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Abstract

Unique in its ability to solve the solar neutrino problem, the Sudbury Neutrino Obser-

vatory (SNO) was a heavy water Čerenkov experiment designed to measure the total flux

of neutrinos from the Sun, as well as the electron neutrino component of this flux. This

thesis presents the analysis used to produce the definitive SNO results, by performing a

combined fit of the data from the three phases of the experiment. The SNO experiment

is first motivated and introduced, followed by a discussion of the methods used to recon-

struct observables used to discriminate between the different signals and backgrounds. A

thorough derivation of the likelihood function used to perform the final fit is then carried

out, including the development of a method intended to fit the solar neutrino data in a to-

tally model-independent way for both active and non-active neutrino states. Verifications

of the signal extraction process are then presented, based on the results from multiple

ensemble tests.

As published, a fit to the SNO data that used a second-order polynomial to directly

describe the survival probability of electron-type neutrinos produced through the 8B decays

in the Sun led to a value of 5.25+0.16
−0.16(stat.)

+0.11
−0.13(syst.)× 106 cm−2s−1 for the total flux

of 8B neutrinos, assuming only active neutrino flavours. The same fit resulted in a fitted

survival probability value of 0.317+0.016
−0.016(stat.)

+0.009
−0.009(syst.) for the zeroth-order polynomial

parameter, which represents the best SNO rejection of a hypothesis predicting no neutrino

oscillation. A first-order day/night asymmetry polynomial was extracted along with the

survival probability function and yields to 0.046+0.031
−0.031(stat.)

+0.014
−0.014(syst.) at the zeroth order.

The alternate hypotheses that there were no spectral distortions of the electron-type
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neutrino survival probability and that there were no day/night distortions of this probability

could not be rejected at the 95% confidence level.

A fit allowing non-active neutrino flavours was also performed. When applied to

the BS05(OP) model, this fit resulted in zeroth-order measurements of 0.292+0.067
−0.039 and

0.12+0.14
−0.23 for the electron-type neutrino survival probability and the probability of conver-

sion of these neutrinos to a non-active flavour, respectively. This result is not inconsistent

with the assumption of only three neutrino states.



Acknowledgements

Thanks to my supervisor Alain Bellerive, for having taken me under your wing since I

was an undergraduate summer student, for your advice, support and the bike rides in the

Gatineau park. Thanks to my officemates, Etienne Rollin, Olivier Simard and Gordana
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Statement of Originality

Except when otherwise mentioned, the content of this thesis presents the results of

original work from the author. Information originating from other sources is referenced

in the text. Since the Sudbury Neutrino Observatory (SNO) was an experiment that was

already well in motion at the time the author joined its collaboration, which included many

scientists, it is important to situate the contributions from the author and to relate them

to the different sections of this thesis, when appropriate.

The initial contact of the author with the experiment started in 2002 and 2003 when,

as an undergraduate summer student, he designed and implemented most of a signal

extraction package for the collaboration that was used by Darren Grant and Kathryn

Miknaitis as a flexible tool to perform verifications in the context of the D2O and salt

phase analyses [1, 2]. This package was developed in C/C++ and relied on a variety

of classes from the ROOT data analysis framework [3]. As a new graduate student

in 2004, the author first worked on the optimisation of the configuration of probability

density functions (PDFs) to reduce biases when performing SNO signal extraction, while

contributing to the data collection of the experiment, through some detector operation

and helping at the deployment of calibration sources.

The author’s contributions that are directly related to the content of this thesis began

when he was tasked to develop an efficient event position and direction reconstruction

algorithm for the NCD phase, which led to the development and implementation of FTN,

the tool used to reconstruct the position and direction of the SNO data as well as of the
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simulation and calibration events in this third phase of the experiment. The author also

studied the different systematic uncertainties related to position and direction reconstruc-

tion in the NCD phase and the reconstructed event direction systematic uncertainties for

LETA [4], which involved the analytical modeling of the PDF for the first interaction point

of the 16N calibration source (Section A.2). Section 2.1.1.2 of this thesis summarises the

functioning of FTN and presents the results from the study of the related systematic

uncertainties.

The main contribution of the author to the SNO analysis consists of the final extrac-

tion of the SNO signal using a combined analysis of the whole dataset of the experiment.

This endeavour was accomplished through multiple steps, including the design and im-

plementation of a new signal extraction library whose performance could make such an

analysis possible, the modeling of a likelihood function for the three-phase analysis, the

implementation of this function in a signal extraction package, verifications of the tool

via thorough ensemble testing, the reproduction of the signal extraction results from the

previous publications, verifications of the LETA results and the final fit to the data of the

SNO experiment. This effort led to many improvements of the final analysis.

The QSigEx library was entirely designed and implemented by the author. It consists

of a framework that regroups multiple tools used to evaluate likelihood functions, such as

differently optimised histogram/PDF classes, multi-threaded processing units and multi-

threaded data arrays that use access-based memory management. It depends on the

ROOT framework [3], mainly through the MINUIT minimisation package, as well as

different GNU [5] and FreeBSD [6] libraries. The QSigEx library, written in C/C++ and

x86 assembly languages, gave to the three-phase extraction package the performance and
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flexibility that was necessary to achieve all the tests and verifications that ultimately led

to the final fit.

In parallel to the development of the QSigEx library, the author worked at modeling

likelihood functions for the three-phase analysis. Chapters 3 and 4 present the derivations

of these functions, as independently obtained by the author. In Chapter 4, the likelihood

function for an unconstrained reconstructed electron energy fit (Section 4.1) had been

used by previous analyses, such as LETA. Also, the usage of a Pee polynomial function to

extract the SNO data was an original idea of Alain Bellerive and the usage of an unbinned

version of this method, as presented in Section 4.2.3, had been previously attempted. The

binned version of the Pee polynomial fit (Section 4.2.4), is an original idea of the author

and was used to produce the results of the LETA publication [4]. All other methods

derived in Chapter 4, including the improved binned Pee polynomial fit of Section 4.3.2

as well the Pee + Pea methods, were designed and modeled by the author. Finally, the

author developed the Pee polynomial integration algorithm of Section 4.4.2.

The three-phase analysis is based on the work that had been previously done by the

collaboration for LETA [4] and the analysis of the NCD phase data [7]. Most of the

systematic uncertainty study, external measurement, detector calibration, data selection

and data simulation work that was performed for these previous results was incorporated

in the three-phase analysis. The main new elements that were introduced to the three-

phase analysis by the author, in addition to the aforementioned improvements to the

likelihood function, are the evaluation of the effects of the statistical PDF uncertainties

(Section 3.8), the reevaluation of the rate-to-events factors for the PMT events in the

NCD phase, the development of more consistent scaling of these factors for all phases

as a function of the systematic uncertainties (Section 3.2), the removal of the positive



x

constraints for the background rates (Section 3.4), the fine-tuning of the evaluation of

the background rate constraints (Section 3.5.4), the introduction of the ESµτ signal,

the improvements to the propagation of the systematic uncertainty for the shape of the

8B spectrum (Section D.3.6.1), the treatment of the backgrounds for other neutrons,

atmospheric and instrumental events as event classes in the likelihood function, the fit of

asymmetrical Gaussian functions while performing scans of the systematic uncertainties,

as well as the zoom-in procedure (Section 5.4.2), the evaluation of systematic effects

through the usage of multiple random shifts of the systematic parameters (Section 5.4.3)

and the combination of the asymmetrical systematic uncertainty effects using a Monte

Carlo simulation (Section 5.4.4).

Following the completion of the signal extraction package for the three-phase analysis,

the author spent considerable effort at submitting QSigEx to different tests in order to

verify the quality of the results. A multitude of ensemble tests were performed for the

different SNO phases independently, as well as for the three-phase analysis, and using the

different supported likelihood configurations, such that the signal extraction mechanism

be tested at an unprecedented level for the SNO experiment. A fraction of the ensemble

test results are presented in Chapter 6. Also, the results from the NCD phase analysis [7]

were reproduced, followed by the results for the unconstrained fit of LETA [4]. Finally,

several months of work were spent at reproducing, improving and verifying the results

from the Pee fit of LETA.

This thesis was written using the LATEX2ε document preparation system [8], with the

help of the Vim [9] text editor. Figure 2.3 was generated by the author using XSnoed,

the SNO event display software. Feynman diagrams were generated using the feynmp

MetaPost package [10]. The FTN representation of the SNO detector in Figure 2.6 was
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produced by the author using the ROOT graphical libraries [3]. All other figures, unless

otherwise noted, were produced using PSPlot, a plotting package written by the author

using the TEX [11] typesetting system and the PSTricks macros [12].
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Chapter 1

Introduction

The neutrino (ν) adventure debuted in 1930, when Pauli proposed [13] the existence

of these neutral particles to preserve the conservation of energy and momentum laws in

nuclear beta decays,

n → p+ e + ν̄e, (1.1)

whose electron energy spectrum had been discovered to be continuous by Chadwick in

1914 [14]. More than 25 years later, electron neutrinos (more accurately, electron anti-

neutrinos) were directly observed for the first time by the Cowan-Reines neutrino experi-

ment [15]. Muon neutrinos were then detected in 1962 by Danby et al. [16]. In 2000, the

DONUT Collaboration announced the first observation of the tau neutrino [17], which

confirmed the existence of the third active neutrino flavour predicted by the Standard

Model.

1
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1.1 Solar Neutrinos

1.1.1 The Standard Solar Model

The Sun generates its energy through the nuclear fusion of light elements into heav-

ier elements, which produces a large quantity of neutrinos. In fact, on Earth, trillions

of neutrinos produced by the Sun pass through our bodies every second. The primary

neutrino-generating process in the Sun is the proton-proton reaction (pp), which can be

expressed as

p+ p → 2H+ e+ + νe. (1.2)

Although this process generates the highest neutrino flux, it releases 400 keV of energy

or less, which makes it extremely difficult to detect on Earth, because many common

radioactive decay processes release similar energies. However, other fusion processes in

the Sun produce more energetic neutrinos, as presented in Figure 1.1. This figure lists

the solar neutrino reactions that are part of the pp chain, whose initial reaction is shown

above, and of the CNO cycle that uses either carbon, nitrogen or oxygen as a catalyst.

These reactions are part of the Standard Solar Model [18] (SSM), whose development

was initiated by John Bahcall in 1962 [19]. The figure thus shows that the most energetic

solar neutrinos are the 8B and hep neutrinos. These neutrinos are produced through the

reactions

7Be+ p →8B+ γ

8B →8Be∗ + e+ + νe (1.3)

8Be∗ →24He
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Figure 1.1: Solar neutrino flux spectra at the Earth surface, along with flux uncertain-
ties [18]. The pp chain reactions are shown using solid black lines, while the CNO reactions
are shown using dashed lines.

and

3He+ p → 4He+ e+ + νe, (1.4)

respectively. The predicted neutrino fluxes for these reactions at the Earth’s surface, as

provided by the BS05(OP) model [18], are 5.69(1.00± 0.16)× 106 cm−2s−1 for 8B and

7.93(1.00± 0.16)× 103 cm−2s−1 for hep.
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1.1.2 The Solar Neutrino Problem

The creation of the SSM by John Bahcall followed a request by Ray Davis, who was

interested to know if the detection of solar neutrinos would be possible using a large tank

filled with a chlorine-rich liquid [19]. Through the Homestake experiment [20], Davis

and collaborators measured the flux of solar neutrinos using 100 000 gallons (380 m3) of

perchloroethylene, a cleaning fluid. This detector measured neutrinos via the reaction

νe +
37Cl → e− + 37Ar. (1.5)

Unexpectedly, from 1968 to 1994, this measurement consistently led to results which were

approximately one-third of the SSM predictions. The upper limit of the 8B flux placed by

the final results of the Homestake experiment is (2.25± 0.21)× 106 cm−2s−1, assuming

the entire solar neutrino signal in their detector is from 8B decays [20]. This discrepancy

between the predicted and measured solar neutrino fluxes was named the “solar neutrino

problem”.

1.1.3 Neutrino Oscillation

Although the discrepancy between the observed and theoretical solar neutrino fluxes was

rather surprising, it could be explained by a phenomenon that had already been predicted.

One should note that solar neutrinos are always produced as electron-type neutrinos in

the Sun. Also, experiments such as Homestake measured the solar neutrino flux using

interactions only sensitive to the electron neutrino flavour. If neutrinos happened to

“oscillate” to undetectable states during their journey to the detector, the measured flux
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would become lower than the produced flux. Bruno Pontecorvo had proposed neutrino-

antineutrino transitions in 1957 [21]. Pontecorvo’s idea had then been used to develop

the theory of neutrino oscillation by Maki, Nakagawa and Sakata in 1962 [22].

According to the theory that explains neutrino oscillations, the individual neutrino

quantum eigenstates that are involved in weak interactions are different superpositions

of the neutrino mass eigenstates. Solar neutrinos are thus created in a superposition of

eigenstates that can be expressed as

|νe〉 =
n∑

i=1

Uei |νi〉 , (1.6)

where |νe〉 represents the electron-type neutrino flavour eigenstate, |νi〉 the neutrino mass

eigenstates and Uei the transformation between both bases. The individual mass states

then propagate as the plane wave solutions

|νi(~x, t)〉 = e−i(Eit−~pi·~x)
∣
∣νi(~0, 0)

〉
, (1.7)

where Ei and ~pi are the energy and the momentum of the |νi〉 state, respectively, and

where t and ~x are the time and position of evaluation of the wave relative to the initial
∣
∣νi(~0, 0)

〉
. If different masses are associated to the different states |νi〉, their phases vary

differently as a function of time and positions, due to the relation E2 = p2 +m2. At the

ultrarelativistic limit,

Ei ≈ pi +
m2

i

2pi
, (1.8)
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where mi are the different neutrino masses. If neutrino energy is given by Eν , the proba-

bility of detection for electron-type neutrinos is thus given by

Pe→e = |〈νe|νe(~x, t)〉|2 ≈
∣
∣
∣
∣
∣

n∑

i=1

U∗
eiUeie

−i
m2

i L

2Eν

∣
∣
∣
∣
∣

2

= Pe→e(Eν , L), (1.9)

where L is defined as the travelled distance by the neutrinos, given by L = |~x| ≈ t.

1.1.4 Neutrino Interaction with Matter

As mentioned in the previous section, a theoretical model which involves massive neu-

trinos and flavour eigenstates that differ from mass eigenstates could explain neutrino

oscillation in vacuum. If such neutrino mixing occurs and if neutrinos travel through mat-

ter, additional effects would affect oscillations. This phenomenon, named the Mikheyev-

Smirnov-Wolfenstein (MSW) effect [23, 24], is due to the coherent forward scattering of

the neutrinos with electrons and quarks as they travel through matter. While muon-type

and tau-type neutrinos can only undergo coherent forward scattering through a neutral

current reaction, where a Z boson is exchanged, electron-type neutrinos can additionally

scatter with electrons through a charged current reaction via the exchange of a W boson.

Since any weak interaction could cause a neutrino state to transform into one of the

flavour eigenstates, neutrino oscillations are thus affected by propagation in matter. This

occurs in an energy-dependent fashion, notably because of the energy-dependence of the

coherent scattering cross-sections. Such an MSW effect would be significant for solar
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neutrinos as they propagate through the very large electron densities in the Sun. Addi-

tionally, this could affect the neutrinos that are detected during the night for terrestrial

experiments, due to their passage through the Earth.

1.1.5 Sterile Neutrinos

In principle, the Standard Model can accommodate an arbitrary number of neutrino

flavours. However, the number of “active” neutrino eigenstates was constrained by many

experiments. From the ALEPH, DELPHI, L3 and OPAL experiments, the number of light

neutrino types that interact weakly, that is the number of neutrino types having a mass

smaller than mZ/2, has been measured to be 2.9840±0.0082 [25]. However, there could

potentially exist “sterile” neutrinos that do not interact weakly, but only through gravity,

which would make them very difficult to detect directly. If these sterile neutrinos can mix

with the other active neutrinos, it might be however possible to detect their presence by

comparing a measurement of the energy spectrum and flux of active solar neutrinos to

the SSM prediction for the electron-type neutrino production.

1.1.6 Neutrino Flavour Survival Probabilities

Through this thesis, the probability of an electron-type neutrino to be detected as an

electron-type neutrino, Pe→e, will be referred to as the “electron neutrino survival prob-

ability”, or Pee. Note that Pee does depend on the energy of the initial neutrinos. The

probability of an electron-type neutrino to be detected as one of the two remaining active

flavours, νµ or ντ , will be referred to as Pea. For a theoretical model that does not include



Chapter 1 Introduction 8

sterile neutrinos, this means that

Pee + Pea = 1. (1.10)

For sterile neutrino models, the probability of an electron-type neutrino to be a sterile

neutrino when reaching the detector is referred to as Pes, such that

Pee + Pea + Pes = 1. (1.11)

1.2 The SNO Experiment

The Sudbury Neutrino Observatory (SNO) was specially designed to detect neutrinos with

Eν ≥ 4 MeV and thus to measure the flux of 8B solar neutrinos produced through the 8B

solar reaction (c.f. Figure 1.1) and to study their possible oscillations. In 2001, the first

published SNO results [26] presented the first clear evidence of solar neutrino oscillations

for an undistorted solar energy spectrum. Subsequent publications provided increasingly

more accurate measurements of the 8B flux and of the solar neutrino energy spectrum.

The next sections give an overview of the SNO experiment.

1.2.1 The SNO Detector

The SNO detector was located in Vale’s Creighton mine near Sudbury, Ontario, Canada.

