribution of 2!2Pb backgrounds could indicate that 2*2Pb atoms are being transported in clusters on
particles of dust in the air which sometimes drop into samples giving a high 2'2Pb background and
sometimes do not. Whatever the exact mechanism of airborne 2!2Pb the results of experiments BRT5-8
clearly show that airborne 2!2Pb is a serious problem in performing procedures to concentrate 2'2Pb
when the expected signal of 212Pb is only about 2 counts per hour as measured by the 3 — a counters,
see Section 6.2 on page 94.

The efficiency of the ion-exchange column using the syringe method was determined by stable lead
using a separate experiment and this gave an efficiency of 91% for recovering the lead in the first 12
millilitre elution for lead. This, together with the results of experiments BRT7 and BRTS8, as given in
Table 7.5 show that high efficiencies together with reproducible, low 2!2Pb backgrounds can be achieved
for the ion-exchange stage if syringes are used to transfer liquids to and from the column.

7.3.2 Measurements of Airborne 22Pb Contamination

In the previous section it was shown that a large 2!2Pb background is introduced when apparatus is
not completely sealed from the air and so a brief series of experiments were conducted to examine the
problem of airborne ?!?Pb contamination at different institutions more closely. The main experimental
method was to add 10 millilitres of dilute hydrochloric acid to a 8 — a counting pot and leave it open to
the air for a period of a few hours. This pot was then filled with scintillator cocktail in the usual way
and any 2!2Pb collected was measured on a 8 — « delayed coincidence scintillation counter. (It should be
noted that these measurements were carried out using the 8 — a counters at Oxford, BNL and Sudbury
but that any systematic differences between counting efficiencies are expected to be small.)
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Institute Time of 212Pp activity Deposition Rate in Average
Name Exposure in hrs | Measured in cph | atoms of 2!2Pb per hr Rate
Sudbury 3 0.3 3 7+5

3 0.9 10 atoms/hr

1 20 630

1.17 25 680

1.25 9 230
BNL 2 9 150 410+250
4 82 700 atoms/hr

8 33 170

74 150 300

0.3 0.5 51

1 0.3 10

2 1.6 25

5 2.7 20

Oxford 5 19 53 30+20

6 3 19 atoms/hr

7.5 2.3 10

13.5 16 54

23 15 39

Table 7.6: The measurements of the deposition rate of 2'2 Pb as measured at experimental areas in different
institutions. These values are shown graphically in Figure 7.4. The errors on each individual measurement
are not listed since the spread of measurements indicate a much larger systematic error.

The results of such experiments carried out in experimental areas at three different institutes are given
in terms of 212Pb counts per hour in Table 7.6. The measurements made at Sudbury were performed
by Dr M.Moorhead in the surface chemistry laboratory where the secondary concentration of 212Pb is
expected to take place. The measured activities can be converted to 2'2Pb deposition rates, in atoms
of 212Pb per hour, by solving the same differential equation as was used in Section 4.4.4 on page 59
to describe the amount of 2!2Pb produced when emanating 22°Rn at a constant rate. This equation is
reproduced in Equation 7.1 and the solution to it, assuming no initial 2!2Pb, in Equation 7.2.

R = Apy N(T)(1 — e~ 2PeT)1 (7.2)

Since AppN(T) is the initial activity of 2!2Pb in the counting pot as measured by the 8 — a counters,
after T hours of exposure divided by their 50% counting efficiency, it is clear that the deposition rate,
R, can be calculated from the measured count rates. Using Equation 7.2 deposition rates, in atoms
of 212Pb per hour, for all of the measurements given in Table 7.6 have been calculated and are listed
alongside. These deposition rates are also shown graphically in Figure 7.4 on a logarithmic scale to show
the differences between the airborne 2!2Pb backgrounds in the experimental areas at different institutes.

The results of these measurements show a wide variation between the amount of airborne 2!2Pb in
the experimental areas at different institutions. To put these deposition rates in context it should be
remembered that the total amount of 2!2Pb in the SUF eluate is hoped to produce just 2 counts per hour
on the f — a counters which is the counting rate that would be seen if a 8 — a counting pot was left
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Figure 7.4: A figure displaying the results given in Table 7.6 of several measurements of airborne 212 Ph
contamination at ezxperimental areas in different institutes. It should be noted that this figure has a
logarithmic z-axis. The rate of deposition is given in atoms of 2!2Pb per hour and this was found by
leaving B — a counting pots containing a few millilitres of dilute acid open to the air for a known amount
of time and then calculating the average rate of deposition during this time taking into account the half-life
of 212 Pb.

uncovered at the surface chemistry laboratory in Sudbury for about 10 hours, at the experimental area
in Oxford for about 2 hours and at the experimental area in BNL for only a few minutes!

These large differences are probably due to differences in the materials which make up the walls of
the experimental areas. In Sudbury care was taken to construct the surface chemistry laboratory out
of materials which contain very low amounts of thorium and uranium, whereas at BNL and Oxford the
experimental areas used were rooms inside concrete buildings and it is known that concrete contains
relatively high amounts of both thorium and uranium.

One further measurement regarding 2'2Pb airborne contamination was carried out at BNL and this
was to determine whether the >1?Pb atoms were simply dropping into the 8 — a counting pots or whether
they were being attracted to the pots by electrostatic forces. In this experiment two empty 3 —a counting
pots were left open in air for 80 minutes. One of the pots was placed on a bench facing upwards and the
other was turned upside down and held in a clamp. After filling these pots with acid and scintillator in
the usual way the following count rates were obtained: 9+2 counts per hour for the pot facing upwards
and 0.7+0.3 counts per hour for the pot turned upside down. This is very good evidence that the majority
of 212Pb falls out from the air and deposits itself on available surfaces.

In Appendix F it is shown that the large amount of 2?Pb that must be in the air at these institutions
can be accounted for by the thorium content of building materials in the walls surrounding the various
experimental areas.
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7.4 The Final Secondary Concentration Procedures for 2'?Pb

7.4.1 The Final Design and Procedure

The final design of the Solvent-Solvent Extraction Rig is shown in Figure 7.5 which is simply Version
C of the rig where the apparatus used to perform the HTiO stage has been removed. This means that
after a copper back-extraction in M2, instead of passing the aqueous phase into another vessel on the rig,
the solution is removed from the rig and taken to a pressurised ion-exchange column which is shown in
Figure 7.3 on page 124. ‘

This ion-exchange column contains 5 millilitres of 200-400 mesh Biorad AG I-X8 and it should be
prepared before use by washing it with strong hydrochloric acid to remove any organic residues and water
to remove any lead which may have been left on the column from previous experiments. Finally, the
column has to be primed with 1M hydrochloric acid before sealing a few days in advance of its use in
order to reduce ?!2Pb backgrounds due to air which gets into the column during its preparation.

A 0.5% w/v solution of DDDC in high purity 2-octanone should also be prepared at least one day in
advance of its use in order to allow any ?'2Pb backgrounds introduced into this solution by air during
its preparation to decay away. Similarly if a mock SUF eluate needs to be used the 20 litres of 0.5M
hydrochloric acid should also be made a number of days in advance and left sealed to reduce 2!2Pb
backgrounds.

The first stage to concentrate 2'2Pb from 20 litres of SUF eluate is a solvent-solvent extraction into 1
litre of a 0.5% w/v solution of DDDC in high purity 2-octanone. This is carried out in the same way as
that which was used in all the previous versions of the Solvent-Solvent Extraction Rig, although in these
experiments the mixing time was increased from 2 minutes to 5 minutes to try to increase efficiencies.
After mixing in M1 the contents of M1 is left to stand for 5 minutes before draining 19 litres of liquid
directly into C1 and the final 2 litres to mixer M2. In M2 the organic phase is completely separated from
the aqueous phase.

Once the organic phase has been separated, the back-extraction by the copper displacement of the
lead can be carried out by adding 35 millilitres of 1M hydrochloric acid containing about 70 milligrams of
copper in the form of copper chloride. This copper solution is added to M2 using a syringe as is indicated
in Figure 7.5. This copper solution is then mixed with the organic phase in M2 by pumping nitrogen gas
into the bottom of the separating funnel for 5 minutes and then the phases are left for a few minutes
to separate. The back-extracted solution can then be collected from M2 using another syringe, again as
indicated in Figure 7.5.

This back-extracted solution is then added to the ion-exchange column via the addition port shown in
Figure 7.3 on page 124 and then using pressurised nitrogen gas it is passed though the column at a flow
rate of about 3 millilitres per minute. Since this solution is 1M in hydrochloric acid the column extracts
the lead but allows the majority of the copper to pass straight through. While the aqueous phase is
being passed through the column, the organic phase which is left in M2 should be rinsed sequentially
with two 5 millilitre samples of 1M hydrochloric acid, using syringes, to ensure the full recovery of the
back-extracted solution. These two samples can then be used, in the same order as they were produced,
to wash most of any residual copper from the ion-exchange column after the main back-extracted solution
has passed through the column.

Finally, the lead is eluted from the column using a 12 millilitre sample of water which is added
and recovered from the ion-exchange column using syringes. This sample ends up being about 0.1M in
hydrochloric acid which is suitable for measurement by a single 8 — a counter.

One of the main difficulties which occurred while using Version C of the Solvent-Solvent Extraction
Rig was the inability to simultaneously measure the efficiency for concentrating lead and the 2!2Pb
background. It was therefore decided that stable lead would be used as a carrier in all full scale lead
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Experiment Procedural Stable Lead | 2!2Pb Background R
Number Comment Efficiency in cph ratio
BRT2 | Syringesnotused | 888% |  5.6+0.8 | 32205 |
BRT9 One Rinse of Organic 79.5% 24404 1.5+0.3
BRT13 Two Rinses of Organic 83.5% 1.2+0.5 0.7+0.3
BRT14 Two Rinses of Organic 80.4% 1.1+0.6 0.7+0.4
BRT15 1% DDDC used 87.2% 3.4+0.8 1.9+0.5
BRT16 1% DDDC used 87.3% 2.0+0.4 1.14+0.2
BRT22 6min Extraction Time 86.4% 3.2+0.7 1.9+04
| Averageof all except BRT2: | 84%3% | 2.120.2 | 1.240.1 |

Table 7.7: The results of concentrating 22 Pb from 20 litres of 0.5M hydrochloric acid into a 12 millilitre
sample using the final version of the Solvent-Solvent Extraction Rig and a 5 millilitres ion-ezchange
column. The stable lead and *'2Pb content of the final solution was calculated from that measured in
samples of the 12 millilitres. From these figures the stable lead efficiency could be determined and the
SNO background to signal ratio, R as defined in Section 6.2 on page 94, is calculated for each experiment.
For a full explanation of the procedural comments which describe small differences in procedures between
ezperiments see the main text.

concentrations and that the final 12 millilitre sample would be measured for both stable lead and 2!2Pb
as was done in experiments BRT4A and BRT4B of Section 7.3.1 on page 126. Hence, 1 millilitre was
taken for Atomic Absorption Spectroscopy and 11 millilitres for 8 — a counting. In order to have good
sensitivity for the overall efficiency as measured by stable lead, 1 milligram of stable lead needs to be
added to the 20 litres of SUF eluate prior to the extraction with the DDDC solution.