The centre of the detector’s spherical geometry being at a depth of 2092 m (or 5890±94m

water equivalent), the rock overburden provided a very efficient shield against cosmic-ray
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muons; the rate of these muons entering the detector was approximately three per minute,

which is over six orders of magnitude lower than at sea level. As shown in Figure 1.2,

the detector was composed of a 6 m radius transparent acrylic vessel (AV) that contained

106 kg of 99.92% isotopically pure heavy water (D2O). The AV was located in a barrel-

shaped cavern which was filled with over 7 × 106 kg of light water (H2O) to shield the

detector against the natural radioactivity of the rock. Surrounding the vessel was a 17.8 m

diameter stainless steel geodesic structure (PSUP) which supported 9456 inward-facing

20 cm photomultiplier tubes that could detect Čerenkov radiation produced in the D2O

and H2O.

The SNO PMTs, Hamamatsu model R1408, were made using Schott glass to minimise

their radioactivity and had a time resolution of 1.5 ns. As depicted in Figure 1.3, the PMTs

were housed in light-concentrating assemblies, which allowed to increase the effective light

coverage to almost 55%. The quantum efficiency of the PMTs was 21.5% at 440 nm [27].

To help veto cosmic-ray muon events, 91 additional outward looking (OWL) PMTs were

attached to the PSUP. The 1.7×106 kg of H2O between the PSUP and the AV attenuated

the radioactive backgrounds from the PSUP and the PMTs. H2O and D2O radioactivity

was maintained at an extremely low level using advanced purification systems [28]. To

study the response of the SNO detector during the whole duration of the experiment,

many calibration sources (isotropic light source, 16N, 8Li, pT, 24Na and Rn injection,

252Cf, AmBe, 238U and 232Th) were used [29, 30, 31, 32].

In SNO, Čerenkov radiation resulting from neutrino interactions could be detected by

the PMTs. The signal from a PMT could then trigger a discriminator which activated

a time-to-amplitude converter (TAC) having a timeout of approximately 400 ns. The

discriminators initiated the counting of firing PMTs during a 100 ns time window. The
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Figure 1.2: Schematic representation of the SNO detector, as presented in [34].

resulting SNO events were recorded when the number of fired PMTs within this time

window exceeded some threshold value (normally around 17 PMT hits) which generated

a global trigger (GT). For each event, three digitised charges were recorded for each fired

PMT, along with a global trigger identification number (GTID) obtained using 10 MHz

and 50 MHz clocks. The number of PMT hits versus the total electron energy in the

detector was about (−8.12 + 8.10 MeV−1Ee) hits [33].
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Figure 1.3: Drawing of a SNO PMT, mounted in its light-concentrator housing, as shown
in [34]. Dimensions are in cm.

1.2.2 Types of Signal Interactions

One of the main characteristics that made the SNO experiment unique in its ability to

confirm or repudiate the oscillation of solar neutrinos was its capacity to measure separately

the flux of electron-type neutrinos and the total flux of active neutrinos. This was possible

due to the usage of heavy water, as proposed by Herb Chen [35]. This medium allowed

SNO to capture neutrinos through three different reactions, namely the charged current

(CC), electron scattering (ES) and neutral current (NC) reactions, as presented in the

following sections.

1.2.2.1 Charged Current

In SNO, the CC reaction is only sensitive to electron-type neutrinos. It consists of the

t-channel interaction whose Feynman diagram is shown in Figure 1.4. In this interaction,
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u

Figure 1.4: Feynman diagram of the charged current interaction. The reaction transforms
one of the down quarks of the neutron from a deuteron atom into an up quark.

a deuteron is struck by an electron-type neutrino to produce an electron and a pair of

protons. Since the outgoing electron carries most of the energy of the initial neutrino, the

measurement of its energy allows one to probe the energy spectrum of the solar electron-

type neutrinos. Also, for the CC signal, the direction of the produced electron is slightly

correlated with the initial direction of the neutrino.

1.2.2.2 Electron Scattering

As indicated by its name, the electron scattering interaction occurs when a neutrino

scatters with an electron in the detector. This interaction involves two different Feynman

diagrams, as shown in Figure 1.5. Because of the diagram involving the exchange of

a virtual Z boson, the ES interaction is sensitive to all neutrino flavours. Since both

diagrams participate in the interaction for electron-type neutrinos, while only the left one

is allowed for muon-type and tau-type neutrinos, the ES cross-section is considerably larger

for νe. In fact, the average ES cross-section for νe is about 6.2 times larger than for νµ

and ντ . Throughout this thesis, the ES interactions involving electron-type neutrinos will

be referred to as ESe interactions, while the one involving the other neutrino flavours will

be referred to as ESµτ interactions. Due to the kinematics of the ES interaction, the
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Figure 1.5: Feynman diagrams for the electron scattering interaction.

direction of the scattered electrons is essentially the same as the initial neutrino direction.

Also, the initial neutrino energy is shared between the two outgoing particles, such that

the average energy of the scattered electrons is lower compared to the ones produced by

the CC interaction.

1.2.2.3 Neutral Current

The third signal interaction in the SNO experiment was the NC interaction. As shown in

Figure 1.6, this interaction occurred in the detector when a neutrino scattered with a quark,

which resulted in the breakage of a deuteron into its neutron and proton constituents. The

NC interaction was unique to the SNO experiment and allowed the measurement of the

total 8B solar neutrino flux, because it has exactly the same cross-section for all neutrino

flavours. The NC signal was detected by SNO after the outgoing neutron thermalised

and was then captured by a nucleus. Because the energy ultimately measured by the

SNO detector was thus characteristic of the exothermicity of the neutron capture interac-

tion rather than the initial neutron energy, the detected energy from the NC interaction

was uncorrelated to the initial neutrino energy. The next section provides more details

regarding the processes involved in the capture of these neutrons.
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Figure 1.6: Feynman diagram of the neutral current interaction.

Phase Start Date End Date Live Time [Days]
Day Night

D2O 11/1999 05/2001 119.9 157.4
salt 07/2001 08/2003 176.5 214.9
NCD 11/2004 11/2006 176.6 208.6

Table 1.1: The three phases of the SNO experiment, along with their respective day and
night live times.

1.2.3 Experimental Phases

The SNO experiment was divided in three different phases, these phases being mainly

differentiated by distinct methods of observing neutrons, through different detector con-

figurations. Spanning from November 1999 to November 2006, the live times of these

three phases, namely the D2O, salt and NCD phases, are presented in Table 1.1. The

three-phase analysis extracts information regarding the 8B solar neutrinos collected dur-

ing the three phases of the SNO experiment. The previous analysis [4] consisted of a

combination of the results from the D2O and salt phases using a lower energy threshold

compared to earlier analyses. Since the three-phase analysis integrates this low-energy-

threshold analysis (LETA), the D2O and salt phases will be referred to as the LETA phases

throughout this thesis, when appropriate. The following sections provide more information

regarding the three phases of SNO.
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1.2.3.1 D2O Phase

In the first phase of the experiment, the detecting medium of SNO consisted only of

pure D2O. To observe the neutrons produced by the NC reaction, this phase depended

on the capture of the neutrons by the deuterons of the D2O molecules. This reaction

releases a single 6.25 MeV gamma ray, which can create Compton electrons as well

as electron-position pairs. In the SNO detector, these relativistic particles can create

Čerenkov radiation, which can then be detected by the PMTs.

1.2.3.2 Salt Phase

For the second phase of the SNO experiment, 2 × 103 kg of NaCl were added to the

D2O. Since Cl nuclei have a neutron capture cross-section almost 105 times larger than

D2O nuclei, this allowed to increase the neutron detection efficiency significantly. In

addition, the capture of neutrons on chlorine yields to the emission of multiple gamma

rays, which allows to identify neutrons more easily due to a higher isotropy of this type

of event compared to electron and single gamma events. The energy released during this

reaction (8.6 MeV) is higher compared to the single photon energy of the D2O phase.

The combined effects of the improved neutron capture efficiency and the increase of the

energy produced by these events allowed the detection efficiency for the NC events to be

larger by a factor of 2.6 in the salt phase when compared to the D2O phase.
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1.2.3.3 NCD Phase

For the third phase of SNO, an array of 40 vertical neutral current detectors (NCDs)

was deployed in the AV after removing the NaCl from the D2O. These NCDs, whose

geometry is pictured in Figure 1.7, were made using highly pure nickel tubes that were

welded together to produce detector “strings”. Since the NCDs had a lower average

density than heavy water, they were fixed via Vectran braids to specially designed anchors

at the bottom of the AV. Out of the 40 NCDs, 36 were filled with 3He gas, which has

a neutron cross-section about 120 times larger than chlorine. Such a large cross-section

thus made the neutron capture efficiency by the NCDs much larger than that of the D2O

in the NCD phase. Compared to the D2O phase, the capture efficiency of neutrons of the

D2O in the NCD phase was over five times smaller. In the NCD phase, neutrons were

captured on 3He through the reaction

3He+ n → 3H+ p, (1.12)

where the produced triton and proton have kinetic energies of 191 keV and 573 keV,

respectively. These charged particles then produced ionisation electrons while drifting

toward the electrodes of the proportional counters. The voltage induced by the collected

charges was logarithmically amplified, to increase the dynamic range of the signal. The

NCD electronics allowed to record digitised integrated charges and digitised pulse shapes.

This was accomplished using multiplexed analog-to-digital converters and oscilloscopes,

respectively, with both systems generating independent triggers. The SNO master trigger

card used the two NCD triggers as additional inputs to generate GTs, which allowed the



Chapter 1 Introduction 17

combination of the PMT and NCD data since the NCD system could access the GTID

register to identify its events.

To study the backgrounds of the 3He strings, four strings filled with 4He, which were

insensitive to neutrons, were also deployed in the detector. This allowed to differentiate

alpha events from neutron events, using pulse shape discrimination. The NCDs were cali-

brated using 252Cf and AmBe point sources [36], as well as a distributed 24Na source [32].

More information regarding the NCDs can be found in [37].

For the first SNO results that included data from the NCDs [7], NCD event information

was analysed along with the PMT data. A detailed description of the analysis leading to

these results can be found in [38]. For the three-phase analysis, a pulse shape analysis

(PSA) of the NCD data is performed independently, and the results from this analysis are

then used to provide a constraint for the analysis of the PMT data. Section 2.2 provides

some information regarding the PSA. More details about PSA can also be found in [39].

1.2.4 Backgrounds

Although great care was taken during the design, construction and runtime of SNO to

minimise the sources of backgrounds that could affect the measurement of the flux of solar

neutrinos, the nature of the solar neutrino interactions is such that backgrounds could

not be avoided. Most of the SNO background events can be divided in two different

types: “electron-like” and neutron events. Generally, the electron-like events consisted of

radioactive decays to either beta particles or gamma rays whose reconstructed energies

were sufficiently large to fall above the energy threshold of the analysis. The decays of

214Bi (3.27 MeV β) and of 208Tl (2.62 MeV γ) from the 238U and 232Th decay chains,
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Figure 1.7: Schematic of a SNO neutral current detector, as shown in [34].

respectively, constitute major sources for such backgrounds. Neutron events could be

created by the photodisintegration of deuterons by the aforementioned gamma decays

having energies larger than 2.2 MeV. Here photodisintegration refers to the dissociation

of the deuteron into a neutron and a proton by a photon. Also, neutrons could be created

through (α, n) reactions in the AV. Notably, radon progeny that deposited on the AV

surface during the construction of the detector could produce alpha particles that trigger

such reactions. Because of their different event signature, the radioactive decays from

Bi and Tl traces in the different regions of the detector (D2O, PSUP, AV and H2O)

were treated separately by LETA. The decay events originating in the PSUP region are

named PMT β-γ in LETA. In the case of the NCD phase, the events in all regions of
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the detector except the D2O were regrouped in an event class called “external neutrons”,

while radioactive decays in the heavy water are referred to as “D2O photodisintegrations”.

This grouping is partially motivated by the higher energy threshold for the analysis of the

NCD phase data that practically eliminates any gamma event from the dataset, such that

these backgrounds all appear as neutron events.

In the salt phase, the dissolved NaCl was at the origin of an additional source of

gammas and neutrons, because of the neutron activation of 23Na after the deployment of

a neutron calibration source in the detector. The resulting 24Na atoms eventually emitted

some gammas with an energy of 2.75 MeV, which could photodisintegrate deuterons. In

the NCD phase, decays from the traces of radioactive elements in the NCD strings and

cables could also occur. “Hot spots” of radioactivity were discovered on two of the strings,

so they were consequently included as distinct background sources in the analysis. This

latter type of events is referred to as K2 and K5 photodisintegrations, after the names of

the affected strings.

Other classes of minor background events are taken into account in the analysis.

Among these are the hep solar neutrinos as well as the neutrinos produced by the decay

of particles in the atmosphere. Other sources of neutrons, such as cosmogenic events

and anti-neutrinos are also considered. Here, cosmogenic events refer to decay processes

originating from isotopes that are created after cosmic rays interact with matter. Finally,

a small number of instrumental events, referred to as “Leslie” events are included for

LETA.
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In order to either constrain or to estimate the rates of the different sources of back-

grounds that are considered in the SNO 8B analysis, numerous ex-situ and in-situ mea-

surements were performed. More details regarding the evaluation and simulation of the

different backgrounds can be found in [4, 38]. The nominal number of background events

for the three SNO phases, as well as the external constraints on their rates can be found

in Appendix D.

1.2.5 PMT Reconstructed Observables

Although neutrino flavours interact via different reactions in the SNO detector, as dis-

cussed in Section 1.2.3, most of these interactions are ultimately detected by the same

PMTs. Hence, CC, ES and NC events cannot simply be counted to directly infer solar

neutrino fluxes. Also, uncertainties on some of the background events are such that a

simple subtraction of these classes of events from the dataset would translate to very large

uncertainties for the measured signals. For these reasons, SNO relies on the statistical

separation of the different signals and backgrounds to measure the quantities of interest.

To perform such a “signal extraction”, differentiating variables must be defined. This was

done by identifying observable quantities whose distributions differed the most between

the classes of events that composed the SNO dataset. This section presents the different

PMT observables used for the three-phase analysis.

1.2.5.1 Reconstructed Kinetic Energy

The reconstructed kinetic energy (Teff) is an observable of primary interest for the SNO

experiment. As mentioned in Section 1.2.2, the kinetic energy distributions for the particles
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produced by the different signal interactions differ for a given initial neutrino energy, due

to the nature of these interactions. The energy distributions for both CC and ES depend

on neutrino energy, but the mean for the CC distribution is larger, because electrons

produced through this reaction carry most of the neutrino energy, while the energy is

shared for ES events. In the case of NC, the detectable kinetic energy is characteristic

of the neutron capture process and is thus uncorrelated to neutrino energy. Regarding

the backgrounds, their energy spectra can be classified in two different groups. Neutron

backgrounds, either directly produced by background processes, or resulting from the

photodisintegration of deuterons by gamma rays having energies above 2.2 MeV, produced

kinetic energy distributions which were identical to NC events after they thermalised

and then captured. On the other hand, backgrounds that produced gamma rays and/or

beta particles with energies above the analysis threshold had a signature that resembled

more electron-like events in the detector, although the associated energy distributions had

lower average energies compared to the SNO signals. Figure 1.8 presents an example of

SNO observable probability density functions (PDFs) for the three signals and the two

categories of background mentioned above. It also shows how the NC signal (and the

neutron background) differs between the D2O and salt phases, due to the different neutron

capture interaction.

1.2.5.2 Normalised Cubed Radius

The normalised cubed radius is defined as

ρ =

(
R

600 cm

)3

=

(√

x2 + y2 + z2

600 cm

)3

, (1.13)
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Figure 1.8: Example of reconstructed energy (Teff) PDFs for the SNO signals and back-
grounds.

where the z axis in the SNO detector is vertical and has its origin in the centre of the AV

and where ρ < 1 defines the region inside the AV. The coordinates x, y and z refer to

the position of the reconstructed neutrino interaction. This ρ variable is very important,

since it was used to determine the effective volume of heavy water used for the analysis.

Because of the natural radioactivity from the materials located outside the D2O, including

the H2O, the PSUP, the PMTs and the AV, events whose reconstructed position is located

within 50 cm of the AV are excluded from the analysis. The remaining region, called the

“fiducial volume”, is thus used to calculate the conversion factors between the incoming

neutrino flux and the expected numbers of detected events. The knowledge of ρ is thus

crucial in determining these factors.

Because external background events are exponentially attenuated as they propagate

inside the detector, while the neutrino interactions and the internal β-γ background events
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Figure 1.9: Example of normalised cubed radius (ρ) PDFs for the SNO signals and back-
grounds.

are homogeneously distributed in the D2O, PDFs of the ρ observable are very useful to

statistically separate these external events, as shown in Figure 1.9. Finally, because the

neutrons produced by the NC interaction and by the background processes can wander

outside the heavy water before being captured, the ρ PDF for NC decreases with larger

radii, such that it provides a way to differentiate these events from the CC events.

1.2.5.3 Direction

The reconstructed event direction with respect to the direction of neutrinos coming from

the centre of the Sun is an observable which is used almost exclusively to separate ES

interactions from the other event classes. Figure 1.10 presents PDFs of cos θ⊙, the cosine

of the angle between the direction of the reconstructed electron and the vector pointing
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Figure 1.10: Example of cos θ⊙ PDFs for the SNO signals backgrounds.

from the direction of the Sun. It shows how the PDF for ES is sharply forward-peaked,

due to the kinematics of this reaction. By contrast, the NC PDF is completely flat,

because the direction of the gamma rays emitted after the neutron capture is completely

isotropic and hence uncorrelated to the initial neutrino direction. The CC interaction

tends to slightly favour negative cos θ⊙ values, although it is a mild effect. Finally, since

all major SNO backgrounds are due to natural radioactivity, the direction of their events

is completely uncorrelated to the direction of the Sun.
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Figure 1.11: Example of β14 PDFs for the SNO signals and backgrounds.