7.4.2 The Background and Efficiency of Full Scale Concentrations

The efficiency and background results for concentrating 2:2Pb from 20 litres of 0.5M hydrochloric acid -
containing 1 milligram of stable lead are given in Table 7.7. This table also gives comments as to some
of the small procedural differences between the procedure as given in the last section and that which
was actually used in each of the experiments and these differences are fully explained in the paragraphs
below.

The first experiment, experiment BRT2, has a higher 2!2Pb background than the other experiments
because this experiment did not use syringes to transfer solutions to and from apparatus, instead beakers
were used which were kept covered to minimise air contact. Since this experiment did not use the
syringes to minimise airborne ?!?Pb contamination its results are not included in the average results
given in Table 7.7.

It should be noted that experiments BRT14 and BRT16 were conducted immediately after experiments
BRT13 and BRT15 and used the same 20 litres of 0.5M hydrochloric acid in the initial extraction stage.
This meant that any carry over of stable lead from one experiment to the next had to be taken into account
when calculating overall efficiencies. It was found that there was about 11% of the 1.004 milligrams of
stable lead left in the 20 litres after experiment BRT13 and about 7% left after experiment BRT15. The
lower figure in experiment BRT15 may be explained by the increased amount of DDDC that was used in
this experiment. The use of a 1% w/v solution of DDDC in experiments BRT15 and BRT16 also shows
a few percent increase in the overall efficiency of the 21?2Pb concentration however, this increase is not as
large as would be expected by doubling the DDDC concentration.
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Figure 7.5: The final design of the Solvent-Solvent Extraction Rig. The two inputs to the diagram are for
nitrogen cover gas and pressurised nitrogen, the output is for waste fumes. The 20 litres of SUF eluate
starts in vessel C1 and is then forced through half inch diameter pipework into vessel M1, the large mizer.
Here the solvent-solvent extraction using 1 litre of a 0.5% w/v solution of DDDC in 2-octanone is carried
out. The organic phase then passes to M2, the small mizer, through quarter inch diameter tubing. Here
the back-extraction is carried out which displaces the lead ions from the DDDC by adding an excess of
copper ions. The sample is then removed from the rig using a syringe and transferred to the ion-exchange

column as shown in Figure 7.3 on page 124.
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In Table 7.7 it is indicated that the extraction time in experiment BRT22 was 6 minutes rather
than the standard 5 minutes. The results for this experiment do not suggest any obvious difference in
extraction efficiencies by increasing the mixing time by just one minute, however a large decrease in
efficiency was observed when a mixing time of 10 minutes was used and this is discussed in Section 7.4.4
on page 134.

Other small differences in the overall efficiency of experiments may have been due to differences in the
rinsing procedures of the organic phase in M2. In experiment BRT2 there were no rinses of the organic
phase in M2 and in experiment BRT9 there was only one rinse. In all of the other experiments two rinses
were used according to the procedure detailed in the previous section.

It can be seen from Table 7.7 that the overall efficiency of the process, as measured by stable lead,
is very reproducible and the average efficiency of the experiments (ignoring experiment BRT2) comes to
84+3%. The measured 2'2Pb backgrounds were all significantly lower than those measured using other
versions of the Solvent-Solvent Extraction Rig which were detailed in the last chapter. It is expected
that this decrease in 2'2Pb backgrounds has been achieved both by the removal of the impractical HTiO
stage and by a better understanding of the consequences of airborne 2!2Pb.

The SNO background to signal ratio, R, as defined in Section 6.2 on page 94, is given for each
experiment in Table 7.7 and the average value (ignoring experiment BRT2) can be calculated to be
1.240.1. This means that the 21?2Pb procedural background for concentrating 2!2Pb from the SUF eluate
is about the same size as the expected signal from the SNO detector. Although ideally this value of R
should be smaller still this value would allow the detection of the SNO signal and is a major improvement
on the values of around 8 which were measured in the last chapter.

The measurements given in this chapter show that the Solvent-Solvent Extraction Rig together with an
ion-exchange column provides the secondary concentration procedures required to perform 2!2Pb assays
from the heavy water of the SNO experiment using the HTiO SUF assay system.

7.4.3 Comparing Measurements of Efficiencies using Stable Lead and ?'?Pb

Three experiments were carried out to examine any differences between efficiencies measured using
stable lead and those measured using 2!2Pb. This was done by adding a known amount of 2!2Pb,
manufactured by the procedure detailed in Chapter 4, to 20 litres of 0.5M hydrochloric acid along with
a carrier of stable lead and then concentrating both the 2!2Pb and the stable lead into a 12 millilitre
sample for measurement using the procedures described in Section 7.4.1 on page 131.

The first two experiments, experiments BRT18 and BRT19, were carried out in sequence using the
same initial 20 litres and so the carry over of lead which was not extracted from the 20 litres of experiment
BRT18 had to be taken into account when calculating the efficiency of experiment BRT19. The efficiency
results of these two experiments and one other experiment, experiment BRT22, measured both by stable
lead and 2'2Pb are compared in Table 7.8.

Experiment ﬂ Stable Lead Efficiency | 2!2Pb Efficiency ” Diﬁferencew

BRT18 89.2% 109+7% +2.80
BRT19 89.5% 92+6% +0.40
BRT22 81.0% 69+4% -3.00

Table 7.8: The results of three experiments designed to compare the efficiency of Version C of the Solvent-
Solvent Extraction Rig as measured by both stable lead and, at the same time, 212 Pb.

The results of these experiments show no overall systematic difference between measuring the efficiency
with stable lead or 2!2Pb but there are differences in the measurements of the individual experiments. In
experiments BRT18 and BRT19 a low activity 21?Pb source was used and the usual 2!2Pb background
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reducing steps were not taken so there is some suspicion that a large 2!2Pb background was responsible
for elevating the measured 2!2Pb efficiency above 100%. It is not understood why the 212Pb efficiency in
experiment BRT22 was much lower that that measured using the stable lead.

It would obviously have been beneficial to carry out more experiments to verify that 212Pb does indeed
behave the same as the stable lead in this process, as would be expected, but unfortunately there was not
time to carry out further experiments at BNL. In Section 6.6.2 on page 107 the results of experiments
using Version C of the Solvent-Solvent Extraction Rig showed no differences between efficiencies measured
using 2!2Pb and stable lead in the same, acidic conditions as the experiments discussed here. It therefore
seems that the most reasonable conclusion to make is that these differences are caused by underestimating
systematic errors.

7.4.4 The Measured Decomposition of DDDC in the Extraction Stage

While carrying out experiments to evaluate the secondary concentration procedures for 212Pb the time
of mixing in the extraction stage in some experiments was varied between 2 minutes and 10 minutes.
The overall stable lead efficiency was measured to decrease from 80% when a 2 minute extraction was
used to 50% when a 10 minute extraction was used. One possible explanation for this drop in efficiency
is that the DDDC in the 2-octanone decomposes while it is being mixed with the 0.5M hydrochloric acid.
The decomposition of DDDC in acidic conditions is a known phenomena. In Section 5.2.4 on page 73 it
was noted that when equal phase volumes of DDDC in carbon tetrachloride and 1M hydrochloric acid
are mixed together it requires 20 minutes of mixing to reduce the concentration of the dithiocarbamate
ion in the organic phase by a factor of two [Bod59]. Also, in Section 5.5.3 on page 81 losses of efficiency
attributed to DDDC decomposition in 2-octanone were observed after 20 minutes of mixing with 0.5M
hydrochloric acid. Therefore it is not unreasonable to expect some DDDC decomposition after 10 minutes
of mixing a solution in 2-octanone with 0.5M hydrochloric acid.

In Section 7.2.2 on page 117 it was suggested that the amount of copper used in the back-extraction
can allow the determination of the amount of DDDC left after the back-extraction. In summary this can
be done by assuming that two DDDC molecules are needed to extract one copper ion and that after the
back-extraction any DDDC left is saturated with copper. The amount of copper needed to back-extract
the lead in all of the solvent-solvent extractions which used a 5 minute extraction mixing time was found
to be very similar and showed that only about 4% of the 22.5 millimoles of DDDC that was initially
added to each litre of 2-octanone was left after the back-extraction.

If the DDDC does decompose with the time of extraction mixing it would be expected that there
would be an exponential relationship between the time of extraction and the deduced amount of DDDC
left after the back-extraction. Therefore, in Table 7.9 the results of experiments which concentrated lead
from 20 litres of 0.5 M hydrochloric acid in which the extraction time was varied are listed alongside
the measured amount of copper used in the back-extraction and the deduced amount of DDDC left after
the back-extraction. This deduced amount of DDDC is plotted against the time of extraction mixing in
Figure 7.6 and fitted to an exponential in time. The results of this fit are shown in the figure and confirm
that the DDDC seems to be decomposing exponentially in time with a half-life of 3.24+0.4 minutes.

Unfortunately, the fit also suggests that if there was no mixing there would still only be about 11% of
the DDDC left after the back-extraction and so it is clear that there is more than one method by which
the DDDC decomposes. In Section 7.2.2 on page 117 there was some evidence that further decomposition
is occurring within the back-extraction stage itself but only further experimentation could verify this.
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Experiment Time of | Stable Lead || Amount of Cu used | Amount of DDDC Left
Number Extraction | Efficiency || inmg | in mmol | in mmol in %
BRT20 2 minutes 86.4% 55.2 0.869 1.738 7.8
BRT19 5 minutes 89.5% 25.8 0.406 0.812 3.6
BRT22 6 minutes 81.0% 18.0 0.283 0.566 2.6
BRT21 10 minutes 50.3% 9.4 0.148 0.296 1.4

Table 7.9: The results of the copper back-extractions in four full scale 2'2Pb concentrations which used
different times of mizing in the extraction stage. In each experiment 1 litre of a 0.5% w/v solution of
DDDC in 2-octanone was used which means that initially there was 22.5 millimoles of DDDC present.
The calculated amount of DDDC left after the extraction stage assumes that two DDDC molecules are
needed to combine with one copper molecule and that any DDDC left after the back-extraction is saturated
with copper.

xX’/ndf 2.878 / 2
P1 2.426 + 0.1566
P2 —0.2248 £+ 0.2807E-01
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Figure 7.6: The above figure takes the calculated values of the amount of DDDC left during the back-
extraction of four different experiments, as given in Table 7.9, assumes 10% errors and plots it against
the time of mizing in minutes used in the extraction stage. The fit values displayed in this figure are
for the following exponential: Y = e(FP1+F2X) yhere — P2 is the decay constant for the decomposition in

minutes™!.
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Experiment Time of Lead Amount of Cu used | Amount of DDDC Left
Number Extraction | Efficiency || in mg | in mmoles | in mmoles [ in %
BRT11 10 minutes 31.9% 6.1 0.096 0.192 0.9
BRT12 5 minutes 83.4% 23.0 0.362 0.724 3.2
BRT17 5 minutes 81+6% 25.6 0.403 0.806 3.6

Table 7.10: The results of full 212 Pb concentrations using recycled 2-octanone. The overall efficiency of
experiments BRT11 and 12 were measured using the stable lead carrier whereas for experiment BRT17 it
was measured using a source of 212Pb. The loss of extraction efficiency in experiment BRT11 was due to
the 10 minutes of mizing in the extraction stage and is similar to that which was observed in experiment
BRT21 which used fresh 2-octanone and also had 10 minutes of mixing.

7.4.5 The Possibility of Recycling 2-Octanone

In Section 6.7.1 on page 112 it was found that there was a need to use only high purity (99+%) 2-
octanone for solvent-solvent extractions due to the fact that the low purity (98%) 2-octanone can contain
a poison which inhibits lead extractions with DDDC. Unfortunately, the high purity 2-octanone is not as
readily available as the low purity 2-octanone and this produced a shortage of 2-octanone at BNL during
the research which is detailed in this chapter. Since this is a possible occurrence at the SNO experiment
some investigations were made into the possibility of reusing the high purity 2-octanone in successive
212Pb concentrations.

The first experiment using 2-octanone which had been previously used in a DDDC extraction was a
small scale experiment similar to those described in Section 7.2.2 on page 117. This experiment used
25 millilitres of 2-octanone which had gone through an entire process of lead extraction, copper back-
extraction and an hour long acid back-extraction to remove the copper. This 2-octanone was rinsed
several times with water before the addition of more DDDC. It was then used to perform a second
extraction and back-extraction under similar conditions to the first. The efficiency of the extraction and
back-extraction was determined by stable lead analysis to be 100£1% which is the same as the efficiency
obtained in experiments using fresh 2-octanone. However, there was a difference in the deduced amount
of DDDC left after the back-extraction. By measuring the amount of copper extracted in the back-
extraction it was seen that when using this rinsed 2-octanone only about 4% of the DDDC remained
after the back-extraction and this can be compared to between 10 and 20% when using fresh 2-octanone
in small scale experiments. This result implies that there was some acid or other impurity left in the
2-octanone which speeded up the DDDC decomposition.

Since the small scale experiment had given a good efficiency, three full scale experiments to concentrate
212Pb were completed using 2-octanone from a previous 2!2Pb experiment. This 2-octanone had been
used for just one DDDC extraction, copper back-extraction and acid back-extraction. It was then rinsed
with a large amount of water and dried using magnesium sulphate by Dr K.Rowley before having some
more DDDC added and being used in a further DDDC extraction. The overall lead efficiency in each
of the experiments which used the recycled 2-octanone, along with the amount of copper used in the
back-extraction and the deduced amount of DDDC left after the back-extraction, are given in Table 7.10.

By comparing the result of experiment BRT11 in Table 7.10 with that of experiment BRT21 in
Table 7.9 it can be seen that 10 minutes of mixing in the extraction stage when using recycled 2-
octanone shows a similar loss of efficiency as was seen when using fresh 2-octanone. It is possible that the
decomposition of DDDC is greater in the recycled 2-octanone than in new 2-octanone but it is hard to
be certain without more experimental results. The results of experiments BRT12 and BRT17, as given in
Table 7.10, both give very similar efficiencies and DDDC decomposition when compared to experiments
using fresh 2-octanone, for example compare to the results of experiment BRT19 given in Table 7.9.
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It is interesting to note some of the colour changes that are observed when using recycled 2-octanone.
Firstly, the recycled 2-octanone contained a yellow colouring which is very different to the colourless fresh
2-octanone. This yellow colouring was seen to change to a pinkish colouring on the addition of DDDC
and finally to a dark brown colouring after it was used to extract lead from 0.5M hydrochloric acid. Since
these colours were not observed with fresh 2-octanone it can only be concluded that they are due either
to some residual copper in the 2-octanone or, more likely, they are due to some decomposition products
of DDDC which remain in the 2-octanone. To produce such colours these decomposition products are
unlikely to be simply carbon disulphide and an amine as was suggested in Section 5.2.4 on page 73.

One other possibility for recycling the 2-octanone which was not investigated would be to use re-
distillation which would be expected to remove any impurities within the 2-octanone that it gains from
taking part in a solvent-solvent extraction using DDDC.

The conclusion of these few experiments is that it is possible, if necessary, to recycle 2-octanone.
However, it should be noted that in these three experiments the 2-octanone was only recycled once and
if the same 2-octanone was to be recycled for several extractions there may be the possibility for the
accumulation of impurities which could effect both efficiencies and 2!2Pb backgrounds. It is, of course,
far more preferable to continue to use new, fresh, high purity 2-octanone for each full scale solvent-solvent
extraction if the amounts required can be purchased from a chemical supplier.
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7.5 Final Conclusions

In this chapter final procedures have been developed using the Solvent-Solvent Extraction Rig which
take about an hour to extract lead from 20 litres of 0.5M hydrochloric acid into a 12 millilitre sample
which can be measured for 2!2Pb activity by a single 8 — a delayed coincidence scintillation counter. In
Chapters 5 and 6 it was shown that these methods are not affected by a large amount of titanium in the
20 litres of 0.5M hydrochloric acid and so they can be used to perform the secondary concentration of
lead from the elutions of the membrane pairs used by the HTiO SUF assay system.

In this chapter it has been shown, by using stable lead as a carrier, that the amount of 2!2Pb in
an SUF eluate can be concentrated into a 12 millilitre sample with a known, reproducible efficiency of
84+3%. The ?'2Pb procedural background to this process when carried out in the experimental area
at BNL has been shown to be about the same as the amount of 212Pb it would expect to extract from
the SUF eluate if the amount of 2!2Pb in the heavy water of the SNO detector is at the level which
will produce neutrons at a rate equal to about one tenth of the rate with which they are expected to be
produced by NC neutrino interactions. It is suspected that the remaining source of 2!2Pb background is
due to airborne ?*?Pb. The amount of airborne ?!2Pb has been measured in the different experimental
areas and has been found to be much lower at the actual site of the chemical processing in Sudbury that
at the experimental area used at BNL. It is therefore hoped that the 2!2Pb procedural background to
measuring the amount of 2!2Pb in the SUF eluate at the SNO experiment in Sudbury will be much lower.

The three procedures to perform the secondary concentration of 2!2Pb from up to 20 litres of SUF
eluate into a 12 millilitre sample are:

1. A solvent-solvent extraction using 1 litre of a 0.5% w/v solution of diethylammonium diethyldithio-
carbamate (DDDC) in high purity (99+%) 2-octanone.

2. A back-extraction into 35 millilitres of 1M hydrochloric acid using 70 milligrams of copper.

3. A final concentration using a 5 millilitre, pressurised ion-exchange column made from 200-400 mesh
Biorad AG I-X8.

These procedures make up the final stage of a 2!2Pb assay from the heavy water of the SNO detector
using the HTiO SUF assay system. The first stage of this 212Pb assay is the extraction of the 2!2Pb from
the heavy water using ultra-filtration membranes coated with hydrous titanium oxide (HTiO) placed on
the SUF Rig. The second stage is the elution of the 2!2Pb from the HTiO by circulating 20 litres of 0.5M
hydrochloric acid through the membranes for 20 minutes using the Elution Rig. The details of these two
procedures are given in Chapter 3 where it was also stated that these stages will need to be calibrated.
This can be done using either stable lead or sources of 2!2Pb manufactured by the procedure given in
Chapter 4 to be free from long-lived activity.

If radioactive backgrounds to all of these chemical procedures can be kept low then, by using them, it
should be possible to assay the amount of 2!2Pb within the heavy water of the SNO detector through the
methods described in the analysis of Chapter 3. Such a 2!2Pb assay should enable the SNO experiment
to determine the contribution to the neutral current background due to isotopes from the 232Th decay
chain in the heavy water.

When this result is combined with the results of other background measuring techniques which were
discussed in Chapter 2, the SNO experiment should be able to determine the total NC background. Once
this is achieved it will then be possible for the SNO experiment to find the ratio of the rate of neutrino
neutral current (NC) interactions to charged current (CC) interactions. The value of this CC/NC ratio
can show if the neutrinos coming from the Sun are oscillating between flavours. If neutrino oscillations
are observed then this means that neutrinos have a small, finite mass which was discussed in Chapter 1.
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Appendix A

Mathematical Model of a Double

Membrane System

A.1 Introduction

In this appendix there are details of the analysis of the HTiO SUF assay system, the results of which
are used in Chapter 3. This analysis starts by solving the coupled differential equations that were given in
Section 3.3.2 on page 34 to give expressions for the activity of 228Th, 224Ra and 2!2Pb on each membrane
pair after a certain time of extraction. The method by which the HTiO SUF assay system will measure
these activities is then modelled and finally exact algebraic expressions to calculate the amount of 223 Th,
224Ra and 2'2Pb in the heavy water together with many of the parameters which describe the system are
derived.

A.2 Solutions to the Differential Equations

The equations given in Section 3.3.2 on page 34 can be solved by substituting trial solutions to produce
expressions for the amount of activity of 228Th, ??4Ra and 2!2Pb on each membrane pair as functions of
the extraction time. These expressions are given in terms of the feed activity flow rates of 222Th, 224Ra
and 2'2Pb (Frp, Fra and Fpp) and the various parameters which describe the system which are defined
in Section 3.3.2 on page 33. Relatively simple expressions for the activity of 228Th on both membrane
pairs as a function of the time of extraction, ¢, can be found quite easily. Unfortunately, for 22Ra and
212Ph the decays of parent isotopes have to be taken into account which means that solutions are rather
complicated.

In order to simplify the algebra, without losing the symmetry of the problem, six new constants and
six new time dependent variables are defined. The first three constants: K;, K5 and K3, are three ratios
of the decay constants for 228Th, 224Ra and 2!?Pb and are defined in Equation A.1. The second set of
three constants: X,Y and Z, are combinations of the parameters describing the system and they are
defined in Equation A.2. The first three variables: Ty, T> and T3, are time dependent functions of the
decay exponentials for each isotope, they have the dimension of time and are defined in the same way for
each isotope as shown in Equation A.3. The second set of three variables: R;, R and R3, are the three
time dependent dimensionless ratios of 77, T> and T3 and are defined in Equation A 4.
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The full expressions using these definitions for the activity of 228Th, 224Ra and 2!2Pb on the first and
second membrane pairs after an extraction of ¢ hours are shown in Equations A.5 to A.10. Using these
equations the activities of 228Th, 22¢Ra and 2!2Pb on either membrane pair can be calculated for a given
extraction time if the parameters describing the system and the amount of each isotope in the heavy
water are known.