1.2.5.4 Isotropy

The fourth observable used for SNO signal extraction is an indicator of event isotropy,

called β14. This variable is defined as

β14 ≡ β1 + 4β4, (1.14)

where βk is computed as

βk ≡
2

nhits(nhits − 1)

nhits−1∑

i=1

nhits∑

j=i+1

Pk(cos θij). (1.15)

In the above expression, nhits is the number of PMT hits for a given event, θij is the

angle between PMTs i and j relative to the reconstructed event position and Pk(x) is

the Legendre polynomial of order k. The β14 variable was originally used for the initial



Chapter 1 Introduction 26

SNO results of the salt phase [2] to separate NC events from CC events. As mentioned

in Section 1.2.3.2, the capture of neutrons on the chlorine atoms in the salt phase led to

the emission of multiple gamma rays. These events thus tend to be more isotropic than

Čerenkov events that originate from a single electron, such as the ones created by the CC

interaction. This results in larger values for the θij variable, on average, for the NC events

when compared to the CC events. The choice of the first- and fourth-order Legendre

polynomials for Equation (1.14) was determined empirically through Monte Carlo studies.

Figure 1.11 shows how the NC β14 PDF differs between the D2O and salt phases. The NC

PDF for the D2O phase is much more similar to the CC PDF, since neutron capture on

a deuteron leads to the emission of a single gamma ray. Finally, the isotropy PDF for the

β-γ backgrounds resembles a mixture of the PDFs for the NC events in the D2O phase

and for the CC events, because the β-γ events typically create a few energetic electrons

in the detector.

1.3 Thesis Outline

As mentioned earlier, the SNO experiment was unique in its ability to measure the total

flux of solar neutrinos, as well as the flux of electron neutrinos, through the usage of

heavy water in which charged current and neutral current reactions occurred. Ultimately,

in addition to the measurement of the 8B flux, the variable of interest is the fraction of

that flux that consists of electron-type neutrinos, since it represents the survival probability

for νe. Due to the correlation between the neutrino energy and the reconstructed electron

energy for CC and ES events, SNO also has a handle on the solar neutrino energy spectrum.
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Because of the important overlap between the observable distributions for the three

SNO interactions, as well as between the signal and background distributions, a statis-

tical method must be used to discriminate between the different signals. The ability to

accurately measure the neutrino fluxes thus depends on the differences between the corre-

sponding observable distributions for the different signals and backgrounds, in addition to

the existing statistical uncertainties due to the finite size of the dataset and the systematic

uncertainties affecting the analysis.

Although the usage of the electron energy distributions can be useful to differentiate

the SNO signals from some of the backgrounds, other observables must be used to dif-

ferentiate the three signals in the context of an analysis that seeks to measure the energy

spectra for CC and ES. Looking at the different observable distributions in the previous

section, it is clear that it can be quite challenging to discriminate between CC and NC

in the D2O phase because of the similarity between the ρ, cos θ⊙ and β14 distributions.

The situation is also similar for the PMT data in the NCD phase because the signal ob-

servable distributions of that phase were very similar to those of the first phase. In the

salt phase, however, the addition of the NaCl to the heavy water had a significant effect

on the NC distributions. The higher degree of isotropy and larger reconstructed energy

of this signal for the salt phase, due to the emission of multiple gamma rays following

the capture of neutrons on chlorine atoms, allows a better differentiation between CC and

NC β14 distributions. Also, because the NC signal is more energetic in the salt phase, the

number of NC events falling in the analysis window is improved, which allows to reduce

statistical uncertainties. The analysis window refers to the region of the event space which

is defined by all analysis cuts. In the NCD phase, the pulse shape analysis also provides

a quasi-independent measurement of the NC rate. The determination of the CC and ES
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energy spectra in SNO is thus reliant on to the ability to measure NC. Once the NC signal

is isolated, all phases contribute to measuring the energy spectra. The extraction of the

SNO signals thus involves interplay between all the classes of events that are present in

the dataset of all phases. In order to obtain the most from the SNO data while minimising

biases, it is thus important to carefully define the statistical model used to represent the

dataset.

In Chapter 2, the algorithms used to reconstruct SNO observables are described.

Chapter 3 derives the general form of the likelihood function used by the three-phase

analysis, while a detailed derivation of the terms of the function that are related to the

SNO signals can be found in Chapter 4. The signal extraction procedure is described in

Chapter 5 and results from ensemble testing of this procedure are shown and discussed

in Chapter 6. Chapter 7 presents the results from the three-phase signal extraction and

Chapter 8 summarises the analysis.



Chapter 2

Pattern Recognition

In the previous chapter, the experimental observables of SNO were presented, along with

their distributions for the different classes of events that constitute the data sample un-

der investigation. These distributions play a primary role in signal extraction, as their

differences allow to statistically differentiate the different signals and also some of the

backgrounds from the signals, as well as to separate the CC, ES and NC signal classes.

The shapes of the observable distributions are determined by the nature of the processes

generating the types of events, but also by the response of the detector to these events

and by the reconstruction of the observables from the acquired data. At the analysis level,

the first two are immutable, but one must achieve the best performance from reconstruc-

tion, notably to minimise the widening of the distributions caused by the reconstruction

resolution which ultimately results in a loss of separating power between the event classes.

This chapter thus describes the different algorithms used to perform event reconstruction

via pattern recognition for the three phases of the SNO experiment. It is divided in two

main sections that describe the event reconstruction for the PMTs and for the NCDs.

29
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2.1 Pattern Recognition for the PMTs

2.1.1 Vertex Reconstruction

Vertex reconstruction represents the first stage of the event reconstruction process, as

the reconstructed position and directions are used to determine the event energy. The

knowledge of the event vertices is very important for different reasons. First of all, signal

extraction is performed using events which are reconstructed within a spherical fiducial

volume (having a radius of 550 cm) inside the acrylic vessel. The number of events found

in the analysis is used directly to infer the flux of neutrinos coming from the Sun, such

that a systematic uncertainty of 1% in the measurement of the radius translates into a

3% uncertainty in the measured flux. Also, many types of external background events

have spatial distributions which increase drastically with radius, such that a good position

resolution allows a better rejection of these events. Finally, as explained in the previous

chapter, the capture of the neutrons produced by the NC reaction occur less uniformly

than CC and ES events inside the fiducial volume, due to the higher mean free path of

neutrons in heavy water. An accurate position measurement thus gives a better handle to

separate NC from other signal events. The angular distribution of events with respect to

the direction of the Sun is very important, mainly because the ES events are so forward-

peaked (see Figure 1.10), compared to any other type of events. Also, the cross-section

for CC events causes the resulting electron to be emitted backward with a slightly higher

probability, differentiating them from NC and from all classes of background events that

have a flat angular distribution.
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2.1.1.1 D2O and Salt Phases

For the D2O and salt phases, two different algorithms were used to reconstruct event

vertices: FTU, which is a fitter using PMT hit time to determine event position and

direction in two stages, and FTP, a more advanced algorithm which performs both tasks

simultaneously while considering different paths for the light generated by the events.

2.1.1.1.1 FTU

FTU is an all-purpose and very fast algorithm. To determine the position of an event

in the SNO detector, FTU uses the hit times of all the PMTs involved in the event and

maximises the likelihood of these hit times by varying the time and position of the event.

To achieve this, some noisy PMT hits are first eliminated by computing the median hit

time for the event and by eliminating the hits that are located outside a window of ±50

ns around this time. The event position is then found by defining a time residual variable

as a time-of-flight corrected time for each hit PMT,

tres = tPMT − tfit −
|~xfit − ~xPMT|

cavg
, (2.1)

where tPMT is the PMT hit time, tfit and ~xfit are respectively the fitted time and position of

the event, ~xPMT the position of the PMT and cavg the average group velocity of the light

in the detector (approximately 2.19 × 108 m/s), and then by maximising the likelihood

function (see Section 3.1 for an introduction to likelihood functions)

L =

nhits∏

i=1

f(tres(~xPMTi
, tPMTi

, ~xfit, tfit)|hit i), (2.2)
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Figure 2.1: Time residual probability density function used by FTU to reconstruct event
position, in relative units.

where f(tres(~xPMTi
, tPMTi

, ~xfit, tfit)|hit i) is the probability density that a firing PMT i fire

at time tres. The profile of the probability density f(tres|hit) is shown in Figure 2.1, in

relative units. It was produced using both Monte Carlo simulations and optical calibration

data. The figure shows PMT pre-pulsing, followed by the main peak, whose width is

defined by the PMT time resolution (approximately 1.5 ns), then by PMT after-pulsing.

Flat region probability densities are determined by the PMT white noise and late light.

FTU uses the Levenberg-Marquardt [40, 41] algorithm iteratively to minimise the

likelihood function of Equation (2.2). For each iteration, a random position is drawn

uniformly from a sphere having a radius of 10 m and a random time is drawn uniformly from

a window of ±50 ns around the median PMT hit time. The likelihood is then minimised

with the Levenberg-Marquardt algorithm using these spatial and temporal coordinates as

the starting point, and the values of the fitted position and likelihood function are recorded.
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The process is then repeated until either the same position or a higher likelihood function

minimum is returned for six consecutive iterations, after which the global minimum is

assumed to have been found.

As mentioned previously, FTU estimates the event direction in a second stage. To

achieve this task, it minimises the likelihood function

L =

nsel. hits∏

i=1

f(θi(~xfit, ûfit), hit i|~xfit) =

nsel. hits∏

i=1

f(θi|~xfit, hit i)P (hit i|~xfit)

∝
nsel. hits∏

i=1

f(θi)Ωi(~xfit) =

nsel. hits∏

i=1

f(θi)
cos φi(~xfit)

(~xPMTi
− ~xfit)2

, (2.3)

where θi(~xfit, ûfit) is the angle between the direction of the event, ûfit, and the direction

of the PMT i with respect to the fitted event position. P (hit i|~xfit) is the probability of a

photon to hit PMT i, given the event position ~xfit but no directional information, which

is proportional to the solid angle effect Ωi(~xfit) given by cos φi(~xfit)
(~xPMTi

−~xfit)2
, where φi(~xfit) is the

angle of incidence of the light on the PMT i. The likelihood function is computed using

the events selected with a time residual window of ±10 ns, which avoids complications

resulting from scattered light. The probability density function f(θ) has been determined

from Monte Carlo simulations and is shown in Figure 2.2. It peaks at 41.6◦, which

corresponds to the Čerenkov angle in D2O for 8 MeV electrons.

2.1.1.1.2 FTP

Although time fitters like FTU can provide satisfying results, the separation of the position

and direction reconstruction in two separate processes has some disadvantages. Due to the

nature of Čerenkov light, which results in an azimuthal symmetry of the PMT hits around
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Figure 2.2: Angular probability density function f(θ) used by FTU to reconstruct event
direction, in relative units.

the direction of the event, to ignore angular information while fitting event position can

lead to larger reconstruction uncertainties since it is possible to move events forward and

backward along their direction without causing large fluctuations of likelihood values. To

help reduce this undesirable effect, the Path Fitter (FTP) determines the event position

and direction simultaneously by minimising the likelihood function

L =

nsel. hits∏

i=1

f(θi(~xfit, ûfit), tres(~xPMTi
, tPMTi

, ~xfit, tfit), hit i)

=

nsel. hits∏

i=1

[f(θi, tres, hit i, direct) + f(θi, tres, hit i, other)]

=

nsel. hits∏

i=1

[P (direct)f(θi, tres, hit i|direct) + P (other)f(θi, tres, hit i|other)] , (2.4)
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where P (direct) and P (other) are the probabilities for direct and other light (reflections,

scattering, PMT noise), respectively, whose values are estimated to be P (direct) = 0.879

and P (other) = 0.121 using an isotropic light source, and where the other variables are

defined as in the previous section. The probability density functions f(θi, tres, hit i|direct)

and f(θi, tres, hit i|other) are defined using the products of the time residual and angular

PDFs. The time residual PDFs are found using an isotropic light source. The direct

component contains PMT pre-pulsing, the prompt peak, late-pulsing and after-pulsing,

while the PDF for other light is a step function around the prompt peak. The direct angular

PDF has been determined from Monte Carlo simulation similarly to what was done for

FTU. The corresponding angular PDF for other light is simply a uniform function.

Although the inclusion of the angular information while determining event position

was a priori expected to lead to less uncertainty of the reconstructed position along the

direction of the event, it was observed that it tends to create a systematic shift forward

along that same direction, due to late scattered light. A “drive” correction is thus applied

to the fit position determined by the procedure described above and the event direction

is then fitted again.

The reconstruction technique used by FTP significantly improves vertex resolution

compared to the FTU fitter, as seen in Table 2.1. FTP is however much more compu-

tationally demanding (it is about 8 times slower than FTU), which limits its usage with

high statistics datasets. More information about FTP can be found in [42].
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Phase Vertex Resolution (cm)
FTU FTP

D2O 22.7 19.3
Salt 23.3 20.0

Table 2.1: Average FTP and FTU vertex resolutions for D2O and salt phases measured
using reconstruction of 16N calibration data events.

2.1.1.2 NCD Phase

For the NCD phase, FTN, a single multi-purpose algorithm developed by the author of

this thesis was selected to perform vertex reconstruction. Having to be used for the

reconstruction of all Monte Carlo simulations and calibration data in addition to neutrino

runs, such an algorithm was required to be very fast. An approach based on the FTU fitter

has been chosen, which performs position and direction reconstruction in two separate

steps while addressing the challenges created by the addition of the NCD array in the

detector. This section explains the functioning of FTN and presents comparisons of its

performance with the previous algorithms.

2.1.1.2.1 Time Residual PDFs

As mentioned in Section 2.1.1.1.1, with the original FTU fitter, vertex reconstruction is

performed by maximising the likelihood function

L =

nhits∏

i=1

f(tres(~xPMTi
, tPMTi

, ~xfit, tfit)|hit i), (2.2)

where f(tres|hit) is a constant PDF for all PMTs. For the NCD phase, this fixed PDF

may lead to poor fit results because some PMTs are partially or completely shadowed by
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Figure 2.3: Non-shadowed PMTs for a point light source located at the centre of the
detector (left) and 300 cm off-centre in the (x, y) plane (right) as seen from the top of
the detector.

one or many NCD strings. The shadow affects a large fraction of the PMTs, as seen in

Figure 2.3. This results in a high dependency of the time residual PDF on event position:

f(tres|hit) NCD→ f(tres|hit, ~xPMT, ~xfit) (2.5)

To break this dependency, the time residual distribution can be separated into different

components that do not depend directly on PMT and light source positions. If the

following types of light paths are defined:

d : source → PMT

s : source → shadowing NCD → . . . → PMT,
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f(tres|hit, ~xPMT, ~xfit) can be expressed as

f(tres|hit, ~xPMT, ~xfit)

= f(tres, d|hit, ~xPMT, ~xfit) + f(tres, s|hit, ~xPMT, ~xfit)

≈ [1− P (s|~xPMT, ~xfit)] f(tres|hit, d) + P (s|~xPMT, ~xfit)f(tres|hit, s)

= f(tres|hit, d)− P (s|~xPMT, ~xfit) [f(tres|hit, d)− f(tres|hit, s)] , (2.6)

where P (s|~xPMT, ~xfit) is the probability that a photon leaving from a source at position

~xfit in the direction of a PMT at position ~xPMT hits a shadowing NCD. f(tres|hit, d) is the

time residual PDF for non-shadowed PMTs and f(tres|hit, s) is the corresponding PDF

for completely shadowed PMTs. In the above equation, the effects of NCD reflections

have been neglected. NCD reflections are estimated to have a magnitude of about 0.04%

relative to direct light intensity for a source at the centre of the detector. Most acrylic

vessel and PMT reflections are removed by using the same prompt time cut as FTU.

The previous expression describes a low-energy photon point source. For real events

in the SNO detector, photons are usually emitted along a track. Since FTU fits event

position and direction in two stages, the fitter does not have information about track

direction when fitting for position. To take this effect into account, Equation (2.6) has

to be modified to allow for the associated smearing. The actual implementation of FTN

accomplishes this by redefining f(tres|hit, d) and f(tres|hit, s), and by using a mapping

function between the fraction of shadowing computed analytically and an effective fraction

of shadowing described by the probability function P ′(s|~xPMT, ~xfit). The effective time
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residual PDF is thus approximated by the expression:

f(tres|hit|~xPMT, ~xfit)

≈ f(tres|hit, d′)− P ′(s|~xPMT, ~xfit) [f(tres|hit, d′)− f(tres|hit, s′)] (2.7)

To generate the two time residual PDFs, 107 6 MeV and 107 10 MeV electrons have been

uniformly and isotropically generated in the detector. For each event, the shadowing of

all hit PMTs has been computed analytically, using the position of the generated electron

as the source position. The firing time of completely shadowed PMTs has then been used

to generate f(tres|hit, s′) and the time of non-shadowed PMTs to produce f(tres|hit, d′),

using a weight of 70% for 6 MeV electrons and a weight of 30% for 10 MeV electrons,

for a better representation of the energies for solar neutrino data. The resulting PDFs

are shown in Figure 2.4. The probability density for late light has been set to a constant

as done with the original FTU fitter. The mapping function is generated by computing

the height of the prompt peak for a set of time residual PDFs generated using different

ranges of shadowing. The relation between the effective and the computed NCD shadows

can be seen in Figure 2.5.