A7 (t) = Tra(t)arnFra (A.5)
AMI(#) = Tro(t)oraFra

+ Tru(t)ars Frad K1 Ry (t) (A.6)
APL () = Tpo(t)apsFre

+ Tra(t)ara FrRa€K3R3(t)

+ Trp(t)arn Fraed K1 [Ks(Ry (t) — Ra(t)) + K2 Ra(t)] (A7)
AP (t) = Trat)ara(l—oars)Fra (A.8)
A¥E(t) = Tra(t)ara(l — re)FRa

+ Tri(t)arnFrn Z Ky Ry (t) (A.9)
APE(®) = Tpo(t)ars(1 — aps)Fre

4+ Tro(t)araFroY K3 R3(t)

+ Trn(t)arn Fra X K1 [K3(R1(t) — Ra(t)) + K2 Ra(t)] (A.10)

A.3 Details of Modelling the Chemical Processing and Counting

The expressions of the last section allow the activities of 228Th, 224Ra and 2!2Pb on each membrane
pair after an assay of a given time to be calculated for a wide range of initial conditions. The HTiO SUF
assay system will not directly measure these activities but will strip the activities from the membrane
pairs, concentrate it into a small volume and measure the activity on low level counters. This introduces
two main errors: the error on the efficiency for the chemical concentration procedures and the statistical
counting error. In this section the details of modelling the chemical processing and counting techniques
will be described.

The first effects to model were the time delays in performing the chemical processing. It is expected
that it will take about 1 hour to remove the two membrane pairs from the SUF Rig situated underground
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at the SNO experiment and transport them above ground to the Elution Rig. During this time the
activities of 228Th, *?*Ra and more significantly 212Pb will be reduced by their half-lives, however decays
of 222Th on each membrane will add to the activity of 2*Ra and decays of 2>*Ra will add to the activity
of 212Pb and so both of these effects have to be taken into account to calculate the overall effect of this,
first time delay. After the three isotopes have been removed from the membrane pairs it is expected that
there will be a further, second time delay of about 1.5 hours before the start of counting. During this
time the activities of 228Th, 22¢Ra and, more significantly, 212Pb will simply be reduced by their half-lives
since during this delay the isotopes can be assumed to have been isolated from each other.

The second effects to model were the overall chemical processing and counting efficiencies for 228Th,
224Ra and 2'2Pb. It was assumed that the overall chemical processing for radium is that which was
discussed in Section 3.2.3 on page 31 which consists of a 90% efficient elution, a 75% efficient secondary
concentration procedure and a 50% counting efficiency making an overall efficiency of 35%. It was assumed
that a similarly efficient secondary concentration procedure for lead and thorium will be developed. This
gives overall efficiencies for lead and thorium of 35% and 25% respectively taking into account the different
elution efficiencies for lead and thorium. These overall efficiencies are expressed by the following three
quantities:

Brr =0.25 ; Bre=0.35 ; Bpy=0.35

Finally, it was necessary to model the total number of counts expected to be measured for each sample
of 212Pb, 224Ra and 22Th which is obviously dependent upon the length of time that samples can be
measured. A reasonable time period for measurement is one week and so to calculate a time factor for
each isotope an expression for the number of 2!2Bi decays as a function of time due to a pure sample of
that isotope was integrated for one week. The resulting time factors allow the conversion of initial count
rates in counts per hour into total numbers of measured counts and these conversion factors have the
following values for each isotope:

Dt =643 ; Dp, =886 ; Dp,=13.7

The total number of counts of 228Th, 224Ra and 2!?Pb for the first and second pairs of membranes
after an assay can be calculated from the time delay adjusted activity of that isotope on each pair of

membranes, the A2Mj ’s, by multiplying by the overall chemical processing and counting efficiencies, the
Bi’s, and by the conversion factors, the D;’s, as is shown in Equation A.11.

CMi = D,3;AM  j=1,2i="Th,Ra,Pb (A.11)

To model a 10% systematic error of knowing the secondary concentration efficiencies (811, Bre and
Bps) the value of each f3; used in Equation A.11 was selected randomly from a Gaussian shaped distri-
bution centred around the true 3; values with a width equal to 3;/10.

Integer measured values of the total numbers of counts for each isotope on each membrane pair were
then modelled by randomly selecting values for the Ci” 1355 from Gaussian distributions centred around the
exact C’iM 7 values with a width equal to the square root of this exact value. Obviously this is only valid
for total count numbers greater than about 20 since Poisson statistical errors should be used for small
numbers. However, for the purposes of this analysis the approximation to Gaussian errors is reasonable.

Using these modelled total numbers of counts, measured values for the activities of each isotope on
each membrane pair after an assay were calculated by carrying out the reverse of the process described
above using exact values for the §;’s.

In the next section it will be described how the amount of 228Th, 224Ra and 2!2Pb in the heavy water
flowing into the HTiO SUF system can be calculated from measurements of the activity of these isotopes
extracted onto each pair of membranes.
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A.4 Expressions to Calculate Feed Activities and Parameters

from Measured Values

The primary aim of the HTiO SUF assay system is to be able to calculate the amount of 228Th,
224Ra and, especially, 212Pb in the heavy water from measured values after an extraction. The double
membrane design of the SUF system allows the possibility of the simultaneous determination of the
extraction probabilities and the loss parameters which describe the system. Obviously the values of these
parameters are not expected to vary greatly between different extractions and so after several extractions
average values will eventually be obtained. However, it would be highly beneficial, especially in the initial
understanding of the system, to be able to monitor the values of these parameters in each extraction.

Using Equations A.5 to A.10 given in Section A.2 on page 140 it is possible to calculate expressions for
the feed activity flow rates of 212Pb, 22Ra and 22Th (Frp, Fr, and Fpp) and the extraction probabilities
(arh,aRre and app) in terms of the loss parameters (§ and €) and the activities of 212Pb, 22¢Ra and 22Th
on the first and second membrane pairs after an extraction from the heavy water.

Expressions for arp and Fry, can be obtained simply in terms of the activity of 222Th on the first and
second membrane pair after an extraction, A¥! and AM2. These expressions are shown in Equation A.12
and they allow Fr, and arp to be calculated simultaneously after a single extraction.

A¥R

ATE . ppy = AR (A.12)
AMT ST T (o '

arp=1-—

Expressions for ar, and Fg, can be obtained in terms of &, 7 and the activities of 224Ra and 223Th on
the first and second membrane pairs after an extraction and these are shown in Equations A.13 and A.14
respectively. In these equations approximate expressions for ag, and Fg, are also given which are valid
for extractions lasting a short time compared to the 87.8 hour half-life of ?2Ra. These approximate
expressions are found by assuming that at small times K R; () — 0 which can be justified by observing
the time dependence of K; R;(t) as shown in Figure A.1.

QRa = KlRl (t)(Afthl - A7Mh2)5 _ (ARMal - Agf t<_8)7-8 1— A%a? (A13)
KiRi(t)(1 — ) A5 s — (AR} — nKiRi (1) A AR
Tgre (t)aRa TRa (t)aRa

The exact expressions for ag, and Fg, show that if § is unknown then for one extraction there are
three unknowns and only two equations which means that ag,, Fre and é cannot be simultaneously
calculated after a single extraction. However, if a short extraction time is used then the approximate
expressions are valid and they have no terms involving § which means that by using short extraction times
ap, and Fgr, can be simultaneously calculated. To be able to calculate é the results of two extractions
will have to be combined and the two simultaneous equations for § and ag, solved.

The solutions for lead are even more complicated than that for radium, but exact expressions for app
and Fpy can be found. These exact expressions are shown in Equations A.15 and A.16 respectively in
terms of a new time dependent variable, V (¢), which is defined in Equation A.17.

The value of —V(t) at different times has been calculated and is shown in Figure A.1. This shows
that at all times V (t) is negative and very small and so approximate expressions for ar, and Fp, can
be found by setting V(¢) — 0 and these are given alongside the exact expressions in Equations A.15
and A.16.
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Figure A.1: This figure gives calculated values of several variables that are used in the analysis of the HTiO
SUF assay system at different times. The definitions of these variables can be found in Equations A.1, A.4
on page 140 and Equation A.17 on page 143.
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The expressions for apy and Fp, show that if € is unknown then for one extraction there are three
unknowns and only two equations which means that aps, Fpp and € cannot be simultaneously calculated
after a single extraction. Unfortunately, unlike in the equations for radium, a further approximation to
remove terms containing € cannot be made since it can be seen from Figure A.1 that the term K3Rj3(t)
is never very small.

It is clear that more information is needed to calculate Fpy, the feed activity flow rate for 2'2Pb,
and hence the amount of 2!2Pb in the heavy water after a single extraction. This can be obtained by
calibrating for apy, the lead extraction efficiency. If this lead extraction efficiency is calibrated the radon
breakthrough parameter, €, can be calculated from ap;, and the activities of isotopes on the membrane
pairs after a single extraction by rearranging the expressions given in Equation A.15. An approximate
expression to calculate € can be found by setting V'(¢) — 0 and this is given in Equation A.18.

~ (A}A;./[bl — pK3R3 (t)A%ll)Ozpb - (Algbl — AI);J,?) (A 18)
Ky Rs (01 — 1) A aupy — Ko Ry () (AMT — AMT)
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Appendix B

Gamma Counting

B.1 Introduction to Gamma Ray Detectors

Gamma ray photons are detected through their three main interactions with matter: photo-electric
absorption, Compton scattering and pair production. These interactions can be detected using either
a scintillation detector or a solid state detector. The solid state detectors produce far better energy
resolution than scintillation detectors because they require much lower energy to produce an electron-
hole pair. Both silicon and germanium can be used in solid state gamma detectors but germanium has
a higher absorption coefficient for gamma rays which explains its preferred use. One difficulty in using
germanium detectors is that at room temperature thermal dark currents can occur due to the very low
energy band gap of germanium of 0.67eV. To eliminate such dark currents germanium detectors are
always operated at low temperatures, typically 77K.

In the past it was not possible to produce large germanium crystals with no impurities and so germa-
nium detectors were made with lithium drifted into the crystal to compensate for these impurities. These,
so called Ge(Li), detectors act in a very similar way to the more commonly used intrinsic germanium
detectors but because the lithium can diffuse at room temperature the Ge(Li) detectors have to be kept
at 77K even when not in operation.

B.2 The Measurement of Gamma Decays from *?Th

The decay chain for 232Th was shown in Figure 2.3 on page 24 of this thesis where it was explained
that for the purposes of the SNO experiment it is only important to measure the presence of isotopes
lower than 228Th in the decay chain. These isotopes have many gamma decays of energies in a suitable
range for detection using germanium counters and in Table B.1 these are listed together with values for
the branching ratios to these decays from both their immediate parent and from isotopes of the main
decay chain assuming equilibrium in the decay chain.