2.1.1.2.2 Shadow Computation

To compute PMT shadowing as described in the previous section, FTN relies on a set

of algorithms. These functions are used to compute the fraction of a PMT solid angle

that is shadowed by the NCD strings, as seen from a point light source located at a given

position in the detector. To achieve this, a given hit PMT is tested for NCD shadow by

first discarding most non-shadowing strings using a fast 2D algorithm. If some strings
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Figure 2.4: Time residual probability density functions for non-shadowed (continuous line)
and completely shadowed (dashed line) PMTs used by FTN to reconstruct event position,
in relative units.
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Figure 2.5: Mapping function between computed and effective fraction of NCD shadow
used by FTN.
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Figure 2.6: Picture of the completed NCD array taken from the neck area during strings
deployment (left) and representation of the NCD strings and of a single PMT as seen by
FTN (right). Position of observation is approximated.

remain after this step, the centre point of the PMT and three points around the reflector

are projected on the inner surface of the acrylic vessel by fitting the refracted path of the

light from the source to the PMT. These points are then projected in perspective on a

plane whose normal direction is a straight line linking the source to the projected PMT

centre, and an ellipse is fitted to the three other points. The sides of the non-discarded

NCD strings are projected on the same plane. The resulting quadrilaterals that cross the

PMT ellipse identify the shadowing NCD strings. Overlapping quadrilaterals are merged

and the area of the intersection between these “virtual” strings and the PMT ellipse is

computed analytically. The resulting value is finally divided by the total PMT ellipse area

to get the fraction of shadow. Figure 2.6 compares a view of the SNO detector as seen

by the algorithm that computes NCD shadow to an actual picture of the detector taken

during string deployment.
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2.1.1.2.3 Fitting Procedure

The fitting procedure used by FTN is very similar to the one used by FTU, which is

described in Section 2.1.1.1.1. The differences reside in some CPU time optimisation

algorithms and special treatment of the events that are reconstructed inside the NCD

array region. Indeed, the value of P ′(s|~xPMT, ~xfit) that is computed by FTN for events

located inside the NCD array cannot be very reliable, since in this region the electron

track length is of the same order of magnitude as the distance between the initial position

of the electron and the surrounding NCD strings. The effective shadowing of PMTs is

thus strongly correlated to the direction and energy of the event and to the distribution of

the generated photons along the track. Discrete position shifts around the NCD strings

have been observed when using shadow information to fit events located in the NCD

array. FTN avoids these systematic position shifts by not using the shadow information

for these events, that is to say by using f(tres|hit) = f(tres|hit, d) when the event is

reconstructed inside the NCD array (|x| + |y| < 450 cm). To speed up the fitting

procedure, FTN starts by fitting all events using f(tres|hit, d) as the time residual PDF.

As done with the original FTU fitter, this algorithm is called many times using a different

seed vertex as the starting position until it converges to the same minimum six times.

Then FTN repeats this procedure, using shadow information and starting seed vertices

that are located at a maximum distance of 50 cm from that position. During this second

pass, PMT shadowing is not computed when the reconstructed position is more than

800 cm from the centre of the detector. Finally, event direction is reconstructed using

the same algorithm as FTU. This is done to avoid unnecessary complexification of the

model expressed by Equation (2.3), which would not lead to significant improvements,
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due to the point source approximation used by the PMT shadowing algorithm and to the

two-stage nature of the FTN vertex reconstruction process.

2.1.1.2.4 Fitting Time

To minimise the CPU cycles needed by vertex reconstruction, many efforts have been

directed at optimising the FTN code. Several flags have also been implemented to al-

low the selection of different algorithms depending on the user’s priority (accuracy versus

CPU time). One of the most time-consuming tasks is the computation of light refraction

through the AV, which can be turned off. The effects of AV refraction on FTN recon-

struction resolution seem to be very small compared to the improvements from other

parameters and are not worth the extra CPU time. The average time needed to fit an

event has been measured using a set of 2500 5.5 MeV electrons generated uniformly

within the acrylic vessel. Without AV refraction activated, FTN took 41% less time to

reconstruct the events. Some runs have been also reconstructed with FTU, FTN and

FTP for reconstruction time comparison. Results can be seen in Table 2.2. It shows that

FTN algorithm is only 1.2 to 2 times slower than FTU while being 3.4 to 7.1 times faster

than FTP. These results have been generated using three types of event simulations. The

first line presents the reconstruction time of simulated 16N events, which produce photons

having energies between 5 MeV and 7 MeV. The second line shows results when simu-

lating a 24Na source, which produces both electron-like and neutron-like events. Finally,

results from simulated solar neutrino events are also presented.
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Average Fitting Time
Run [s/event]

FTU FTN FTP

63890 (16N) 0.032 0.053 0.18
55781 (24Na) 0.014 0.017 0.12
63636 (ν) 0.046 0.092 0.48

Table 2.2: Average time required to fit single events for given 16N, 24Na and ν runs
reconstructed with FTU, FTN and FTP.

2.1.1.2.5 Position Shift

To evaluate the differences between the true and reconstructed event positions, or “po-

sition shift”, the average reconstructed event position of 16N calibration data relative to

the source position was compared to that computed from simulated data. Figure 2.7

shows the difference between the data and Monte Carlo position shift as a function of the

source position for scans along the main axes of the detector. It shows a spread of about

4 cm in the three directions, and this value was taken as the vertex shift uncertainty. This

uncertainty was found to be correlated to the PMT timing calibration of the detector. An

overall offset of 5 cm was also observed in the z direction.

2.1.1.2.6 Position Scale

The systematic uncertainty on “position scale”, a position-dependent inward or outward

shift of reconstructed position, can have a direct effect on the fiducial volume for events

detected by the PMT array. It was measured by determining the range of the slope of a

first-order polynomial that allowed the inclusion of 68% of the data points in Figure 2.7.

This uncertainty was believed to be caused by physical factors such as a mismatch of the
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Figure 2.7: Difference between data and MC position shifts in the three axis directions
as a function of source position along the main axes of the detector. The top, middle
and bottom panels represent the shifts in x, y and z coordinates, respectively. For each
position, there are several points corresponding to different 16N calibration scans taken
over different time periods.
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speed of light in different media and was expected to be the same in all directions. It was

estimated to be 0.9% of the Cartesian coordinates.

2.1.1.2.7 Position Resolution

To evaluate the position resolution of FTN, the function

R(x) =
1− α√
2πσ

e−
1
2(

x−µ
σ )

2

+
α

2τ
e

−|x−µ|
τ (2.8)

has been used. Equation (2.8) will be referred to as the four-parameter vertex position

resolution function. The use of an exponential component for the resolution function

allows for the addition of tails to the Gaussian function [43]. When position reconstruction

performance is evaluated for an analysis that involves the use of a calibration source,

the distribution of reconstructed position for the relativistic electrons that are ultimately

produced by that source is described by the convolution of the fitter resolution function

with the distribution of the true position of the relativistic electrons. This is notably the

case with the 16N source. The theoretical distribution of the true position is presented in

Appendix A.2.

Volume-weighted position resolution has been obtained by generating isotropically

and uniformly 105 mono-energetic electrons within the acrylic vessel. Both a simple

Gaussian and the four-parameter resolution functions have been fitted to the distribution

of reconstructed event position (using a range of ±80 cm). A total of 33 simulations

have been performed with different electron energies. Figure 2.8 shows the values of

the fitted width parameter of a simple Gaussian and the computed RMS as a function of

energy. Figure 2.9 shows the values of fitted parameters α, σ and τ for the four-parameter
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Direction a0 a1 a2
[cm] [×10−2] [×10−5 cm−1]

x, y 1.19±0.52 −0.10±0.11 0.71±0.36
z 1.29±0.51 0.21±0.15

Table 2.3: Fitted values for the parameters in the polynomial used to evaluate the sys-
tematic uncertainty on vertex resolution. The parameters a0, a1 and a2 are the zeroth,
first and second order coefficients of the polynomial, respectively.

resolution function (fitted means are not shown) and the computed RMS as a function of

energy. Equivalent results for the FTU fitter are also shown.

Position resolution uncertainty can also affect the fiducial volume. It was assessed by

taking the difference between the data and the MC fitted position resolution for all 16N

calibration data taken inside the acrylic vessel. Figure 2.10 shows that this uncertainty

varies significantly as a function of the z position of the source. Some smaller fluctuations

were also observed for 16N calibration scans in the (x, y) plane and were incorporated

in the analysis. The apparent similarity of the results in x and y directions and the

cylindrical symmetry of the detector in the third phase suggested the use of the same

parameterisation of the systematic effect for these two directions. The uncertainty on the

vertex resolution was expressed as a second-order polynomial for x and y directions and

as a first-order polynomial for the z direction. Tables 2.3 and 2.4 present the fitted values

for the parameters of these polynomials, along with their associated correlation matrices.
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Figure 2.8: Fitted simple Gaussian resolution function parameter and computed RMS
values in the three axis directions as a function of generated Monte Carlo electron energy.
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Figure 2.9: Fitted four-parameter resolution function parameters and computed RMS
values in the three axis directions as a function of generated Monte Carlo electron energy.
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Figure 2.10: Difference between data and MC fitted vertex width in the three axis direc-
tions (x, y and z, from top to bottom) as a function of the position of the source (zsrc)
for 16N runs taken along the z axis of the detector.
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x and y directions

ρ a0 a1 a2

a0 1.00 −0.13 −0.74
a1 −0.13 1.00 0.31
a2 −0.74 0.31 1.00

z direction

ρ a0 a1

a0 1.00 0.15
a1 0.15 1.00

Table 2.4: Correlation matrices for the fitted parameters of the polynomials used to
evaluate the systematic uncertainty on vertex resolution.

2.1.1.2.8 Angular Resolution

The angular resolution of FTN is evaluated through the function

R(cos θ) = αM
βMe

βM(cos θ−1)

1− e−2βM
+ (1− αM)

βSe
βS(cos θ−1)

1− e−2βS
. (2.9)

In this equation, θ is the angle between the true and the reconstructed event directions.

Two components are used for the angular resolution function: one for the main peak

(βS) and another for the multiple scattering (βM), as recommended in [44]. Since the

16N source emits γ rays whose first interaction point can be quite far from the source

position, the reconstructed event position can be used to obtain a good approximation of

the true event’s direction. Here cos θ is thus approximated using the expression

cos θ ≈ ~xfit − ~xsource

|~xfit − ~xsource|
· ûfit. (2.10)
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Figure 2.11: Fitted unitless angular resolution function parameters (αM, βM, βS) and
computed angular resolution (σθ) as a function of generated Monte Carlo electron energy,
using sets of 105 isotropically and uniformly generated mono-energetic electrons. The
points for the FTU and FTN algorithms are indistinguishable.

Events reconstructed less than 120 cm away from the source position are not considered

in order to have a good estimate of the true event’s direction.

The same Monte Carlo simulations that were presented in the previous section have

been used to evaluate the volume-weighted angular resolution of FTN and FTU. Figure

2.11 shows the values of fitted parameters along with the computed angular resolution,

corresponding to the angle between the initial electron direction and the fit direction

that contains 68.27% of the angular distribution, as a function of energy. Error bars are

the statistical uncertainties from the fits. Equivalent results for the FTU fitter are also

shown. Since both fitters use the same algorithm to fit event direction, no significant

improvements were expected with FTN for these fits.
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For ES events, the systematic uncertainty on the angular resolution function of Equa-

tion (2.9) is propagated using the expression

cos θ′⊙ = 1 + [1±∆θ](cos θ⊙ − 1), (2.11)

where ∆θ = 0.12 is the relative uncertainty on βM and βS parameters. It has been

shown [45] that the CC cos θ⊙ PDF, although having a slight negative slope, does not

fluctuate significantly when varying angular resolution. The cos θ⊙ PDFs for the other

classes of events have flat distributions, except for hep CC and hep ES which have

negligible effects for signal extraction. The above expression is derived in Appendix B.

2.1.1.2.9 Resolution Comparison with Old Algorithm

Different tests have been performed to evaluate the performance of FTN for the NCD

phase. Events from a Monte Carlo simulation of 106 5.5 MeV electrons generated uni-

formly and isotropically within the acrylic vessel have been reconstructed by FTU and FTN.

Table 2.5 shows a comparison between FTU and FTN regarding migration in and out of

the fiducial volume. The four-parameter vertex position resolution function of Equation

(2.8) has also been fitted to these distributions as a function of generated event radius.

Figure 2.12 shows the ratio FTN/FTU of the parameters in the three axis directions as

a function of generated event radius. These electrons have been reconstructed twice by

FTN: with and without AV refraction calculations. Shown in Figure 2.12 are the results

obtained by neglecting the effect of refraction through the AV, because the results of the

fits with and the fits without AV refraction have been found to be very similar. From the

ratios σFTN/σFTU and τFTN/τFTU depicted in Figure 2.12, it shows that the new time fitter
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Rfit

RMC < 550 cm > 550 cm

< 550 cm 710449 / 708330 52711 / 54828
> 550 cm 29035 / 29675 199004 / 198363

Table 2.5: Number of FTN / FTU events generated inside and outside the fiducial volume
that have been reconstructed inside and outside the fiducial volume, for a Monte Carlo
simulation of 106 5.5 MeV electrons generated uniformly and isotropically within the acrylic
vessel. Upper-right cell corresponds to migration of events generated inside the fiducial
to a reconstructed position outside the fiducial volume. Lower-left cell corresponds to
contamination from events generated outside the fiducial volume. Default FTN settings
have been used.

|xMC|+ |yMC| σFTU τFTU RMSFTU

[cm] [cm] [cm] [cm]

< 450 19.29±0.05 26.6±0.2 30.02
> 450 18.90±0.04 25.0±0.1 28.39

Table 2.6: RMS values and fitted four-parameter resolution function parameters in the
x direction for 106 5.5 MeV electrons generated uniformly and isotropically inside and
outside the NCD array. Events have been reconstructed using FTU.

|xMC|+ |yMC| σFTN τFTN RMSFTN

[cm] [cm] [cm] [cm]

< 450 19.02±0.05 25.2±0.1 28.52
> 450 18.50±0.06 22.2±0.1 27.10

Table 2.7: RMS values and fitted four-parameter resolution function parameters in the
x direction for 106 5.5 MeV electrons generated uniformly and isotropically inside and
outside the NCD array. Events have been reconstructed using FTN.

for the NCD phase performed better by considering the NCD shadowing. Tables 2.6 to

2.7 show the values of the same parameters for events generated inside and outside the

NCD array and reconstructed using FTU and FTN. The number of events reconstructed

300 cm away or more from the generated position is shown in Table 2.8.

The two-parameter resolution function has been fitted for the 16N data runs taken
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Figure 2.12: Ratios of RMS values and of fitted four-parameter resolution function pa-
rameters in the three axis directions as a function of generated events radius, for 106

5.5 MeV electrons generated uniformly and isotropically within the acrylic vessel. Default
FTN settings have been used.

Direction FTU FTN

x 2484 2081
y 2488 2058
z 2508 2081

Table 2.8: Number of events reconstructed 300 cm away or more from the generated
position, for 106 5.5 MeV electrons generated uniformly and isotropically within the acrylic
vessel. Events have been reconstructed using FTU and FTN.

during the NCD phase with sufficient statistics. In the reconstructed position histograms,

more than 5 events for all bins located in the range [−150,+150] cm was enforced. Each

run has been reconstructed with both the FTU and the FTN fitters. Figures 2.13 and

2.14 show the difference between fitted resolution parameters, weighted using statistical

uncertainties from the fits. Figure 2.14 shows a clear improvement of vertex resolution
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Figure 2.13: Weighted difference between FTN and FTU fitted two-parameter resolution
function mean in the three axis directions for 16N calibration runs taken during the NCD
phase.

when comparing FTN to FTU. This is particularly obvious with data where higher statistics

significantly reduce statistical uncertainties. Figures 2.15 and 2.16 show the corresponding

distributions for the absolute difference between resolution parameters.

The four-parameter resolution function has also been fitted for the 16N data runs taken

during the NCD phase with sufficient statistics. In the reconstructed position histograms,

more than 5 events for all bins located in the range [−180,+180] cm was enforced. The

increased number of parameters and their high correlation requires an extended range for

the fit. The α parameter has been fixed to the values shown in Table 2.9 corresponding to

the interpolated values at 5.63 MeV in Figure 2.9. Figures 2.17 to 2.19 show the difference

between fitted resolution parameters. Figure 2.18 presents an average improvement of

≈ 1.25 cm for the Gaussian parameter in the x and y direction and of ≈ 0.6 cm for the
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Figure 2.14: Weighted difference between FTN and FTU fitted two-parameter resolution
function σ parameter in the three axis directions for 16N calibration runs taken during the
NCD phase.
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Figure 2.15: Difference between FTN and FTU fitted two-parameter resolution function
mean in the three axis directions for 16N calibration runs taken during the NCD phase.
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Figure 2.16: Difference between FTN and FTU fitted two-parameter resolution function
σ parameter in the three axis directions for 16N calibration runs taken during the NCD
phase.

Parameter FTU FTN

αx, αy 0.448 0.496
αz 0.467 0.453

Table 2.9: Values of α used to fit the convoluted four-parameter resolution function on
16N data and MC reconstructed events position distributions.

same parameter in the z direction. Figure 2.19 shows an average improvement of ≈ 3

cm for the exponential parameter τ in the x and y direction and of ≈ 1.2 cm in the z

direction.
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Figure 2.17: Difference between FTN and FTU fitted four-parameter resolution function
mean in the three axis directions for 16N calibration runs taken during the NCD phase.
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Figure 2.18: Difference between FTN and FTU fitted four-parameter resolution function
σ parameter in the three axis directions for 16N calibration runs taken during the NCD
phase.



Chapter 2 Pattern Recognition 60

−4 −3 −2 −1 0

5

10

15

20

|τFTN| − |τFTU| [cm]

N
u
m
b
er

of
R
u
n
s x direction

−4 −3 −2 −1 0

5

10

15

20

|τFTN| − |τFTU| [cm]

N
u
m
b
er

of
R
u
n
s y direction

−4 −3 −2 −1 0

2

4

6

8

|τFTN| − |τFTU| [cm]

N
u
m
b
er

of
R
u
n
s z direction

Figure 2.19: Difference between FTN and FTU fitted four-parameter resolution function
τ parameter in the three axis directions for 16N calibration runs taken during the NCD
phase.

2.1.2 Energy Reconstruction

After the reconstruction of the event radius, the estimation of the event energy constitutes

the most important observable for the SNO signal extraction. This observable allows to

distinguish the different neutrino reactions, but also the signals from low-energy back-

grounds. The electron energy is also very strongly correlated to the neutrino energy for

CC and ES reactions, such that this observable can give a handle on the extraction of

the energy dependence of the electron neutrino survival probability. Needless to say, SNO

energy reconstruction algorithms must thus be properly designed to provide an unbiased

energy estimator.



Chapter 2 Pattern Recognition 61

2.1.2.1 D2O and Salt Phases

2.1.2.1.1 RSP

RSP is a fast energy reconstruction algorithm that estimates energy by determining the

deposited energy necessary to generate the estimated number of direct hits recorded by

the PMTs. The technique used by RSP aims at depending as weakly as possible on Monte

Carlo simulations in order to minimise the systematic uncertainties associated with the

simulation modelling for the extracted energy. The number of direct hits are estimated by

only considering the hits in a prompt peak window of±10 ns around the time residual value

determined from vertex reconstruction. This allows to eliminate reflected and scattered

light, which could not be taken into account without relying on simulations. For the D2O

and salt phases, RSP bases its calculations using vertex information provided by FTU.

2.1.2.1.2 FTK

Albeit the qualities of the RSP estimator, the usage of only the direct light can be quite

limiting in the context of a low-energy-threshold analysis, where the energy resolution is

very important to minimise the effects of the background at low energy on the extracted

signals. The usage of all the available light, which increases the number of included hits

per MeV by 12%, is estimated to improve the energy resolution by 6%, which is expected

to reduce the number of events for these backgrounds by up to 60% [46]. For LETA, a

new energy estimator, FTK, has thus been developed to circumvent this limitation.
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To perform energy reconstruction, FTK maximises the likelihood function

L(E) =
∞∑

nγ=1

νhits(nγ)
nhitse−νhits(nγ )

nhits!
P (nγ|E), (2.12)

where P (nγ|E) is the probability that nγ Čerenkov photons be emitted given an energy

E for the event and where nhits is the number of observed hits that follows a Poisson

distribution with parameter νhits(nγ) for the expected number of PMT hits given a number

of emitted photons.

The challenge of FTK is the modelling of νhits(nγ) that has to be performed with an

accuracy better than 1%, while being three orders of magnitude faster than performing

a full Monte Carlo simulation. FTK achieves this task by splitting νhits(nγ) into direct

and scattered light, AV and PMT reflections, plus PMT noise components. Each type

of event is computed separately, using optimised analytical and/or MC methods. More

details about FTK can be found in [46].

2.1.2.2 NCD Phase

For the NCD phase, the RSP fitter has been modified to correct the reconstructed energy

for PMT shadowing by the NCDs. Since RSP uses the light from the prompt peak to

establish the event energy, this correction is achieved by evaluating the fraction of the

light which is incident on the NCDs and by assuming that this light is then lost. As

Čerenkov light is emitted along a track having a non-negligible length, shadowing cannot

be computed very efficiently because of the requirement to integrate its probability along

the track. The approach taken by RSP is to use a lookup table to provide average
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shadowing as a function of radius and direction (the latter being measured with respect

to the radial vector). The RSP fitter for the NCD phase is described in further detail

in [47].

2.2 Pattern Recognition for the NCDs: The Pulse

Shape Analysis

During the NCD phase, the neutral current detectors provide an almost completely in-

dependent measurement of the number of neutrons produced in the detector. In 2008,

SNO released a letter [7] in which results from the third phase of the experiment were

presented. In this first analysis, the number of NC events from the proportional counters

was obtained using the statistical separation between the probability density functions of

the energy spectra for neutrons, alpha particles and instrumental events detected by the

counters.

For the three-phase combined analysis of the SNO experiment, a different method

is used to extract the signal from the NCD strings. Rather than relying solely on event

energy, this new method relies also on the information contained in the shape of the

waveforms generated by the strings to distinguish the different types of events. This gives

an additional lever in discriminating between the signal and the backgrounds, because

neutron interactions lead to the production of two particles, a proton and a triton, while

this is not the case for alpha particles. For events whose proton-triton pair is not parallel

to the wire of the proportional counter, a double-peaked pulse can thus be observed.

This section briefly presents three different methods (DWK, NAP and QGF) to determine
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the total number of neutrons detected by the NCDs, followed by the technique used to

combine them.

2.2.1 DWK

The DWK method relies on the computation of two moments of the measured pulses to

separate the alpha particles from the neutrons. The separation is achieved by deconvolving

the ion mobility from the initial pulses, then by computing the skewness and the kurtosis

of the resulting waveforms, using a range defined by the continuous region where the

voltage is at least 20% of its maximum value. The kurtosis evaluates the peakedness

of the distribution and is higher on average for alpha particles, because they generate

waveforms that are single-peaked. The skewness measures the asymmetry of the pulses.

Neutrons generally produce waveforms with larger, positive skewness, due to space charge

effects and the relatively different energies of the produced neutrons and tritons. To select

neutrons, DWK uses a bidimensional cut in a skewness-kurtosis plane.

2.2.2 NAP

Compared to DWK, the approach taken by NAP is significantly different. To differentiate

neutrons and alpha particles, this second method uses libraries of pulses that are generated

using Monte Carlo simulations. Each library consists of a multi-dimensional grid where

pulses are sorted depending on Monte Carlo generation parameters. The neutron library

is generated by varying particle position and the z position on the NCD string, the proton

and triton energies being fixed at 574 keV and 191 keV, respectively. For the alpha
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library, the initial direction, the z position and the particle energy are varied, while the

initial radius is fixed at either the wall inner radius or the wire outer radius. To separate

the events, NAP starts by performing Pearson χ2 tests to compare the data pulses to the

pulses contained in the libraries. This parameter is computed by using a range defined

by the region located between the position where the rising edge of the pulse reaches

10% of the pulse maximum and the position where the falling edge of the pulse crosses

30% of the maximum. The higher threshold for the falling edge is used to avoid using

information from the ion-drift tail, which is similar for neutrons and alpha particles. The

variance used in the calculation of the χ2 is based on different components, which include

the electronic noise, the digitisation uncertainty, the sparseness of the Monte Carlo library

and the systematic uncertainties of the simulation. The NAP algorithm computes χ2

values in order to find which neutron and alpha pulses from the libraries are the most

similar to a given data pulse. Once the pair of pulses is identified, it then computes the

selection variable

∆ log(χ2) ≡ log(χ2
α)− log(χ2

n), (2.13)

where χ2
α and χ2

n are the best χ2 values that have been computed using the alpha and

neutron libraries, respectively. A value ∆ log(χ2)corr is then computed, after correcting

the original value for temporal changes in the response of the neutral current detectors.

From the definition of ∆ log(χ2)corr, neutrons are thus selected by considering the events

whose value of the parameter falls above a certain threshold value.
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2.2.3 QGF

Similarly to NAP, QGF computes χ2 values between data pulses and libraries of neutron

and alpha events. QGF’s libraries are however based on calibration data rather than

simulation events. The upper limit of the range used to compute the χ2 values for this

method corresponds to the point where the falling edge of the pulse crosses 40% of the

maximum amplitude. Also, the variance used is determined using the root mean square

(RMS) of the noise in the last 3 µs of the data pulse. The selection parameter which

is used for the QGF method is χ2
α/χ

2
n and can thus be interpreted very similarly to the

parameter ∆ log(χ2) of the NAP method.

2.2.4 Constraint on Neutron Events

To provide a measurement for the total number of detected neutrons by the neutral current

detectors during the NCD phase, the pulse shape analysis (PSA) uses a combination of a

cut-based selection algorithm and a statistical separation method.

The PSA cut is defined as a pair of 2D cuts. The first one is based on the NAP and

QGF methods and thus defines a contour which surrounds the alpha-rich region in the

∆ log(χ2)corr-χ
2
α/χ

2
n plane. The second 2D cut uses the skewness and kurtosis variables

from the DWK method. The overall cut is very efficient at eliminating alpha particles,

rejecting over 98% of them between 0.4 MeV and 0.9 MeV for the 4He strings.

Following the application of the PSA cut, the analysis proceeds to the extraction of

the number of neutrons that are contained within the remaining events, using an energy

fit between 0.4 MeV and 1.4 MeV. The fit is performed while floating the shape of an
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analytical PDF for the alpha particles, which is defined by

f(E|α) = a0

[

P0(E) +
n∑

i=1

aiPi(E)

]

, (2.14)

where Pi(E) is the Legendre polynomial of order i. The maximum polynomial order n is

determined using the method described in [48].

This section has thus summarised the pulse shape analysis that is used to provide a

measurement for the total number of neutrons in the NCD phase. More details regarding

this analysis can be found in [39].
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Likelihood Function

To perform the three-phase extraction of the electron neutrino survival probability, the

SNO experiment relies on the statistical separation of the signals with respect to the back-

grounds when comparing their expected PDFs. The idea behind the maximum likelihood

parameter estimation of the survival probability is to determine the parameter values of

the model that maximise the likelihood of the SNO data. The construction of the like-

lihood function is quite complex for the current analysis, due to the number of different

observables, backgrounds, phases, constraints and to the direct extraction of the survival

probability function. This chapter presents different aspects of the likelihood function used

by the package developed by the author of this thesis to perform a maximum likelihood

fit of the SNO data.

3.1 Likelihood Function Overview

For frequentists, a likelihood function represents a model that provides the probability of

a given data sample, for specific model parameter values. These data obviously include

the observables for all events in the analysis windows, but can also incorporate external

measurements of parameters, such as background rates and parameters of the systematic

68
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uncertainties. In this document, the former will be referred to simply as “data” and the

latter as “measurements”. Using simply the definition of the conditional probability, the

likelihood function can thus be expressed as

L = f(data,measurements)

= f(data|measurements)
︸ ︷︷ ︸

≡Ldata

× f(measurements)
︸ ︷︷ ︸

≡Lmeasurements

. (3.1)

The probability density for the data is the joint probability of the observed values x and

the number of observed events nevents:

Ldata = f(data) = f(x, nevents) = P (nevents)f(x|nevents). (3.2)

To simplify the notation, the conditionality of Ldata on the measurements will not always

be mentioned in this document, although it is always implied. The probability of observing

a given number of events, P (nevents), follows a Poisson distribution with parameter ν that

depends on parameters such as the generated event rate, the overall efficiency of the

detector, the live time of the experiment and the predefined analysis window. Given

that the individual observed events are considered as independent, the probability density

f(x|nevents) can be expressed as the product of the probability densities for the individual

events. Equation (3.2) can thus be rewritten as

Ldata =
νnevents

nevents!
e−ν

nevents∏

i=0

f(~xi), (3.3)

where ~xi is the multi-dimensional vector which represents the set of observed values

associated to event i.
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Since maximising a likelihood function is equivalent to maximising its logarithm, the

logarithm of Equation (3.1) can be computed, giving

LL = LLdata + LLmeasurements, (3.4)

where

LLdata ≡ log(Ldata) = −ν +

nevents∑

i=1

log [νf(~xi)]− log(nevents!) (3.5)

and LLmeasurements ≡ log(Lmeasurements). The last term in Equation (3.5) does not depend

on any parameter in the model, such that it contributes to a constant term in the log-

likelihood function; hence it can be dropped. The resulting expression is the well-known

general form for an unbinned extended log-likelihood function given by

ELLdata = −ν +
nevents∑

i=1

log [νf(~xi)] . (3.6)

If a fit consists of determining the number of events for nclasses mutually independent

classes of events by statistical separation of their PDFs, f(~xi) in Equation (3.6) can be

rewritten as

f(~xi|~θ) =
nclasses∑

j=1

f(~xi, j|θj) =
nclasses∑

j=1

P (j|θj)f(~xi|j)

=

nclasses∑

j=1

θjf(~xi|j), (3.7)
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where ~θ introduces the first parameters to the statistical model. θj , the jth element of

vector ~θ, is the probability of an event to be in class j, which must satisfy

nclasses∑

j=1

θj = 1. (3.8)

Equation (3.7) was obtained using f
(

~xi, j|~θ
)

= f(~xi, j|θj), because the probability

density of an event i to have observable values ~xi and to be in the class j depends only

on the probability to be in this particular class of events. Also, f(~xi|θj , j) = f(~xi|j) since

the probability for an event known to be in class j to have observable values ~xi does not

depend on θj and θj = P (j|θj) by definition. Defining νj ≡ θjν, Equations (3.6) and

(3.7) can be combined to give

ELLdata = −
nclasses∑

j=1

νj +
nevents∑

i=1

log

[
nclasses∑

j=1

νjf(~xi|j)
]

. (3.9)

In the above expression, the parameters νj constitute independent Poisson parameters

which are not subject to a constraint equivalent to Equation (3.8). The total number of

defined parameters, equal to nclasses, has thus been conserved.

Although Equation (3.9) allows to fit for the number of events for each class j,

its parameterisation is such that the values of the estimators ν̂j will be influenced by

systematic uncertainties in an undesirable way (remembering that the model constituted

by ELLdata can implicitly depend on parameters of the systematic uncertainties). For

example, regarding the CC, ES and NC signal classes for the SNO PMTs, the estimators

are normally used to measure neutrino fluxes, rather than the number of detected events.

Additionally, given a multi-phase fit, one will want to constrain the fluxes to be the same for
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all phases. However, if simulations are used to compute the conversion factors between

neutrino fluxes and the number of events in the analysis and if these simulations are

affected by different systematic uncertainties, the conversion factors will not only depend

on live time, overall detector efficiency and analysis window, but also on all the systematic

uncertainties affecting the observables. Additionally, the number of background events is

often constrained by independent measurements which measure the background source

strength, rather than the number of events within the analysis window. To convert these

measurements to the expected number of detected events, a simulation of these events is

used. It is thus useful to define the parameterisation such that the estimators of interest

be independent from the systematic uncertainties affecting the simulation.

Let ~ηj represent the value of all systematic uncertainty parameter (also often referred

to as nuisance parameters) shifts for class j. If νjexp(~ηj) is defined as the expected number

of observed j-type events for the experiment, as obtained with a simulation modified using

systematic shifts ~ηj , a new set of parameters αj , each having an expected value of 1, can

be defined as αj ≡ νj
νjexp

, such that Equation (3.9) can be rewritten as

ELLdata = −
nclasses∑

j=1

αjνjexp(~ηj) +

nevents∑

i=1

log

[
nclasses∑

j=1

αjνjexp(~ηj)f(~xi|j, ~ηj)
]

. (3.10)

In the case of a multi-phase (multi-detector) fit, a combined fit can be performed by

simply summing the extended log-likelihood functions which are each given by Equation

(3.10) for the different phases (detectors), as long as the events from the different phases

(detectors) can be considered as independent. If some classes of events are common

to multiple phases (detectors) and the source for such events is consistent for all these

phases (detectors), the associated αj parameters can simply be forced to have the same
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value. The same argument applies to systematic uncertainty parameters. Equation (3.10)

thus represents a very general form of an extended log-likelihood which aims to provide

unbiased estimators for the production rates (in units of the expected rates) of nclasses

independent classes of events.

3.2 Probability Density Function Renormalisation

Continuing to use the general form of the extended log-likelihood when fitting the number

of events of mutually independent classes of events, nclasses, it will now be shown that the

normalisation of PDFs can be changed by a constant factor Ai, or in other words, by a

factor that can be different for every event, but that is the same for every class, without

changing the results of a fit. The substitution f(~xi|j) → Aif(~xi|j) in Equation (3.9)

gives

ELL′
data = −

nclasses∑

j=1

νj +

nevents∑

i=1

log

[
nclasses∑

j=1

νjAif(~xi|j)
]

ELL′
data = −

nclasses∑

j=1

νj +

nevents∑

i=1

log

[

Ai

nclasses∑

j=1

νjf(~xi|j)
]

ELL′
data = −

nclasses∑

j=1

νj +

nevents∑

i=1

log

[
nclasses∑

j=1

νjf(~xi|j)
]

+

nevents∑

i=1

logAi

ELL′
data = ELLdata +

nevents∑

i=1

logAi. (3.11)

Here, the last term does not depend in any way on the fit parameters. Such a term can

be dropped, showing the equivalence between the two expressions, since it does not affect
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the maximisation of the likelihood function for a given dataset, as it only shifts the value

of the log-likelihood by a constant.