These gamma decays were measured for the research detailed in this thesis using both a Ge(Li)
detector situated at Oxford and an intrinsic germanium detector at the Brookhaven National Laboratory
(BNL), New York, USA. The samples to be measured for gamma activity at both institutions were usually
in the form of aqueous or organic solutions. These solutions were diluted to a constant volume of 50 or 60
millilitres at Oxford and 20 millilitres at BNL. They were then measured for gamma activity in counting
bottles of a standard geometry placed in a constant position relative to the detector. These standard
techniques were used to eliminate effects caused by the scattering and absorption of gamma rays between
comparing measurements of samples contained in different geometries. In Section 4.4.1 on page 52 there
are some details of an investigation into the effect of measuring sources of different geometry.
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Figure B.1: An ezample of a gamma spectrum from a equilibrated source of **4 Th as measured by an
intrinsic germanium detector. The peaks due to isotopes of the ?*2Th decay chain are all labelled. The
240keV peak, which is a combination of gamma decays from 22 Pb and 224 Ra, has not been shown at its
full height so that the other peaks can be more easily identified. In fact the height of the peak at 240keV for
this source was about 12,500 counts per channel which is about seven times higher than the next largest
peak which can be seen at 585keV.

146



Energy || Isotope Branching Ratio in %

in keV || Parent | of parent | from main chain

238.6 212pp 43.3+£0.4 43.3£0.3
241.0 224Ra || 3.9740.04 3.971+0.04
277.4 20871 || 6.3140.09 2.27+0.03
300.1 212Pb || 3.28+0.03 3.284+0.03
510.8 2081 22.6+0.3 8.13+0.11
583.2 208 84.5+0.7 30.440.2
727.3 212Bi || 6.58+0.05 6.58+0.05
785.4 2124 1.10+0.01 1.10£0.01
860.6 208 12.4+0.1 4.47+0.04

Table B.1: The energies and branching ratios of the gamma decays from daughters of 2?8 Th. The branch-
ing ratios listed give the probability that a decay of the parent produces this gamma decay and also the
probability that a decay of either 212 Pb, 22 Ra or 228 Th produces this gamma decay assuming equilibrium
within the decay chain. The values listed in this table are all taken from [Fir96].

The Ge(Li) detector and the intrinsic germanium detector were both used to measure an acidic source
of 228Th which had been left isolated from other radioactivity for several half-lives of ?24Ra so that
equilibrium within the decay chain could be assumed. The gamma spectrum of this source as measured
by the intrinsic germanium detector is shown in Figure B.1. Using the results of this spectrum, and other
measurements, the resolution, linearity and efficiency of the detectors as a function of energy could be
found.

The energy resolution for both the intrinsic germanium detector and the Ge(Li) detector, in terms
of the full width at half maximum (FWHM), was found to vary between about 2 and 4keV. In the case
of the intrinsic germanium detector it could be seen that this resolution varied with the square root of
the energy of the peak, as would be expected since this is the statistical fluctuation on the number of
electron-hole pairs produced by a photon. In fact the following relationship was found to hold quite
accurately: FWHM~ 0.15 + 0.01VE, where all the values are in keV. Thus for the 240keV peak the
FWHM was about 2.3keV and for the 860keV peak the FWHM was about 4.4keV.

The top plots in Figures B.2 and B.3 show the linearity of the detectors as a function of energy and
it can be seen that both the Ge(Li) detector and the intrinsic germanium detector have good linearity,
with the intrinsic detector’s linearity being excellent. The lower plots in Figures B.2 and B.3 show the
efficiency of detecting gamma rays as a function of their energy on log-log plots. The result of the fits and
the observation of straight lines on the log-log plots suggest that the general dependence of this variation
of efficiency with energy is reasonably modelled by a power law, as would be expected from the variation
of the Compton cross-section with energy.

It should be noted that the activity of the source of 228 Th that was used for the efficiency measurements
was not precisely known and so these results are not accurate calibrations. Such accurate calibrations
were not necessary since measurements were almost always examining relative not absolute activities.
The low overall efficiencies of only a few percent did mean that large amounts of 228Th, typically a
few kilobecquerels, had to be added to experiments whose results were to be measured using gamma
detectors. This amount of activity is much higher than the amounts expected in the SNO detector. (For
a discussion of this see Section 5.7.1 on page 86.)
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Figure B.2: The energy and efficiency measurements of the intrinsic germanium detector used at BNL.
In the top figure the fit is to a first degree polynomial whereas in the bottom figure, which is a log-log plot,
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Figure B.3: The energy and efficiency measurements of the Ge(Li) detector used at Ozford. In the top

figure the fit is to a first degree polynomial whereas in the bottom figure, which is a log-log plot, the fit is

to P1x EnergyF?, a power law.
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Finally it should be noted that when obtaining measurements by gamma counting the decay rate of
all of the 228Th peaks that are shown in Figure B.1 were not measured since sufficient accuracy could be
achieved by measuring the decay rate of just one peak. This chosen peak was the 583keV gamma decay
from 298T1. This peak gives the highest counting efficiency for a peak consisting of gamma decays from
just one isotope.

In the next section it is explained how the initial activities of 212Bi, 212Pb, 224Ra and 228Th in a
sample can be determined by measuring the decay rate of 2°8T1, using the 583keV gamma decay, at
different times after the sample is produced.

B.3 Determining Initial Activities from the Decay Rate of 205T1

B.3.1 An Approximate Method

In the small scale batch extraction feasibility experiments detailed in Section 5.3.1 on page 75 the
amount of 212Pb and ?28Th that was in each sample was estimated by measuring the decay rate of 28T,
using the 583keV gamma decay, at different times after the sample was produced.

The initial activity of 22Th in a sample was estimated by measuring the decay rate of 2°8T] two
weeks after the sample was produced. Since the samples were always sealed at production they can be
assumed to be in isolation from external sources of radioactivity during this time and so after two weeks
the decay rate of 28Tl should be the same as the original decay rate of 228Th.

The initial activity of 22Ra in a sample was estimated by measuring the decay rate of 20871 three
days after the sample was produced. This time was chosen to minimise the effects of 2!2Pb, which has a
half-life of 10.6 hours, while maximising sensitivity to 224Ra which has a half-life of 3.66 days.

Finally, the initial activity of 2!2Pb in a sample was estimated by measuring the decay rate of 208T]
two hours after the sample was produced. This time was chosen to minimise the effects of 212Bi, which
has a half-life of 60.6 minutes and ?2Ra while maximising sensitivity to 212Pb. If the 22Bi and 2!2Pb
act in the same way, as they do in extractions using diethylammonium diethyldithiocarbamate (DDDC),
the error on estimating the initial activity of 2!2Pb in a sample by assuming it to be the same as the
decay rate of 2%8T1 two hours after its production is quite small. However, an exact method which allows
the initial activity of both 212Pb and 2?!?Bi to be accurately determined is explained in the next section.

B.3.2 An Exact Method

In Appendix B of [Tap95b] there is an expression for the decay rate of 298l as a function of time
in terms of the initial activities of 2!2Pb, ??Ra and 228Th. However, the derivation of this expression
ignores the presence of 2!2Bi in the decay chain and to be sure to accurately determine the initial activity
of 212Pb it is necessary to include the effects of this isotope.

In order to find an expression for the decay rate of 2°8T1 as a function of time in terms of the initial
activities of 228Th, 224Ra, 212Pb and 2'?Bi an additional differential equation to the ones considered in
Appendix B of [Tap95b] needs to be considered. Equations B.1 to B.4 are the four coupled differential
equations that need to be solved to find the decay rate of 212Bi which is always proportional to the decay
rate of 2°8T1 for times greater than a few minutes.
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dNTp(t) _

S = —MaNr(t) (B.1)
ij%:(_t) = —AraNRa(t) + Arn Nzn (2) (B.2)
%;(t) = —ApsNpy(t) + AraNra(t) (B.3)
i—’%i_(t). = —AB:iNpi(t) + ApsNps(t) (B-4)

Equations B.1 to B.4 are given in terms of the decay constants of 223Th, 224Ra, 212Pb and 2'2Bi and

in units of seconds™! the values of these decay constants are given in Equation B.5.

Arh =1.15x 1078 ; Ap,=220x1076 ; Ap,=182x10"5 ; Ap;=191x10"* (B.5)

An expression for the decay rate of 212Bi as a function, assuming that A, ~ 0, is given in Equa-
tion B.6. This expression is in terms of three constants: a, 8 and <, which are defined in Equation B.7
and four coefficients: W, X, Y and Z, which are defined in terms of the initial activities of the four
isotopes: Ap;, Apy, Ars and Ary, in Equations B.8 and B.9.

ABiNpi(t) = We™ 8t £ Xae™*Pot 4 YBye  rat 4 Z (B.6)

_ ABi — . _ ABi _ . _ A _
a = S\—B_-'—B‘I\T =1.11 y ,3 = -/\_B-_—&:\—n;: =1.01 y Y= m_af\: =1.14 (B7)
Z=Arn ; Y=Ara—Arn ; X =App— Arav+ Arn(y—-1) (B.8)
W =Ap; — Apva + Apay(a — B) + Arn(By —a(y — 1) — 1) (B.9)

These expressions taken together allow the initial activities of 2!2Bi, 212Pb, 22Ra and 2?%Th in
a sample to be obtained by fitting measurements of the decay rate of 2°8T]. The minimum number of
measurements for each sample to achieve this fit is four and these need to be made at particularly sensitive
times such as at about 1 hour, 6 hours, 3 days and more than two weeks after the sample was produced.
These fits were made using the PAW fitting routine called MINUIT?, with bounded parameters, for the
majority of gamma counting measurements discussed in this thesis. In Figures 4.3, 4.5 and 4.6, which
can be found on pages 55, 58 and 59 respectively, the results of such fits are displayed.

IMINUIT, CERN Program Library entry D506.
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Appendix C

Alpha Counting

C.1 Introduction to Alpha Counters

Alpha particles are commonly detected through their energy deposition in solid state detectors. To
be optimised for alpha spectroscopy these solid state detectors need to have a very thin layer of material
through which the alpha particles have to pass before reaching the active region of the detector. This is
achieved using surface barrier detectors which are made by etching an extremely thin p-type layer onto
the surface of n-type silicon. A very thin layer of gold is finally evaporated onto the front of the detector
to provide the electrical contact for the bias voltage which, at about 100V, typically gives a depletion
layer of about 170 microns in thickness. Since the typical range of a 5MeV alpha particle in silicon is only
20 microns, all alpha particles are absorbed by such a depletion layer. Finally, because of the presence
of ions in air it is necessary to operate these alpha sources in a vacuum.