This property of the likelihood function has a very useful application. In signal extrac-

tion, it is quite common to estimate the PDFs f(~xi|j, ~ηj) using binned PDFs fb(~xi|j, ~ηj)

that are generated from Monte Carlo samples using the systematic uncertainty parameters

~ηj . To compute one of these binned PDFs, a histogram H(b(~xi)|j, ~ηj) with linearized bin

index b is filled with N(~ηj) Monte Carlo events located in the analysis window. Then the

PDF is normalised using

fb(~xi|j, ~ηj) = fb(b(~xi)|j, ~ηj) =
H(b(~xi)|j, ~ηj)
N(~ηj)V (b)

, (3.12)

where V (b) is the width/area/volume/hypervolume of the bin b. If the PDFs for all the

classes of events are binned PDFs generated using the exact same binning, the normali-

sation of all the histograms H(b(~xi)|j, ~ηj) shares common factors V (b(~xi)) which depend

on the event index but not on the event class. From Equation (3.11), it means that the

substitution

fb(~xi|j, ~ηj) →
1

N(~ηj)
H(b(~xi)|j, ~ηj) =

1

N(~ηj)
H(~xi|j, ~ηj) (3.13)

leads to an equivalent likelihood function. If the likelihood function is now parameterised

as Equation (3.10), that is to say by fitting parameters αj ≡ νj
νj exp(~ηj)

rather than νj , one

can simplify the likelihood function even further. Effectively, the dependency of νjexp(~ηj)

on the systematic uncertainty parameters can be estimated from Monte Carlo samples by
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using the relation

νjexp(~ηj) = νjnom
N(~ηj)

NMCj

=
N(~ηj)

MMCj

, (3.14)

where νjnom andNMCj are, respectively, the nominal, expected Poisson parameters and the

number of Monte Carlo events in the analysis window for class j when default systematic

shifts are applied. Also, MMCj is defined as the Monte Carlo multiplicity with respect to

νjnom. Finally, from Equations (3.13) and (3.14), when using binned Monte Carlo as an

approximation for the PDFs f(~xi|j, ~ηj), an equivalent expression for Equation (3.10) is

given by

ELL′
data = −

nclasses∑

j=1

αj
N(~ηj)

MMCj

+
nevents∑

i=1

log

[
nclasses∑

j=1

αj

MMCj

H(~xi|j, ~ηj)
]

, (3.15)

which holds as long as the same observable binning is used for all classes of events. This

expression thus allows to evaluate the likelihood function without having to normalise the

Monte Carlo histogram at all, avoiding thus a time-consuming operation when systematic

uncertainty parameters are floated in the fit. Under the listed conditions, such an optimi-

sation is always possible. It should be noticed though that this technique allows to only

absorb one set of observable bin widths/areas/volumes/hypervolumes and one number of

Monte Carlo events. One must thus proceed with care when applying it to joint PDFs

composed of multiple marginal PDFs.

3.3 Binned versus Unbinned Likelihood Functions

Ideally, unbinned PDFs should be used in a likelihood function in order to maximise

statistical separation. In practice, this is not always an easy task to do however, due
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to the complexity involved in the correlations between the observables and/or in the

parameterisation of the systematic uncertainties. It is thus common to create binned

PDFs generated from Monte Carlo samples. The binning of such PDFs should normally

be chosen to minimise the total uncertainty on the parameters of interest. It is obtained

when there is a good balance between the statistical uncertainties that increase and the

systematic uncertainties associated to finite Monte Carlo statistics that decrease, when

increasing the size of the bins. To avoid biases, the same binning should also be used

for the different classes of events involved, such that the probability of a given region

delimited by some bin boundaries corresponds to the same probability as the unbinned

PDFs. Using a different binning depending on the class of events effectively violates this

rule, unless bin grouping is performed for known flat regions.

It will now be shown that using binned PDFs in an unbinned extended log-likelihood is

mathematically equivalent to using a binned extended log-likelihood function. Replacing

the unbinned PDFs f(~xi|j) in Equation (3.9) by binned PDFs fb(~xi|j) with linearized bin

index b(~xi) gives

ELLdata = −
nclasses∑

j=1

νj +

nevents∑

i=1

log

[
nclasses∑

j=1

νjfb(b(~xi)|j)
]

= −
nclasses∑

j=1

νj +
nevents∑

i=1

{

log

[
nclasses∑

j=1

νjfb(b|j)
]}

b=b(~xi)

= −
nclasses∑

j=1

νj +

nbins∑

b=1

nevents∑

i=1

log

[
nclasses∑

j=1

νjfb(b|j)
]

δ(~xi∈b)

= −
nclasses∑

j=1

νj +

nbins∑

b=1

nb log

[
nclasses∑

j=1

νjfb(b|j)
]

, (3.16)

where nbins is the number of bins in the PDFs and where nb is the number of data events
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in bin b. By the virtue of the properties of the likelihood function demonstrated in the

previous section, the binned PDF fb(b|j) can be replaced by the probability mass function

(PMF) P (b|j) (which differs by a factor given by the width/area/volume/hypervolume of

bin b) to lead to an equivalent function which is more similar to the common expression

of an unbinned extended log-likelihood.

In QSigEx, fits are always performed using a binned extended log-likelihood which also

uses unnormalised Monte Carlo histograms. From Equations (3.15) and (3.16), the gen-

eral expression for the extended log-likelihood, when fitting nclasses mutually independent

classes of events and when using binned PDFs built from Monte Carlo samples with the

same binning for all classes of events), can be written as

ELL′
data = −

nclasses∑

j=1

αj
N(~ηj)

MMCj

+

nfilled bins∑

b′=1

nb′ log

[
nclasses∑

j=1

αj

MMCj

H(b′|j, ~ηj)
]

, (3.17)

where the index b′ runs over bins that contain some events in the data.

3.4 Fitted Number of Events in an Extended Log-Li-

kelihood

As seen in the previous section, when fitting for the number of events of nclasses mutually

independent classes of events, the general form of the extended log-likelihood is given by

ELLdata = −
nclasses∑

j=1

νj +
nevents∑

i=1

log

[
nclasses∑

j=1

νjf(~xi|j)
]

. (3.9)
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This expression evaluates to a real value as long as
∑nclasses

j=1 νjf(~xi|j) > 0. The proper

behaviour of a minimisation algorithm can thus be normally ensured by constraining pos-

itive values of this expression. Since an empty dataset is three standard deviations away

from its expectation value when the latter is only nine events, such a constraint normally

does not represent a significant distortion of the likelihood space. A stricter constraint

could consist of forcing all νj parameters to be positive (physically meaningful). However,

this leads automatically to biased estimators for the true number of events in every class

if the data contain a sufficiently small fraction of events in a given class. Effectively,

if many similar experiments were generated, an unbiased estimator would naturally lead

to negative and positive number of events, averaging to the true, physically meaningful

value.

To enforce positive values thus tends to bias negatively the fitted number of events for

the other classes. It should be ensured instead that a negative fitted value for a number

of events is compatible with 0 within the total uncertainties. A negative value that is too

far off would indicate a problem with the modelling of the data (including underestimation

of the systematic uncertainties). In this analysis, the νj parameters are not thus forced

to be positive.

3.5 Likelihood Penalty Terms

As shown in Equation (3.4), the likelihood function of SNO is composed of a series of

terms representing the data and other terms associated to external measurements that

are referred to as “penalty terms”. Although these measurements are usually assumed
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to follow Gaussian-like statistics, the expressions of their penalty terms can differ quite

significantly depending on the assumptions that are made about how these measurements

affect the number of events in LLdata. The following sections address the different types

of penalty terms used in the extraction of the survival probability.

3.5.1 Simple Univariate Penalty Terms

These penalty terms are used when a measurement is assumed to directly constrain a fit

parameter. This type is normally used to constrain individual parameters such as average

background rates, day/night asymmetries and systematic uncertainty parameters. They

are simply expressed as

L =

√

2

π

1

σ− + σ+
e
− 1

2 [
x−µ
σ(x) ]

2

, σ(x) ≡







σ− x < µ

σ+ x ≥ µ
, (3.18)

where σ− and σ+ allow for asymmetrical uncertainties. Note that for all types of penalty

terms presented in this section, µ refers to the peak of the probability density which does

not correspond to its mean unless σ− = σ+. The previous expression simplifies to

LL = −1

2

[
x− µ

σ(x)

]2

(3.19)

for the log-likelihood term after dropping the constants.
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3.5.2 Simple Multivariate Penalty Terms

These penalty terms are used instead of univariate terms when the external measure-

ment provides correlations between the parameters. The general form for k correlated

parameters is given by

L =
1

(2π)
k
2 |Σ| 12

e−
1
2
(~x−~µ)TΣ−1(~x−~µ), (3.20)

or

LL = −1

2
(~x− ~µ)TΣ−1(~x− ~µ) (3.21)

for the log-likelihood term after dropping the constants, where Σ is the covariance matrix

and |Σ| its determinant. For the two-dimensional case, this gives

L =
1

2π
√
σ2
xσ

2
y − cov2

e
− 1

2(σ2
xσ2

y−cov2)
[σ2

y(x−µx)2+σ2
x(y−µy)2−2(x−µx)(y−µy)cov]

, (3.22)

where cov is the covariance between the parameters x and y. The associated log-likelihood

term is thus given by

LL = − 1

2(σ2
xσ

2
y − cov2)

[
σ2
y(x− µx)

2 + σ2
x(y − µy)

2 − 2(x− µx)(y − µy)cov
]
. (3.23)
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3.5.3 Penalty Terms on a Sum with Fixed Constraint

This type of penalty term is used to constrain a sum of events when the external mea-

surement provides directly a number of events. It is expressed as

L =

√

2

π

1

σ− + σ+
e
− 1

2

[
∑

i αiνiexp(~η)−µ

σ

]2

, σ ≡







σ−
∑

i αiνiexp(~η) < µ

σ+

∑

i αiνiexp(~η) ≥ µ
, (3.24)

where αi are fit parameters as defined in Section 3.1 and where νiexp(~η) are the expected

Poisson parameter values for systematic uncertainty parameter values ~η. The correspond-

ing log-likelihood penalty term is given by

LL = −1

2

[∑

i αiνiexp(~η)− µ

σ

]2

. (3.25)

3.5.4 Penalty Terms on a Sum with Floating Constraint

These penalty terms are used to constrain a sum of events when the external measurement

provides rate measurements. They are notably used to constrain the number of fitted day

and night events when not using a day/night asymmetry. In this particular case, the single

external measurement is assumed to effectively provide an average background rate. This

type of constraint is expressed as

L =

√

2

π

1

σr− + σr+

e

− 1
2







(∑

i αiνiexp(~η)
∑

i νiexp(~η)

)

−µr

σr







2

, (3.26)



Chapter 3 Likelihood Function 82

with

σr ≡







σr−
∑

i αiνiexp(~η) < µr

∑

i νiexp(~η)

σr+

∑

i αiνiexp(~η) ≥ µr

∑

i νiexp(~η)
, (3.27)

where µr and σr are the relative mean and variance, respectively, and where αi and νiexp(~η)

parameters are defined as before. µr is usually 1. The associated log-likelihood term is

given by

LL = −1

2





(
∑

i αiνiexp(~η)
∑

i νiexp(~η)

)

− µr

σr





2

. (3.28)

3.6 PSA Constraint

The PSA provides a penalty on the total number of neutrons detected by the NCD during

the NCD phase. The parameters provided by the PSA are the measured total number of

neutrons passing the PSA cuts (nPSA) along with an uncertainty (σnPSA) and the PSA cut

efficiency (ǫPSA±σǫPSA). This efficiency can be viewed as a conversion factor between the

number of neutrons detected by the NCDs in the energy window of the spectral analysis

and the number of neutrons passing the PSA cut. The equivalent number of neutrons for

a spectral analysis, nn, is thus given by

nn =
nPSA

ǫPSA
. (3.29)
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If one wants to penalise nn, the PSA uncertainties can be combined to give a relative

uncertainty δnn on this parameter, given by

δnn ≡ σnn

nn
=

1

nn

√
(

∂nn

∂nPSA

)2

σn
2
PSA +

(
∂nn

∂ǫPSA

)2

σǫ
2
PSA

=

√

δn
2
PSA + δǫ

2
PSA, (3.30)

where

δnPSA ≡ σnPSA

nPSA
(3.31)

and

δǫPSA ≡ σǫPSA

ǫPSA
, (3.32)

that is to say the relative uncertainties on nPSA and ǫPSA, respectively. Since the PSA

provides a number of detected events and not a constraint on a generated rate, its asso-

ciated penalty term is thus a particular case of a constraint on a sum when using a fixed

constraint, as shown in Section 3.5.3. Explicitly, it is

LLPSA = −1

2





[
∑

j∈{n classes} αjνjexp(~η)
]

− nn

nnδnn





2

, (3.33)

where νjexp are the expected Poisson parameters for the number of neutron events detected

by the NCDs and αj are the fit parameters for all the classes of events representing

neutrons.
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3.7 Day/Night Background Asymmetries

In the context of a day/night analysis, it is important to allow for day/night asymmetries of

the backgrounds when such fluctuations are possible. For example, due to the circulation

of the water in the SNO detector, it is possible that D2O and H2O background rates

vary between day and night. Some measurements of these asymmetries have thus been

performed. The day/night asymmetry on a background rate is defined as

A ≡ 2
rn − rd
rn + rd

, (3.34)

where rd and rn are the background rates for day and night, respectively. If the average

background rate is defined as

r ≡ rn + rd
2

, (3.35)

the day/night background rates can be expressed as

rn =r

(

1 +
A

2

)

. (3.36)

rd =r

(

1− A

2

)

. (3.37)

The day/night Poisson parameters are thus computed using

νn = rnfn(~η) (3.38)

νd = rdfd(~η), (3.39)
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where fn(~η) and fd(~η) are the rate-to-events conversion factors that depend on the sys-

tematic uncertainty parameters ~η. These factors can be computed using

fd,n(~η) =
Nd,n(~η)

RMC
, (3.40)

where RMC is the Monte Carlo rate and where Nd,n(~η) is the number of day/night Monte

Carlo events in the analysis window when it is smeared by the current systematic uncer-

tainties. Given the fit parameters r, A and ~η, the night and day Poisson parameters are

thus given respectively by

νn = r

(

1 +
A

2

)
Nn(~η)

RMC

(3.41)

νd = r

(

1− A

2

)
Nd(~η)

RMC
. (3.42)

As the nominal number of background events in the data (number of expected events in the

analysis window obtained using default values for the systematic uncertainty parameters)

is computed using

νnom =
rnom
RMC

NMC, (3.43)

where rnom is the nominal background data rate (a value that usually corresponds to

the most likely value from an external measurement) and where NMC is the number of

Monte Carlo background events in the analysis window when using the default systematic

uncertainty parameters, RMC can be thus expressed using the constants rnom and νnom

along with the value of NMC. Redefining the fit parameter associated to the average rate

as

α =
r

rnom
, (3.44)
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Equations (3.41), (3.42), (3.43) and (3.44) finally give

νn = α
νnom
NMC

(

1 +
A

2

)

Nn(~η) = α
Nn(~η)

MMC

(

1 +
A

2

)

(3.45)

νd = α
νnom
NMC

(

1− A

2

)

Nd(~η) = α
Nd(~η)

MMC

(

1− A

2

)

, (3.46)

where MMC is defined as the Monte Carlo multiplicity with respect to νnom and where α

has a value of 1 for a fit returning an average background rate corresponding to the rate

from the external measurement.

Under the assumption that external measurements for backgrounds effectively con-

strain the background rates and not the number of PMT events inside the analysis window,

α and A should be constrained directly rather than by applying constraints on numbers

of events that depend on the systematic uncertainty parameters ~η.

3.8 Evaluation of the Finite Monte Carlo Statistics

Uncertainties

As mentioned in Section 3.3, the binned PDFs used in the maximum likelihood fit are

commonly generated from Monte Carlo samples. Ideally, a quasi-infinite number of Monte

Carlo events would be produced to generate these PDFs, such that the statistical uncer-

tainty on the shape of these PDFs tend to zero. However, computing power restrictions

when generating Monte Carlo samples and also when smearing the resulting events with

systematic uncertainties during the fit limit the statistics that can be handled. Although
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the resulting PDFs, within the known systematic uncertainties, are considered to rep-

resent the “true” distributions, there are some uncertainties associated with the finite

Monte Carlo statistics used to generate them. That can effectively translate into addi-

tional systematic uncertainties. The relative importance of these uncertainties grows as

the number of bins in the PDFs increases, particularly when adding an extra dimension.

The effects are also larger when the Monte Carlo statistics are split into sub-classes, as in

day/night analyses. Finally, the finite Monte Carlo statistics uncertainties are expected to

increase when the Monte Carlo is smeared by systematic shifts which increase observable

distribution widths since the statistics become distributed over a larger number of bins.

These uncertainties should thus be evaluated after all the systematic shifts have been

applied.

The finite Monte Carlo statistics also have a second-order effect because the flux-to-

event and the rate-to-event factors that are used to provide the expected number of events

in the likelihood function are also computed from Monte Carlo samples. This comes from

the fact that external measurements provide rate constraints and that Monte Carlo is thus

required to convert these rates into the actual number of events in the analysis window.

Direct usage of the number of Monte Carlo events in the likelihood is shown in Equation

(3.17). Since the number of Monte Carlo events in the analysis follows Poisson statistics,

there is thus an effective uncertainty on the conversion factors given a finite number of

Monte Carlo events. This has virtually no effect for independent classes of background

events that are not constrained by a penalty term, but it can have an effect for tightly

constrained classes with low Monte Carlo statistics.

In order to assess these two aspects of the finite Monte Carlo statistics’ effects, a tech-

nique has been developed to evaluate the resulting uncertainties. It consists of performing
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multiple minimisations of the likelihood function by Poisson-fluctuating the Monte Carlo

samples around what is assumed to generate the “true” distributions, that is to say the

whole Monte Carlo samples smeared with all the systematic shifts. The procedure is the

following:

1. The whole Monte Carlo is read and smeared by all the fitted systematic shifts.

2. The signal extraction cuts are applied.

3. Multi-dimensional histograms H(b|j, ~ηj) are defined using all of the variables and

the finest binning used by all of the PDFs and filled with the smeared Monte Carlo.

4. All of the required PDFs are generated by properly projecting the multi-dimensional

histogram and by normalising it when necessary.

5. A new fit is performed and the resulting fit values are assumed to be the central

values for the evaluation of the effects of finite Monte Carlo statistics.

6. New (empty) histograms H ′(b|j, ~ηj) are created using the same binning as H .

7. A histogram H ′ is filled using Poisson fluctuations of H , meaning that it is filled

using Poisson random variables vb (H ′(b|j, ~ηj) = vb) whose associated Poisson

parameters νb are given by the bin content of H(b|j, ~ηj). H ′ has thus the following

characteristics:

• E [H ′(b|j, ~ηj)] = H(b|j, ~ηj).

• Var [H ′(b|j, ~ηj)] = H(b|j, ~ηj).

8. New PDFs are generated using the appropriate projections of H ′ and by normalising

them, when required.
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9. New flux-to-event or rate-to-event factors are effectively computed in the likelihood

function due to their integration in the function via unnormalised histograms as

shown in Equation (3.17).

10. The fit is performed using the PDFs created from H ′.

11. The differences between the fit values obtained when using H and H ′ are stored.

12. Steps 6 to 11 are repeated 1000 times, each time using a different seed for the

Poisson random variables.

13. Using an unbinned log-likelihood, an asymmetrical Gaussian function is fitted to the

set of fit parameter shifts (with respect to the central fit) for every fit parameter.

The peak of this function is forced to be at zero. If all of the fit values obtained

from H ′ are either smaller or greater than the ones obtained initially with H , the

RMS around 0 is computed using the one-sided shifts and the uncertainty on the

other side is approximated to be the same.



Chapter 4

Signals and the SNO Likelihood

Function

In the previous chapter, an optimised form of a binned extended log-likelihood function,

parameterised for the extraction of production rates, was derived. Although this statistical

model is perfectly sufficient for the SNO backgrounds and the NC signal, it needs to be

extended for the other signals. If solar neutrinos are mixing on their way to the SNO

detector, this can affect CC and ES signals, since the survival probability of a given

neutrino flavour can become a function of the neutrino energy and these two signals have

different cross-sections for the different neutrino flavours. Integral rates, as previously

used in the expression of the likelihood function, thus cannot model CC and ES signals

properly.

4.1 Unconstrained Reconstructed Electron Energy Fit

One way to account for neutrino spectral distortion in the signal extraction procedure is

to perform a binned, unconstrained fit of the reconstructed electron energy, since this

90
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observable is the most sensitive probe of the neutrino energy spectrum. In a binned,

unconstrained fit, each electron energy bin is allowed to float as a free parameter.

4.1.1 Derivation

For an unconstrained fit in reconstructed electron energy, the factors αjνjexp(~ηj)f(~x|j)

of Equation (3.10), with j ∈ {CC,ES}, can be expressed as

αjνjexpf(~x|j, ~φj) = αjνjexp

nunconstr∑

k=1

f(~x, k|j, ~φj)

= αjνjexp

nunconstr∑

k=1

P (k|j, ~φj)f(~x|j, k), (4.1)

where nunconstr is the number of reconstructed electron energy bins used for the uncon-

strained fit and where P (k|j, ~φj) is the probability of an event of class j to be in energy

bin k, given a statistical model with a spectral shape defined by ~φj parameters. P (k|j, ~φj)

can be expressed as

P (k|j, φjk) = φjkP (k|j), (4.2)

where P (k|j) is the corresponding probability in the case of an undistorted spectrum and

where φjk are parameters whose values are unity for the undistorted case and which must

satisfy
nunconstr∑

k=1

φjkP (k|j) = 1. (4.3)
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This constraint can be included by defining αjk ≡ αjφjk, where αjk are not subject to

such a constraint. This gives for Equation (4.1)

αjνjexpf(~x|j, ~φj) =

nunconstr∑

k=1

αjkνjexpP (k|j)f(~x|j, k) (4.4)

=
nunconstr∑

k=1

αjkνjkexpf(~x|j, k), (4.5)

where νjkexp ≡ νjexpP (k|j). If Equation (4.5) is substituted in Equation (3.10), it appears

that doing an unconstrained fit for CC or ES is equivalent to fitting for nunconstr mutually

independent classes of events with PDFs f(~x|j, k) and Poisson parameters αjkνjkexp.

Due to limited statistics in the Monte Carlo samples and in order to limit the number

of parameters in the fit, it can be desired to generate a number of conditional PDFs

f(~x|j, k) different from the number of bins in reconstructed electron energy used for NC

and backgrounds. However, to avoid biased fit parameters, it is required to use the same

binning in reconstructed electron energy for all signal and background PDFs. A different

energy binning with index m is thus defined to represent the binning common to all signals

and backgrounds and f(~x|j, k) is expressed as

f(~x|j, k) =
∑

m⊆k

f(~x,m|j, k) =
∑

m⊆k

P (m|j, k)f(~x|j, k,m). (4.6)
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The above expression implies that bins with index k contain integer numbers of bins with

index m. If ~y is defined such that ~x = (Teff , ~y), Equation (4.6) gives

f(~x|j, k) =
∑

m⊆k

P (m|j, k)f(Teff |j, k,m)f(~y|j, k,m, Teff) (4.7)

=
∑

m⊆k

f(Teff , m|j, k)f(~y|j, k,m, Teff). (4.8)

Since the PDFs in the above equation are binned PDFs generated from Monte Carlo

samples, Equation (4.8) can be simplified. Here the PDF for Teff is binned using bins with

index m, such that f(Teff , m|j, k) can be expressed as

f(Teff , m|j, k) = f(Teff |j, k)P (m|j, k, Teff)

= f(Teff |j, k)δTeff∈m
binning≈ fb(m|j, k)δTeff∈m. (4.9)

Regarding f(~y|j, k,m, Teff), it is generated from the events in the energy bin k, leading

to the approximation

f(~y|j, k,m, Teff)
binning≈ f(~y|j, k). (4.10)

From Equations (4.9) and (4.10), Equation (4.8) can be rewritten as

f(~x|j, k) =
∑

m⊆k

fb(m|j, k)f(~y|j, k)δTeff∈m. (4.11)
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From Equations (4.1) and (4.11),

αjνjexpf(~x|j, ~φj) =
nunconstr∑

k=1

αjkνjexpP (k|j)
∑

m⊆k

fb(m|j, k)f(~y|j, k)δTeff∈m

=
nunconstr∑

k=1

∑

m⊆k

αjkνjexpfb(m|j)f(~y|j, k)δTeff∈m

= αj,k(Teff)νjexpfb(m(Teff)|j)f(~y|j, k(Teff)), (4.12)

where k(Teff) ≡ k : Teff ∈ k and m(Teff) ≡ m : Teff ∈ m, m ⊆ k. Variables k(Teff) and

m(Teff) thus refer to the indices that correspond to the value of Teff defined in ~x.

4.1.2 Summary

For the event classes j ∈ {CC,ES}, the product of the Poisson parameter with the PDF

f(~x|j) can be approximated by

αjνjexp(~ηj)f(~x|j, ~ηj) = αj,k(Teff)νjexp(~ηj)fb(m(Teff)|j, ~ηj)f(~y|j, k(Teff), ~ηj), (4.13)

where fb(m(Teff)|j, ~ηj) is the undistorted reconstructed electron energy binned PDF for

class j with systematic shifts ~ηj , whose bins are defined such that m(Teff) ⊆ k(Teff), and

where f(~y|j, k(Teff), ~ηj) is the PDF in the observable space ~y for the unconstrained energy

bin k of class j with systematic shifts ~ηj . The fit parameters αjk are defined such that

the fitted Poisson parameter for the unconstrained energy bin k of class j in the model is

given by

νjk(αjk, ~ηj) ≡ αjkνjkexp(~ηj) = νjexp(~ηj)αjkP (k|j, ~ηj), (4.14)
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where νjexp(~ηj) is the expected number of detected j events, given systematic shifts ~ηj

and where P (k|j, ~ηj) is the PMF of the undistorted unconstrained energy bin for the

associated class with systematic shifts ~ηj. The Poisson parameter for class j in the model

is given by

νj(~αj, ~ηj) =
nunconstr∑

k=1

νjk(αjk, ~ηj), (4.15)

where

~αj ≡ (αj1, . . . , αjnunconstr). (4.16)

4.2 Fits using Neutrino Energy Spectrum Distortion

Although an unconstrained fit in reconstructed electron energy allows to perform a three-

phase fit in a way that does not depend on the oscillation model while using only the

observable space distributions, it can be more difficult to apply it in a multi-phase fit where

the detector response can vary between the phases for a given signal class. In addition,

when the ultimate goal of an analysis is to measure the parameters of a given oscillation

model, the large number of parameters in this type of fit can lead to an increase of the

statistical uncertainties. One way to try avoiding these problems is to work in neutrino

energy space. Starting from a space that includes both the observable space and the

neutrino energy, one can retrieve the observable space distribution for event class j by

simply using the projection

f(~x|j, ϕj(Eν)) =

∫ +∞

−∞
f(Eν , ~x|j, ϕj(Eν))dEν (4.17)

=

∫ +∞

−∞
f(Eν |j, ϕj(Eν))f(~x|j, Eν)dEν , (4.18)
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where the function ϕj(Eν) parameterises the distortion of the Eν spectrum for class j. In

the above equation, the identity f(~x|j, ϕj(Eν), Eν) = f(~x|j, Eν) was used. Here ϕj(Eν)

can be defined such that f(Eν |j, ϕj(Eν)) is expressed as

f(Eν |j, ϕj(Eν)) = ϕj(Eν)f(Eν |j), (4.19)

where f(Eν |j) is the corresponding Eν PDF in the case of an undistorted spectrum and

ϕj are parameters whose values are unity for the undistorted case. Finally, from Equations

(4.18) and (4.19),

f(~x|j, ϕj(Eν)) =

∫ +∞

−∞
ϕj(Eν)f(Eν |j)f(~x|j, Eν)dEν (4.20)

=

∫ +∞

−∞
ϕj(Eν)f(Eν , ~x|j)dEν (4.21)

4.2.1 Binned Neutrino Energy Fit

In a binned neutrino energy fit, Eν is binned using nν bins in neutrino energy with index

l, leading to the approximations

f(Eν |j)
binning≈ fb(l(Eν)|j) (4.22)

f(~x|j, Eν)
binning≈ f(~x|j, l(Eν)). (4.23)
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Substituting into Equation (4.20), this gives

f(~x|j, ϕj(Eν)) =

∫ +∞

−∞
ϕj(Eν)fb(l(Eν)|j)f(~x|j, l(Eν))dEν

=
nν∑

l=1

[∫

l

ϕj(Eν)dEν

]

fb(l|j)f(~x|j, l)

=
nν∑

l=1

1

∆Eν (l)

[∫

l

ϕj(Eν)dEν

]

P (l|j)f(~x|j, l), (4.24)

where ∆Eν(l) is the bin width of the neutrino energy bin l. If the parameters φjl are

defined as

φjl ≡
1

∆Eν (l)

[∫

l

ϕj(Eν)dEν

]

, (4.25)

which have an expectation value of 1 for an undistorted spectrum and which, from Equa-

tion (4.19), have to satisfy the constraint

nν∑

l=1

φjlP (l|j) = 1, (4.26)

the product of the Poisson parameter with the observable space PDF f(~x|j, ϕj(Eν)) can

be expressed as

αjνjexpf(~x|j, ϕj(Eν)) =

nν∑

l=1

αjφjlνjexpP (l|j)f(~x|j, l), (4.27)

where the PDFs f(~x|j, l) can be approximated using a similar configuration as the PDF

f(~x|j, ~φj) in Section 4.1. From Equation (4.13), the undistorted f(~x|j, ~φj) PDF in re-

constructed electron energy is given by

f(~x|j, ~ηj) = fb(m(Teff)|j, ~ηj)f(~y|j, k(Teff), ~ηj). (4.28)
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The conditional PDF in neutrino energy f(~x|j, l) can thus be written as

f(~x|j, l, ~ηj) = fb(m(Teff)|j, l, ~ηj)f(~y|j, l, k(Teff), ~ηj) (4.29)

and the product of the Poisson parameter with f(~x|j, ϕj(Eν)) becomes

αjνjexpf(~x|j, ϕj(Eν)) = αjνjexp

nν∑

l=1

φjlP (l|j)fb(m(Teff)|j, l)f(~y|j, l, k(Teff)). (4.30)

4.2.2 Unconstrained Neutrino Energy Fit

In an unconstrained neutrino energy fit, the bins in neutrino energy are fitted independently

by defining a set of parameters αjl ≡ αjφjl as it was done in Section 4.1. The product

of the Poisson parameter with the PDF f(~x|j, ~αj) in Equation (4.27) thus becomes

αjνjexpf(~x|j, ~αj) =

nν∑

l=1

αjlνjexpP (l|j)f(~x|j, l)

=
nν∑

l=1

αjlνjlexpf(~x|j, l), (4.31)

where νjlexp ≡ νjexpP (l|j) is the expected Poisson parameter for the neutrino energy

bin l in signal j. The above equation has the exact same form as Equation (4.5), such

that doing an unconstrained neutrino energy fit for CC or ES is equivalent to fitting for

nν mutually independent classes of events with PDFs f(~x|j, l) and Poisson parameters
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αjlνjlexp. Finally, Equation (4.30) gives

αjνjexp(~ηj)f(~x|j, ~αj , ~ηj)

= νjexp(~ηj)
nν∑

l=1

αjlP (l|j, ~ηj)fb(m(Teff)|j, l, ~ηj)f(~y|j, l, k(Teff), ~ηj)

=
nν∑

l=1

νjl(αjl, ~ηj)fb(m(Teff)|j, l, ~ηj)f(~y|j, l, k(Teff), ~ηj), (4.32)

where νjl(αjl, ~ηj) ≡ αjlνjexp(~ηj)P (l|j, ~ηj) are the Poisson parameters for the uncon-

strained neutrino energy bin l for class j.

The main advantage of this method over an unconstrained fit in reconstructed electron

energy is to allow a multi-phase fit when the detector response is different across the

different phases. However, this technique requires the sub-binning of the MC samples in

neutrino energy and, contrary to the binning of an observable, this can lead to biases of

the fit parameters.

Effectively, when the observables are binned for all MC samples and for the data

using the same binning, this reduces the statistical separation power between the different

classes of events, increasing the statistical uncertainties of the fit, but it normally does

not create biases, as long as the simulation samples contain sufficient statistics and model

the data perfectly. Limited MC statistics can however motivate the use of coarser bins, so

the binning of observables should be chosen such that the distortions due to the limited

statistics be negligible, or such that the total uncertainties on the fit parameters, including

systematic uncertainties due to the statistics in the PDFs, be minimal.

To bin an experimentally unobserved variable, however, effectively affects how well
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the simulation can mimic the data, which translates automatically into biases of the fit

parameters if the true distribution of the variable is different from the one of the MC

events. To minimise these biases, it is thus preferable to use bins that are as narrow as

possible for the unobserved variable when binning cannot be avoided. It can be quite

challenging to achieve this using the type of fit described above in this section due to

the high dimensionality of the PDFs in Equation (4.32). Even if the simulation statistics

would allow it, the increased number of bins would translate into a higher number of fit

parameters having strong correlations and to an increased of the statistical uncertainties.

4.2.3 Unbinned Pee Polynomial Fit

It is actually possible to avoid most of the problems described above by aiming to fit

directly the neutrino energy spectrum distortion function ϕj(Eν). ϕj(Eν) is a simple

function of the electron neutrino survival probability Pee(Eν), which is expected to be

smooth and well-behaved, when averaged over position and time, such that it can be

approximated quite well using a low-order polynomial expansion.

Let gj(Eν , Pee) be a weighting function equal to a parameterised Pee function in the

case of CC and ESe and equal to 1−Pee in the case of ESµτ . Given the function gj(Eν , Pee),

the PDF f(~x|j, Pee, ~ηj) can be generated directly by filling a histogram H(~x|j, Pee, ~ηj)

using a weighting of the simulated observable values by gj(Eν , Pee), and by normalising

it appropriately. The Poisson parameter for class j is simply approximated by

αjνjexp(~ηj) ≈ αBνjexp

∑NMC

i′=1 gj(Eνi′ , Pee)

NMC

, (4.33)
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where αB is a fit parameter for the 8B flux scale and which is equivalent to αNC for models

that do not involve sterile neutrinos, NMC is the number of simulated events and Eνi′ is

the neutrino energy for the simulated event i′.

An unbinned Pee polynomial fit thus allows to fit for the energy spectral distortion

while keeping the same PDF dimensionality and configuration as the PDFs used for the

unconstrained reconstructed electron energy fit. It also allows to correctly handle a multi-

phase fit, uses a reduced number of fit parameters and constrains the relative number of

events from the different signal classes, which should considerably reduce the statistical

uncertainties. This method is however affected by a major drawback: it requires to

regenerate the PDFs using all simulated events as soon as the value of one of the Pee

polynomial parameters is modified during the minimisation process, which slows down the

fit by many orders of magnitude, to an unpractical level.

4.2.4 Binned Pee Fit

As described in Section 4.2.2, the high correlations between the fit parameters along with

the presence of large statistical uncertainties constitute issues with the unconstrained

neutrino energy fit when using many neutrino energy bins. One way to improve the

statistical separation between the fitted parameters is to fit for αB and the shape of a

binned Pee function.