C.2 The Measurement of Alpha Decays from ?*2Th

The decay chain for 222Th was shown in Figure 2.3 on page 24 of this thesis where it was explained
that for the purposes of the SNO experiment it is only important to measure the presence of isotopes
lower than ?28Th in the decay chain. These isotopes have many alpha decays which are expressed in
terms of their Q-values. The energy carried away from each alpha decay can be calculated roughly from
these Q-values using the expression: T, = @Q(1 — 4/A), where A is the atomic number of the parent
isotope, as is explained on page 248 of [Kra88].

The measured energies of the alpha particles produced in each of these decays are listed in Table C.1
together with values for the branching ratios to these decays from both their immediate parent and from
isotopes of the main decay chain assuming equilibrium in the decay chain.

These alpha decays were measured for the research detailed in Chapter 4 of this thesis using silicon
detectors at the Brookhaven National Laboratory (BNL), New York, USA, with the assistance of Dr
R.Hahn. The sources measured were, so called, ‘thin alpha sources’ prepared on platinum disks of about
1 centimetre in diameter. These disks were cleaned before use by placing in a solution of 1M hydrochloric
acid, then water and finally acetone before drying and storing. When a liquid sample was to be measured
by alpha counting 10-100 microlitres of the liquid was placed in the centre of one of these disks by Dr
R.Hahn. The liquid was then evaporated by placing the disk under a heat lamp for several minutes. In
order to measure volumes larger than 100 microlitres this process of evaporation was repeated a number
of times. Finally, the disk was flamed so that it glowed red hot to adhere the residues to the disk.
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Energy || Isotope Branching Ratio in %
in MeV || Parent of parent l of main chain
5.34 228Th 28.2+1.0 28.2+1.0
5.42 228Th 71.1+0.1 71.1+0.1
5.45 224R, 5.06+£0.04 5.06+0.04
5.69 224Ra || 94.94+0.04 | 94.94+0.04
6.05 212Bj 69.9+0.2 25.124+0.07
6.09 212Bj 27.1+0.1 9.74+0.04
6.29 220Rn || 99.894+0.02 | 99.89+0.02

6.79 216pg 100 100
8.78 212pg 100 64.0

Table C.1: The energies and branching ratios of the alpha decays from daughters of > Th. The branching
ratios listed give the probability that a decay of the parent produces this alpha decay and also the probability
that a decay of either 212Pb, 224 Ra or 2?8 Th produces this alpha decay assuming equilibrium within the

decay chain. The values listed in this table are all taken from [Fir96].
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Figure C.1: An ezample of an alpha spectrum from an equilibrated source of 2?8 Th as measured by an

alpha detector at BNL.
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Peak Main Main Chain Equivalent Activity in Bq:

Energy | Isotope Shelf 5 Shelf 6

in MeV | in Peak | (Efficiency =0.92%) | (Efficiency=0.67%)
5.1-5.5 228Th 16.7 16.7

5.5-5.7 224Ra, 16.4 15.9

5.9-6.1 212B; 17.5 17.0

6.1-6.3 | 220Rn 16.6 16.5

6.5-6.8 216pg 171 17.7

8.1-9.5 212pg 17.6 16.6

| Average: | 17.0+£0.5 | 16.7£06 |

Table C.2: The activity of a 228 Th source as measured at two calibrated positions from an alpha detector.
It can be seen that all siz of the peaks give very similar values for the main chain activity as do the
measurements taken at the different distances from the detector.

The efficiency of measuring alpha decays from sources placed at different distances from the detector
were determined by Dr R.Hahn using a calibrated source of 24! Am. Measuring sources at the furthest
distance, called Shelf 6, was found to have a 0.67% efficiency whereas measuring sources at the slightly
nearer distance, called Shelf 5, was found to have a 0.92% efficiency. Thin sources of 222 Th were measured
using this detector and a typical spectrum is shown in Figure C.1. The full width at half maximum
(FWHM) resolution of this detector was found to be independent of energy at 31+3keV.

The activity of the 222Th source was determined by measuring the number of counts in each of the
six fully resolvable alpha peaks in a known amount of time, subtracting a reasonable background and
calculating the main chain activity that would give these counts. The results of such calculations made
for two measurements of the same source placed at different distances from the detector are shown in
Table C.2.

These results show that all of the peaks give very similar figures for the 228Th activity of the source
and that measurements made at different distances from the detector are also in good agreement. The
accurate measurement of this source of 222Th allowed it to be used to calibrate the 3 — a counters that
were set up at BNL which are discussed in Appendix D.
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C.3 The Problem of Nuclear Recoils in Alpha Counting 22Th

Sources

One difficulty with alpha counting 222 Th sources is due to the fact that detectors can easily become
contaminated with activity due to nuclear recoils. This effect was observed at BNL by counting a thin
source of ?28Th for several hours very close to the detector, removing this source and continuing to
measure the decay rates of 22°Rn, 2!6Po, 2!2Bi and 2'?Po. These decay rates were measured at different
times after the removal of the 222Th source by measuring the number of counts in each alpha peak after
a short time of counting. The main chain activity that would cause the observed decay rates in each
of these peaks was then calculated and these activities, in counts per second, are shown in Figure C.2
plotted against the time, in hours, after the 222Th was removed when the measurement was made.

The plots for the 212Bi and 2'2Po peaks clearly show two components of different half lives whereas
the 22°Rn and 216Po peaks show just one component. The results for all of the peaks have been fitted
to the decay of 22Bi as a function of time, as detailed in Appendix B, to give the initial activities of
212Bj, 212PD, 22¢Ra and 228Th. These fitted results show that the alpha peaks of isotopes below 2!2Pb in
the decay chain indicate a large radioactive contamination of the detector which decays with the 212Pb
half-life and that the alpha peaks of all of the isotopes indicate a much smaller radioactive contamination
which decays with the 224Ra half-life. This is all consistent with contamination due to nuclear recoils
since no 222Th contamination was observed.

The 228Th source which had been measured by the detector produced 1.85+0.13 alpha decays per
second and so the amount of 224Ra contamination can be calculated to be about 1.5% of this activity
and the 2!?Pb contamination about 20%. The larger 2!>Pb contamination is probably caused by the
extra mobility of 2Rn. These percentages will of course depend upon geometrical effects and the exact
distance between the ?22Th source and the detector but these results indicate the scale of the problem.

Instead of waiting for this contamination to decay away a new detector was used to measure the clean
212Pb sources produced by the method given in Chapter 4. This new detector had not been used to count
?28Th sources and so had not been contaminated by nuclear recoils. It is clear that by only counting
212Pb sources this detector could be kept free from long-lived contamination since nuclear recoils from
212Pb can only lead to 2!2Bi contamination which decays with a half-life of 60.6 minutes. This detector
was specifically chosen to have a very high efficiency for the purpose of counting these 22Pb sources and
this was optimised to be 30% by Dr R.Hahn by using thin alpha sources placed as close to the detector
as possible.

Alpha spectra produced using this high efficiency detector did not differ greatly from those produced
with the previously used detector. However, because sources were measured at a much closer distance
this did have the effect of adding a high energy tail to the 2!2Po peak. This high energy tail can be
clearly seen in the top spectrum shown in Figure 4.9 on page 67 and it is caused by the detection of 8 — «
coincidences from the decays of >*?Po and 2!2Bi. When sources were measured some distance away from
the detector the number of B — o coincidences that were detected was reduced by using a small magnetic
field but this had little effect when the source was being measured very close to the detector.
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Figure C.2: The time dependence, in hours, of the contamination of an alpha detector used to measure
a source of 228 Th after the source is removed. The contamination shown is the calculated main chain
activity, in counts per second, that would cause the observed decay rates in the alpha peaks from 2?°Rn,
?1%Po, 212 Bi and '2Po. The fitted parameters are for the initial activity of 22 Bi (P1),212Pb (P2), **Ra
(P3) and ***Th (P4). Since **°Rn and ?'°Po are above **2Bi and *'2Pb in the 32 Th decay chain the
fitted values for P1 and P2 in the top two plots have no meaning.
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Appendix D

The Beta-Alpha Delayed
Coincidence Liquid Scintillation

Counters

D.1 The Beta-Alpha Counters used at Oxford

In Section 3.2.1 on page 30 it was explained why the 3 — a delayed coincidence liquid scintillation
counters were developed for use in the SNO experiment by Dr R.K.Taplin. The main advantage that
they have over other counting techniques is their very high efficiency for measuring ?'2Po decays in a
small aqueous sample and the very low background rate due to the coincidence requirement.

The B — o counting performed in the experiments detailed in Chapters 4 to 6 of this thesis used the
set of counters which were set up in Oxford by Dr R.K.Taplin. The details and the operation of these
B — a counters are explained in Chapter 4 of [Tap95b] but a simple overview of the process is shown
in the form of a flow diagram in Figure D.1. It can be seen in this flow diagram that the measured
quantities are: the full charge of the start pulse, the full charge of the stop pulse, the tail charge of the
stop pulse and the time of the coincidence. These first three quantities are measured by analogue to
digital converters (ADCs) and the last with a time to digital converter (TDC). The tail charge of the
stop pulse is a measure of the shape of this pulse which allows 8 — a coincidences to be distinguished
from B — 8 or B — 7y coincidences.

The 8—a counters set up at Oxford had been previously calibrated for absolute efficiency and this was
quoted to be 50% in Chapter 4 of [Tap95b]. The relative calibrations of all six counters were measured
and the results are shown in Table D.1. It can be seen that there were small differences between the
relative counting rates but compared to the statistical errors on measured activities these systematic
errors are very small and so they were ignored.
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Figure D.1: Starting from the top left corner this flow diagram gives a simple overview of the processes
involved in using a B — a counter to measure coincidences from the 232 Th decay chain which are generated

by the short lived 12 Po isotope.

Counter ” Count Rate

Efﬁciencﬂ

1 0.401+0.002

54.24+0.3%

0.353+0.002

47.7+0.3%

0.349+0.002

47.2+0.3%

0.360+£0.002

48.7+0.3%

0.401+0.002

54.240.3%

DO W] N

0.353+0.002

47.74+0.3%

Table D.1: The relative calibration of the 8— a delayed coincidence scintillation counters set up at Ozford.
Measurements were made of the same source of *® Th and the errors quoted are statistical errors on the
number of measured counts. The relative efficiencies are calculated by assuming a 50% efficiency for the

mean measured count rate.
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The initial activity of >!?Pb, ?*Ra and 2?Th in a sample, measured by 8 — a counting at Oxford,
was often estimated by recording the total number of 8 — a coincidences in a period of time, at different
times after the sample was produced. The initial activity of 2'2Pb in a sample was estimated by recording
the total number of 8 — a coincidences measured in the first 24 hours after its production and dividing
by a time factor to calculate the initial activity of >!2Pb that would produce this integrated number of
counts. This is a similar calculation as was performed in Section 5.7.1 on page 86.

The initial activity of 2*Th in a sample was estimated by recording the total number of 8 — o
coincidences measured in a few days, two weeks after the sample was produced. Finally, the initial activity
of 224Ra in a sample was estimated by recording the total number of 8 — a coincidences measured in a
few days, three days after each sample was produced and subtracting any expected 8 — o coincidences
due to the initial, known activity of 212Pb.

The errors on these estimates were found by assuming either v/N errors on the measured number of
counts or by using 95% upper level confidence limits using Poisson statistics.

In some of the experiments detailed in Chapter 6 of this thesis a more accurate method to determine
the initial activities of 212Pb, 22Ra and ??8Th in a sample was used. This method was to fit the data
from the B — a counters to an expression giving the decay of 2!2Bi as a function of time in terms of
the initial activities of ?!?Pb, ***Ra and ??®Th. The details of this method are given in Chapter 4 and
Appendix B of [Tap95b]. A fit of the measured numbers of 8 — a counts, binned by hour, to this 212Bj
decay rate was performed by assuming Poisson distributed bin heights and by using the log-likelihood
method to obtain values for errors.

It should be noted that samples for 8 — a counting were rarely measured immediately after production
and this, together with binning the counts by hour, means that the presence of the 2'2Bi isotope, which
has a half-life of 60.6 minutes, between the 2!2Pb isotope and the 3 — & coincidence can be safely ignored
in the fitting process.

D.2 The Beta-Alpha Counters used at BNL

The 8 — a counting carried out in the experiments detailed in Chapter 7 of this thesis was performed
at the Brookhaven National Laboratory (BNL), New York, USA, where some B — o counters were set up
with the assistance of Dr J.Boger. These 3 — a counters differed from the Oxford counters only in the
actual electronic units that were used. In particular the TDC unit used was not a long-range LRS 4208
unit but a short-range LRS 2228 unit which had been suggested as an alternative in [Tap97].

One of the counters that was set up at BNL was used to measure 8 — a coincidences from a source
of > Th so that the full charge distributions of the start and stop pulses could be compared to those
measured by Dr R.K.Taplin at Oxford. These distributions are shown in Figure D.2 and can be compared
favourably to those given in Chapter 4 of [Tap95b).

The distributions shown in Figure D.2 were obtained by reading data from the CAMAC crate every
time the TDC unit holds a value. This means that data is read after every singles event as well as every
coincidence event since if the TDC has been started by a start pulse it will always hold a value. If no
stop pulse arrives before the TDC reaches its full range the value that it holds will be a maximum which
indicates a singles event. This method of reading data from the CAMAC crate was the one used by Dr
R.K.Taplin. However it was found at BNL to be inefficient because of the shorter range of the TDC unit.
It was found that a proportion of coincidences were being misidentified as singles events because they
had a coincidence time longer than the range of the TDC unit.
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Figure D.2: The charge distributions for the start and stop pulses of B — a coincidences from 2'2Po as
measured by a f — a counter at BNL.

228Th Using Electronics: Using CAMAC crate:
source Rate of Rate of Reading when ADC | Reading when TDC has value:
strength || all pulses | stop pulses || has value: Coinc Rate | Coinc Rate Singles Rate
inBq || N+ 2N, N, n4 nl nT
31 229+2 17.3+0.5 10.2+0.2 2.244+0.08 30.8+0.3
3.1 21.8+0.6 1.79+0.10 1.61+0.07 0.80+0.05 12.8+0.2
0.31 2.72+0.12 | 0.175+0.009 0.161+0.007 0.122+0.006 2.25+0.03

Table D.2: The results of measuring both singles and coincidence rates in counts per second using the
electronics directly or via the CAMAC crate. It can be seen that rates measured using the electronics scale
with the activity of the 228 Th source whereas rates measured via the CAMAC crate do not and this is an
indication of dead-times associated with processing events through the CAMAC crate.

An alternative method to read out the CAMAC crate was to read data only when the stop pulse
ADC unit holds a value. This ensures that only data from coincidences is read out but it has the
disadvantage that the values of the full charge for the start pulse held in the start pulse ADC unit and
the coincidence time held in the TDC unit are taken from an earlier singles event and are not associated
with the coincidence.

The effects of using these two different methods to read data from the CAMAC crate can be seen
from the results in Table D.2 which shows rates measured by various methods using three high activity
sources of > Th and a 8 — a counter at BNL. These results give the coincidence rate (subscript ¢) and
the singles event rate (subscript s) as measured via the CAMAC crate (n) and as measured using a scaler
directly from the electronic gating units (N).
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The ??Th sources used in this experiment were later accurately calibrated and by comparing this
activity to the coincidence rate measured using the electronic units, N,, the detection efficiency for 8 —a
coincidences can be calculated. Removing the 64% branching ratio of 22Bi to 2'2Po this gives detection
efficiencies for § — a coincidences of: 87+3%, 90+5% and 88+5% for each of the three 228Th sources
that were measured. The average is therefore 88+2% and this indicates a 10% loss due to the start pulse
discriminator threshold and timing delays.

The singles rates measured by the electronic units, N,, can be calculated for each 228Th source to
be 194+2, 18.2+0.6 and 2.37+0.12 counts per second respectively. This seems to vary roughly with the
activity of the 228 Th source which would indicate that the majority of these singles events are beta decays
from isotopes in the ?28Th decay chain.

The coincidence rates measured using the CAMAC crate do not increase in proportion to the activity
of the 22Th source, especially when reading data whenever the TDC unit holds a value. This is due to
the dead-times involved in processing singles events, 7, and coincidence events, 7.. The coincidence rate
measured when reading data whenever the TDC unit holds a value is further lowered due to a proportion,
K, of coincidences that would be measured being misidentified as singles events because the coincidence
time is longer than the TDC range, as has already been discussed. Equations D.1 to D.3 give expressions
to connect the rates measured using the CAMAC crate to the rates measured directly from the electronics
in terms of the values of 7,, 7. and K by taking into account the probability of one event occurring when
another is being processed and the extra loss of misidentifying a coincidence event as a singles event.

N. —n# = N.nr, (D.1)
Ne—nI = NonT7, + NenTry + KnT (D.2)
Ny —nT = NonTry + NynT7, (D.3)

T

Using the results of measuring the highest activity >®Th source for N, Ny, n2, nT and nT as given

in Table D.2, the values of 7;, 7. and K can be determined and these are given in Equation D.4.

7s = 0.024 £ 0.001sec ; 7. =0.040+0.003sec ; K =0.23+0.06 (D.4)

The values for the dead-times, 75 and 7., explain why the rates measured via the CAMAC crate are
lower than those measured directly from the electronics when the coincidence rate is higher than about
25 events per second and singles rate is higher than about 40 events per second. These dead-times give
an upper level limit of a few becquerels for the activity of 228Th sources that can be measured by this
system without having to take these dead-times into account. The calculated value of K means that
about one quarter of the 8 — a coincidences had coincidence times greater that the maximum time that
could be measured by the TDC unit. The full range of the TDC unit can therefore be calculated to be
650+100 nanoseconds by integrating an exponential decay with the 22Po half-life. This can be compared
to a measurement of the full range of the TDC unit obtained by fitting the actual data from the TDC
unit with the 2!2Po half-life. This fit is shown in the top plot of Figure D.3 which shows that the 2048
channels of the TDC unit must correspond to 650+50 nanoseconds.
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Figure D.3: These plots show some analysis on data taken using a 8 — o counter at BNL. The top plot
shows the measured coincidence time for 3 —a coincidences from 212 Po with a fit to an exponential decay.
The fit result can be used to calculate the full range of the TDC unit using the following calculation:
Slopex2048/Ap, = 650 =+ 50 nanoseconds. The bottom plot shows the different measured distributions of
the tail charge to full charge ratio for sources of 228 Th and 9°Sr.
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To remove the in-built loss of efficiency caused by reading data from the CAMAC crate whenever
the TDC unit holds a value it was decided to always use the alternative method of only reading data
when the stop pulse ADC holds a value. As has already been explained this has the disadvantage that
the values held in the TDC unit and the start pulse ADC unit have to be ignored since they will not
correspond to the coincidence event. Since the 8 — a counters were only being used to measure 2!2Po
coincidences, not 2!4Po coincidences as well, the timing information and the start pulse information was
not essential to obtain accurate results. The full charge and tail charge of the stop pulse are required
in order to distinguish signals caused by alpha particles from those caused by gamma or beta particles
using pulse shape discrimination as detailed in Chapter 4 of [Tap95b).

The power of this pulse shape discrimination can be seen from the lower plot of Figure D.3 which
shows the measured values of the tail charge to full charge ratio for sources of 228Th and 9°Sr. The %°Sr
source is a pure beta emitter and so this figure shows that the tail charge to full charge ratio is much
smaller for 8 — f coincidences than for §— a coincidences. In Figure D.3 a low level cut for the tail charge
to full charge ratio of 0.28 is shown and by only selecting coincidences which have a value greater than
0.28 the chance of measuring a 8 — 3 coincidence by mistake is eliminated by accepting a slight loss of
efficiency for measuring a B — « coincidence. After adding in this pulse shape discrimination separately
for each 8 — a counter at BNL they were calibrated for absolute efficiency using a 0.31Bq source of 228 Th
whose activity had been accurately determined using both alpha and gamma detectors. The results of
this absolute calibration are shown in Table D.3 and by taking into account the 64% branching ratio of
?12Bj to 21?Po this gives an average detection efficiency of 77+3% which is very similar to that found in
Oxford by Dr R.K.Taplin, see Chapter 4 of [Tap95b).

Counter | Absolute Efficiency:
1 49+1%
2 48+1%
3 524+2%
4 48+1%

Table D.3: The calibration of the B — « delayed coincidence scintillation counters as used at BNL.

Unfortunately it was not possible to spend a large amount of time reducing and analysing residual
backgrounds on the 8 — a counters at BNL which were the order of a few decays per day. To eliminate
the effect of this counter background, in measuring the initial activity of 2!2Pb sources, the data from
the 8 — o counters was always fitted to a constant counter background together with a component with
a 10.6 hour half-life. A fit of the measured numbers of 3 — a counts, binned by hour, to this function was
performed by assuming Poisson distributed bin heights and by using the log-likelihood method to obtain
values for errors.
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Appendix E

Calculation of Reservoir Drainage

Time

In this appendix a simple calculation is made in order to estimate the time that it would take to
drain 20 litres from the mixer of the Solvent-Solvent Extraction Rig under gravity using either half inch
(1.27 x 1072 metres) or quarter inch (6.35 x 10~3 metres) diameter pipe.

A diagram of the apparatus involved in draining a reservoir is given in Figure E.1 along with a number
of definitions. The mixer of the Solvent-Solvent Extraction Rig was designed to have a drainage pipe of
length, | = 1.5 metres, a reservoir diameter, D, of 0.3 metres and an initial head height of water in the
reservoir, h(0) = H, of 0.3 metres to give a volume of 20 litres.

The conservation of volume leads immediately to the two simple relationships which are given in
Equations E.1 and E.2. The first equation, Equation E.1, equates the volume of water which flows out
of the pipe in a small time, dt, to the volume of water lost from the reservoir in terms of a small decrease
in the head height, —dh. These two volumes are shown by the shaded regions in Figure E.1. The second
equation, Equation E.2, gives a relationship between the velocities of the water at the top of the reservoir,
V1, and in the flow out of the exit pipe, Vs.

—D%dh = d®Vydt (E.1)
d 2
"= (5) (E.2)

To estimate the velocity of water leaving the pipe as a function of the head height, h(t), it is necessary
to use the Bernoulli equation for two points on a streamline assuming a quasi steady state during the
draining. The Bernoulli equation, which is given in Equation E.3, connects the pressure, p, velocity, V
and the height, z, of points on a streamline in terms of the acceleration due to gravity, g, and the specific

weight, v = pg.

V2 V2
B =222, (E.3)
v 2 T2
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Figure E.1: A diagram showing the apparatus involved in draining the reservoir on the Solvent-Solvent
Extraction Rig. The shaded areas indicate the two volumes which are equated to give the differential
equation shown in Equation E.1. When the reservoir is full h(0) = H and when empty h(T) = 0.

The Bernoulli equation for the situation shown in Figure E.1 can be constructed by choosing one
point at the top level of the water in the reservoir and the other point at the end of the exit pipe. The
difference in heights of these two points, z; — 22, can be seen from Figure E.1 to be equal to h(t) +1. Also,
the top of the reservoir is open to the atmosphere which makes p; = 0 and the water leaves the exit pipe
as a free jet which makes p, = 0. Substituting these values into Equation E.3 leads to Equation E.4. By
using the relationship between the velocities at these two points as given in Equation E.2, an expression
for V2 in terms of the head height in the reservoir can be found and it is given in Equation E.5.

2

Ve _ Vs
25 ThO+i=3 (E.4)

29(h(t) +1
V2=,/1i£—((;)/%)3 (E.5)

Since D > d it is clear that the term involving (d/D)* given in Equation E.5 can be ignored and then
by substituting this equation into Equation E.1 a first order differential equation for h(t) can be obtained
as shown in Equation E.6. This differential equation is solved trivially in Equations E.7 and E.8 to give
the time, T', that it takes to drain the reservoir by using the boundary condition that at time, t=0, the
head of water in the reservoir, h = H.

—D%dh = d*\/2g(h(t) + 1)dt (E.6)

_\/12_57/: \/% - (%)2/0Tdt (E.7)
T= @(%)2 [VE+T) - V] (E.8)
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Using Equation E.8 and the dimensions as were given above, the time that it would take to drain 20
litres from the mixer of the Solvent-Solvent Extraction Rig under gravity using half inch diameter pipe
can be calculated to be about 30 seconds and when using quarter inch diameter pipe it can be calculated
to be almost 2 minutes.

The expression for T given in Equation E.8 was obtained by neglecting any losses in the draining, in
fact there are two important losses that need to be taken into account and these are expressed in terms
of head height losses in Equations E.9 and E.10. (See [Mun90] or another text on Fluid Mechanics for
the derivation of these expressions.)

1V}
hp = f3 ?29' (E.9)
I
he =Ko (E.10)

The first equation, Equation E.9, gives the loss due to friction within the pipe in terms of its dimen-
sions, the velocity of water in it and a friction factor, f. The exact value of this friction factor can only
be calculated if there is laminar flow within the pipe and this is not expected in this situation. However,
for plastic, smooth pipes the value of f for turbulent flow can be estimated to lie in the range 0.01 to
0.04.

The second equation, Equation E.10, gives the loss due to the constriction between the reservoir and
the exit pipe in terms of the velocity of water in the pipe and a geometrical factor, K. The value of the
geometrical factor depends upon the exact nature of the constriction, however when going from a large
diameter reservoir to a small diameter pipe it is reasonable to assume a limiting value of 0.5.

These head losses need to be added onto the right hand side of Equation E.4 to determine the effect
upon the velocity, V2, in the pipe. By including these terms and following the calculation as above a new
expression for T can be found which includes the effect of the two main losses in the system and this
expression is given in Equation E.11.

T= \/g (§>2 [VE+D) - V] (1 + fé + Kc>1/2 (E.11)

The correction due to the losses increases the calculated time that it would take to drain 20 litres from
the mixer of the Solvent-Solvent Extraction Rig under gravity using half inch diameter pipe to 1 to 2
minutes and when using quarter inch diameter pipe to 4 to 7 minutes. It is clear that losses greatly effect
drainage times and the inclusion of a valve in this draining will further slow the flow down. To ensure
that this drainage time does not become long compared to other processing times involved in using the
Solvent-Solvent Extraction Rig it can be concluded that half inch diameter pipe should be used.

The expression in Equation E.11 was tested experimentally by draining a large tank. This tank was
actually square in its cross-section but its area corresponded to a diameter, D, of 0.4 metres. It was filled
with water to a head height, H, of 0.15 metres and then placed 2 metres above the ground so that it
could be drained using a length, ! = 2 metres, of three eights inch diameter tubing, d = 9.525 x 103
metres. By substituting these values into Equation E.11 and assuming that the friction factor, f, lies in
the range 0.01 to 0.04 a calculated drainage time of 80 to 130 seconds can be obtained. This compares
very favourably to the measured value of 90 seconds and indicates that f had a value nearer 0.01 than
0.04.
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Appendix F

A Model of Airborne %'“Pb

Contamination

In this appendix a simple model will be used to estimate the deposition rates of 2!2Pb in a § —
counting pot that would be expected in the experimental areas at Oxford and BNL due to the emanation
of 220Rn from the thorium which is expected to be present in concrete. The first step in this calculation
is the need to determine the emanation of *°Rn from a concrete wall containing a fixed amount of
thorium. This can be done by assuming infinitely thick, flat walls by solving the diffusion equation given
in Equation F.1. In this equation n(z) is the concentration of 22°Rn atoms in the concrete a distance z
from the surface of a wall, D is the diffusion coefficient of radon in concrete and N is the concentration of
*?%Rn atoms a long way from the surface of the wall which is generated by thorium within the concrete.
Finally, Ag, = 44.88hr™" is the decay constant for >2°Rn which has a half life of just 55.6 seconds.

&n
dz?

The boundary conditions for this problem are that: n(L) = N, where L is large and n(0) = 0.

D - /\Rnn = “/\RnN (Fl)

The latter condition means that any ?>’Rn at the surface of the concrete is immediately transported
away by convection currents. With these boundary conditions the solution to Equation F.1 is shown in
Equation F.2, where [ has been defined to be the diffusion length of 22°Rn in concrete which is also given
in Equation F.2.
sinh(L — z)/1
=N1-————*) ; 1=+/D/) F.2

The flux of 22°Rn in the concrete at any distance, z, from the surface of the wall can be found

using the usual formula for flux as shown in Equation F.3. By evaluating this equation at z = 0 using

Equation F.2, the flux of *°Rn out of the surface of the concrete wall can be found and the expression
for this flux is given in Equation F.4.

j=-DVn (F.3)

) dn ND cosh(L — z)/1 ND
= Fluz = -D— = =
oo = Fluz dr|,_, |  sinhL/l |,_, ltanhL/l

In the limit that the wall is thick compared to the diffusion length of 220Rn, L > I, the flux can
be reduced to a simple expression, given in Equation F.5, in terms of the diffusion coefficient, D, the

(F.4)

concentration of #2°Rn in the concrete, N and the decay constant of 22°Rn, Agp,.
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Institute || Estimated area in square metres of the: Deposition Rate in atoms/hr
Name Concrete Walls | Floor Area | B — a pot || Calculated Rate | Measured Rate
Oxford 12 8 1.5x1073 100-300 30420

BNL 112 49 1.5x1073 150-450 4104250

Table F.1: A comparison of the calculated and measured 22 Pb deposition rates in experimental areas at
Ozford and BNL. These calculations use the value of the flur of ?*° Rn out of concrete to be 5-13x 10*
atoms per square metre per hour which corresponds to a thorium content of the concrete of 1 part per

million.

Flux = —A—flg = N+v/DM\gn (F.5)

Using the formula in Equation F.5 the flux of ?2Rn out of a concrete wall can be estimated by
choosing suitable values for the thorium concentration in concrete, the density of concrete and the diffusion
coefficient of radon in concrete. A summary of measured values of the diffusion lengths for the 3.82 day
half-life radon from the uranium decay chain, ?*?Rn, in various concretes are given in [Zap83]. These
values lie between 13 and 29 centimetres and so using the expression in Equation F.2 it can be deduced
that the diffusion coefficient for radon in concrete lies between 4x10~4 and 18 x10~* squared centimetres
per second or between 1x10~* and 6x 10~ squared metres per hour. If it is assumed that the concrete
contains 1 part per million 232Th and has an average density of 2.5 grams per cubic centimetre this gives
N, the concentration of ?2°Rn atoms in the concrete, to be 8x10% atoms per cubic metre. Hence, the
flux of 22Rn out of a surface can be calculated to be somewhere between 5-13x10? atoms per square
metre per hour.

It is clear that the *?Rn itself does not have time in its 55.6 second half-life to travel very far around
a room, however it has been observed previously [Por78] that the daughters of 22°Rn are indeed found a
long way from any source of 22°Rn. This is suggested as being due to the transport of 212Pb on aerosols
on which atoms of 2!2Pb cluster together and this would explain the results seen in experiments BRT5-8
of Section 7.3.1 on page 127. It will therefore be assumed that this is indeed the case for this example
calculation. The production rate of 2!?Pb equals the production rate of 22°Rn, if equilibrium is assumed,
and so it can be calculated for a given experimental area by multiplying the flux out of concrete by the
relevant area of concrete walls.

In Section 7.3.2 on page 127 it was shown that the vast majority of the airborne 2!?Pb background
falls directly from the air into the counting pot in clusters. However, after long periods of time it is
reasonable to make the assumption that on average the 2!2Pb produced is evenly distributed on exposed
surfaces. Hence, the deposition rate in a 8 — a counting pot can be found from the production rate of
212Pb by scaling the production rate in proportion to the ratio of the area of the counting pot to the
total surface area available for deposition. These calculated deposition rates are compared in Table F.1
to the average 2!2Pb deposition rates as measured in the experimental areas at Oxford and BNL which
are taken from the results of Table 7.6 on page 128. These results indicate that the measured 2!2Pb
backgrounds can be attributed to airborne 2!2Pb caused by 22°Rn emanating from the concrete walls.
The results also show that the backgrounds in Oxford appear to be much lower than one would expect
and this could either be due to a lower thorium concentration in the concrete or, perhaps more probably,
a much higher ventilation rate which may have prevented the 2'2Pb from depositing.
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