In the previous section, it was shown that gj(Eν , Pee) can be used as weighting func-

tions to generate the distorted neutrino energy spectra. Comparing with Equation (4.19),

it is obvious that there exists a directly proportional relation between gj(Eν , Pee) and

ϕj(Eν). To ensure the normalisation of both PDFs in Equation (4.19) for any Pee shape,
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ϕj(Eν) has in fact to be defined as

ϕj(Eν) ≡
gj(Eν , Pee)

∫ +∞
−∞ gj(Eν , Pee)f(Eν |j)dEν

(4.34)

with respect to gj(Eν , Pee), such that φjl from Equation (4.25) becomes

φjl =
1

∆Eν (l)

[∫

l
gj(Eν , Pee)dEν

]

∫ +∞
−∞ gj(Eν , Pee)f(Eν |j)dEν

. (4.35)

In a Pee fit, the values of αj for CC, ES and NC in Equation (3.10) are not allowed to

vary freely in the fit, as mentioned in the previous section. They are constrained by the

8B flux and Pee. For CC and ES signal classes, the expression for αj as a function of αB

and Pee is by definition

αj = αB

∫ +∞

−∞
gj(Eν , Pee)f(Eν |j)dEν. (4.36)

From Equations (4.30), (4.35) and (4.36), the product of the Poisson parameter with

f(~x|j), in the context of the current parameterisation, can be written as

αjνjexp(~ηj)f(~x|j, Pee, ~ηj)

= αBνjexp(~ηj)

nν∑

l=1

{[∫

l

gj(Eν , Pee)dEν

]
P (l|j)
∆Eν

(l)
fb(m(Teff)|j, l, ~ηj)f(~y|j, l, k(Teff), ~ηj)

}

= αBνjexp(~ηj)

nν∑

l=1

{[∫

l

gj(Eν , Pee)dEν

]

fb(l|j)fb(m(Teff)|j, l, ~ηj)f(~y|j, l, k(Teff), ~ηj)

}

. (4.37)
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The Poisson parameter for class j, found by integrating Equation (4.37) over the whole

observable space, is given by

αjνjexp(~ηj) = αBνjexp(~ηj)

nν∑

l=1

{[∫

l

gj(Eν , Pee)dEν

]

fb(l|j)
}

. (4.38)

The integrals in both Equations (4.37) and (4.38) can be computed analytically very easily

if Pee is approximated by a polynomial (recall that gj(Eν , Pee) is related to a parameterised

Pee for j corresponding to CC and ES). One can also decide to fit for a binned Pee function

gj(l, Peel) defined as

gj(l, Peel) ≡
1

∆Eν (l)

[∫

l

gj(Eν , Pee)dEν

]

, (4.39)

with 1 ≤ l ≤ nν . This uses only the Equation (1.10) to increase the statistical separation,

without assuming a smooth and continuous Pee function. The Pee shapes that can be

mimicked by this variant are however limited by the number of Peel parameters.

Although the method described in this section can combine the speed of the un-

constrained neutrino energy fit and the smaller statistical uncertainties from the smaller

number of fit parameters of the unbinned Pee polynomial fit, it uses the same config-

uration of PDFs (and high dimensionality) as the former method, such that it is quite

challenging to accumulate sufficient MC statistics in the PDFs. Coarse binning of an

unobserved variable can also lead to biases in the fit parameters as explained earlier. To

increase the number of neutrino energy bins would require either to reduce the number

of bins for the observables, thus reducing the statistical separation power between the

signals and backgrounds, or to reduce the number of reconstructed electron energy bins
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with index k, affecting the mechanism through which the main correlations between the

observables are taken into account.

4.2.5 Pee + Pea Fit

As mentioned in the previous section, one of the advantages of a Pee fit is the improvement

of statistical separation compared to an unconstrained fit, due to the reduced number of

fit parameters. It is however done at the cost of a more model-dependent approach, where

neutrinos are assume to oscillate only to other active neutrino flavours (νe, νµ and ντ ).

A constraint introduced by the Pee fit is the assumption of a model where the ratios of

the predicted number of events for CC, ESe, ESµτ and NC are solely determined by the

Pee function (excluding systematic uncertainties and 8B spectral shape). This type of fit

is thus not ideal for a model where there is one (or many) non-active neutrino flavour(s),

since in this scenario a Pee fit would be over-constrained and would be difficult to interpret,

because the fit parameter values would have a non-physical meaning.

To avoid the problems described above, a slightly different type of fit based on a more

general assumption can be achieved. Instead of using a model where Pes = 0, that is to

say, where

Pee + Pea = 1, (1.10)

with Pea representing the probability of an electron neutrino converting to other active

flavours (νµ, ντ ), one can modify the fit to reflect a more general hypothesis with non-

active flavour(s), with a probability of conversion from νe given by Pes such that

Pee + Pea + Pes = 1. (1.11)



Chapter 4 Signals and the SNO Likelihood Function 105

In such fit methods, the components of the likelihood associated to CC and ESe are

exactly the same as shown for the Pee methods described in the previous sections, since

these reactions only involve electron neutrinos. ESµτ , on the other hand, is by definition

limited to the other active flavours. In the context of a Pee+Pea fit, the number of ESµτ

events and its PDFs can thus be computed simply by using

gESµτ (Eν , Pea) ≡ Pea(Eν) (4.40)

instead of gESµτ
(Eν , Pee) ≡ 1− Pee(Eν) as used in Pee fits.

The main difference between Pee + Pea and Pee fits occurs in the treatment of NC.

For Pee fits, the product of the Poisson parameter with f(~x|NC) is given by

νNCf(~x|NC) = αBνNCexpf(~x|NC). (4.41)

The simplicity of this relation is due to the fact that the NC reaction involves equally all

active neutrino flavours and is thus independent of the survival probability parameters if

Pes = 0 because of the Equation (1.10). It is however not the case if non-active neutrino

flavours exist. The expression of likelihood components associated to NC must now be

determined similarly to the way it was done for the other signals, with a major simpli-

fication: the PDF f(~x|NC) is totally independent of the survival probability parameters

since the energy, direction and isotropy of the emitted photons resulting from this reaction

are totally uncorrelated to the incoming neutrino parameters. Using Equation (4.36), the

product of the Poisson parameter with the PDF for NC in the case of a Pee + Pea fit is

thus given by

νNCf(~x|NC, ~ηNC) = αBνNCexp(~ηNC)

{∫ ∞

−∞

gNC(Eν , Pee, Pea)f(Eν |NC)dEν

}

f(~x|NC, ~ηNC), (4.42)
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where gNC(Eν , Pee, Pea) is the probability of an electron neutrino to convert to an active

flavour,

gNC(Eν , Pee, Pea) ≡ Pee(Eν) + Pea(Eν). (4.43)

Here f(Eν |NC) can be binned using nν bins in energy with index l, such that Equation

(4.42) becomes

νNCf(~x|NC, ~ηNC) = αBνNCexp(~ηNC)

nν∑

l=1

{[∫

l

gNC(Eν , Pee, Pea)dEν

]

fb(l|NC)
}

f(~x|NC, ~ηNC). (4.44)

Finally, a binned fit can also be performed by defining gNC(l, Peel, Peal) as

gNC(l, Peel, Peal) ≡ Peel + Peal =
1

∆Eν (l)

[∫

l

gNC(Eν , Pee, Pea)dEν

]

, (4.45)

with nν Peel and nν Peal fit parameters.

As it has been mentioned, a Pee+Pea fit allows to correctly perform a three-phase fit

for a case involving non-active neutrino flavours. However, this type of fit, as described

so far, is under-constrained. Effectively, for a given neutrino energy, the fitted number of

events for any SNO 8B signal is proportional to the product between αB and either Pee,

Pea or Pee + Pea. In this case, Pee and Pea can thus always be redefined as

P ′
ee =

αB

α′
B

Pee (4.46)

P ′
ea =

αB

α′
B

Pea, (4.47)

such that the best fit values for Pee and Pea parameters and their uncertainties are simply

proportional to the inverse of the 8B scale. The correlations between the fit parameters,

as extracted using any constant value for the 8B scale, are consequently totally invariant
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under a change of αB. One can thus fix αB during signal extraction without introducing

any approximation at the signal extraction level or any complication for the interpretation.

4.3 Improved Binned Neutrino Energy Fit

Now if a step back is taken and the definition of conditional probability is used with

Equation (4.21),

f(~x|j, ϕj(Eν)) =

∫ +∞

−∞
ϕj(Eν)f(Eν |j, ~x)f(~x|j)dEν

= f(~x|j)
∫ +∞

−∞
ϕj(Eν)f(Eν |j, ~x)dEν . (4.48)

If a subset ~z of the observables in the subset ~y has negligible correlations with the

neutrino energy for a given reconstructed electron energy, then f(Eν |j, ~x) can be rewritten

as

f(Eν |j, ~x) = f(Eν |j, Teff , ~y) = f(Eν |j, Teff , ~z, ~z′) ≈ f(Eν |j, Teff , ~z′), (4.49)

where ~z′ is the subset of observables from ~y that is correlated to neutrino energy for a

given reconstructed electron energy. From Equations (4.48) and (4.49),

f̃(~x|j, ϕj(Eν)) = f(~x|j)
∫ +∞

−∞
ϕj(Eν)f(Eν |j, Teff , ~z′)dEν . (4.50)
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The previous expression is exact as long as ~z is truly uncorrelated to neutrino energy for

a given reconstructed electron energy. In the case of an approximation, the expression

f(~x|j, ϕj(Eν)) =
f̃(~x|j, ϕj(Eν))

∫ +∞
−∞ f̃(~x|j, ϕj(Eν))dV

(4.51)

must be used to ensure the normalisation, where the integral in the denominator is per-

formed over the width/area/volume/hypervolume of the entire observable space. This is

why the PDF in Equation (4.50) is denoted using a tilde. In the current form, the PDF

in Equation (4.50) would be difficult to use in a likelihood function, since it would have

to be generated every time the ϕj(Eν) function is varied in the fit. If f(Eν |j, Teff , ~z′) is

binned using nν bins in neutrino energy with index l, the expression can be rewritten as

f̃(~x|j, ϕj(Eν)) ≈
∫ +∞

−∞
ϕj(Eν)f(~x|j)fb(Eν |j, Teff , ~z′)dEν

=
nν∑

l=1

{[∫

l

ϕj(Eν)dEν

]

f(~x|j)fb(l|j, Teff , ~z′)

}

=

nν∑

l=1

{

φjlf(~x|j)P (l|j, Teff, ~z′)
}

, (4.52)

where φjl are defined as in Equation (4.25) and where f(~x|j)P (l|j, Teff , ~z′) can be com-

puted for every data event before the minimisation process. Substituting the previous

expression in Equation (4.51) gives

f(~x|j, ϕj(Eν)) =

∑nν

l=1

{

φjlf(~x|j)P (l|j, Teff , ~z′)
}

∑nν

l=1

{

φjl

[∫ +∞
−∞ f(~x|j)P (l|j, Teff , ~z′)dV

]} (4.53)
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and the product of the Poisson parameter is thus

αjνjexpf(~x|j, ϕj(Eν)) = αjνjexp

∑nν

l=1

{

φjlf(~x|j)P (l|j, Teff , ~z′)
}

∑nν

l=1

{

φjl

[∫ +∞
−∞ f(~x|j)P (l|j, Teff , ~z′)dV

]} . (4.54)

4.3.1 Improved Unconstrained Neutrino Energy Fit

Using the same method as before, αj and φjl are reparameterised by defining αjl ≡ αjφjl.

Using the constraint in Equation (4.26), the relation between αj and αjl is found to be

αj =
nν∑

l=1

αjlP (l|j). (4.55)

From Equation (4.54), the product of the Poisson parameter with the PDF f(~x|j, ~αj , ~ηj)

for the improved unconstrained fit is thus given by

αjνjexp(~ηj)f(~x|j, ~αj , ~ηj) = νjexp(~ηj)

nν∑

l=1

{αjlP (l|j, ~ηj)}
nν∑

l=1

{

αjlf(~x|j, ~ηj)P (l|j, Teff , ~z′, ~ηj)
}

nν∑

l=1

{

αjl

[∫ +∞

−∞
f(~x|j, ~ηj)P (l|j, Teff , ~z′, ~ηj)dV

]}

= νj(~αj , ~ηj)

nν∑

l=1

{

αjlf(~x|j, ~ηj)P (l|j, Teff , ~z′, ~ηj)
}

nν∑

l=1

{

αjl

[∫ +∞

−∞
f(~x|j, ~ηj)P (l|j, Teff , ~z′, ~ηj)dV

]} , (4.56)

where νj(~αj , ~ηj) ≡ νjexp(~ηj)
∑nν

l=1 αjlP (l|j, ~ηj) is the Poisson parameter for class j and

where f(~x|j, ~ηj) is approximated by

f(~x|j, ~ηj) ≈ fb(m(Teff)|j, ~ηj)f(~y|j, k(Teff), ~ηj) (4.57)

as before. Note that this improved unconstrained fit cannot be represented using a set

of nν mutually independent classes of events with PDFs f(~x|j, l) and Poisson parameters
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αjlνjexp because of the correction in the denominator of Equation (4.56).

4.3.2 Improved Binned Pee Fit

For a binned Pee fit, it has been found that φjl is given by Equation (4.35). The exact

expression for αj is given by Equation (4.36), but in practice the PDF f(Eν |j) is usually

binned. If f(Eν |j) is binned using n′
ν neutrino energy bins with index p, α can be

approximated by

αj ≈ αB

∫ ∞

−∞
gj(Eν , Pee)fb(Eν |j)dEν

= αB

n′
ν∑

p=1

{[∫

p

gj(Eν , Pee)dEν

]

fb(p|j)
}

. (4.58)

From Equations (4.35), (4.54) and (4.58), the product of the Poisson parameter with

the observable space PDF for CC and ES in the context of this Pee fit can thus be written

as

αjνjexp(~ηj)f(~x|j, Pee)

= αBνjexp(~ηj)

n′

ν∑

p=1

{[∫

p
gj(Eν , Pee)dEν

]

fb(p|j)
} nν∑

l=1

{[∫

l
gj(Eν , Pee)dEν

]
f(~x|j)P (l|j,Teff ,~z′)

∆Eν
(l)

}

nν∑

l=1

{[∫

l
gj(Eν , Pee)dEν

] [∫ +∞

−∞
f(~x|j)P (l|j,Teff ,~z′)

∆Eν
(l) dV

]}

= αBνjexp(~ηj)

n′

ν∑

p=1

{[∫

p
gj(Eν , Pee)dEν

]

fb(p|j)
} nν∑

l=1

{[∫

l
gj(Eν , Pee)dEν

]
f(~x|j)fb(l|j, Teff , ~z′)

}

nν∑

l=1

{[∫

l
gj(Eν , Pee)dEν

] [∫ +∞

−∞
f(~x|j)fb(l|j, Teff , ~z′)dV

]}

= νj(αB, Pee, ~ηj)

nν∑

l=1

{[∫

l
gj(Eν , Pee)dEν

]
f(~x|j)fb(l|j, Teff , ~z′)

}

nν∑

l=1

{[∫

l
gj(Eν , Pee)dEν

] [∫ +∞

−∞
f(~x|j)fb(l|j, Teff , ~z′)dV

]} , (4.59)
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where all PDFs implicitly depend on the systematic shifts ~ηj , where f(~x|j, ~ηj) is given by

Equation (4.57) and where the Poisson parameter for class j has been defined as

νj(αB, Pee, ~ηj) ≡ αBνjexp(~ηj)

n′
ν∑

p=1

{[∫

p

gj(Eν , Pee)dEν

]

fb(p|j, ~ηj)
}

, (4.60)

that is to say using n′
ν bins in neutrino energy with index p. It should be possible that

n′
ν be much larger than nν if the subset ~z′ contains some observables. Similarly to what

has been done in Section 4.2.4, it is also possible to fit a binned Pee function by using

Equation (4.39). However, this restrains n′
ν to be equal to nν .

The likelihood expression of the improved Pee fit developed in this section thus allows

to fit for Pee parameters with similar speed as the initial Pee fit method described in Section

4.2.4. Additionally, if the observable subspace ~z′ is smaller than ~y, the new expression

allows to reduce the dimensionality of the involved PDFs. In practice, the number of

observables in ~z′ is small if non-zero. Effectively, for a specific generated electron energy,

the correlation between the observables in ~y and the neutrino energy is exactly null.

Possible correlations between the observables in ~y and Eν can thus only come from PMT

reconstruction, which constitutes a second-order effect. Given a small ~z′ subspace, the

low dimensionality of fb(l|j, Teff , ~z′) should allow to significantly increase the number

of nν bins while maintaining the observable binning at the level of the unconstrained

reconstructed electron energy fit without increasing the systematic uncertainties due to

the limited statistics in the MC simulation. This should thus translate into smaller total

uncertainties on the fitted parameters.
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4.3.3 Pee + Pea Fit

The discussion of Section 4.2.5 still holds for the improved fits. The only required mod-

ification to the derived equations for NC is to replace the neutrino energy binning with

index l for a binning that uses n′
ν bins with index p.

4.4 Polynomial Survival Probability Function

4.4.1 Parameterisation

Some of the fit methods that were derived in this chapter involve the use of one or many

polynomial survival probability function(s). For the region of interest, the Pee function is

expected to be smooth and well-behaved, such that it can be approximated using a low-

order polynomial. Also, since the main handle on the neutrino energy with SNO comes

from the reconstructed electron energy, the combination of the broad resolution in the

mapping between the two types of energies (due to the nature of the interactions and to

the energy reconstruction resolution) with the finite statistics available motivated the use

of a second-order polynomial for the Pee function. The peak of the statistics for SNO

being around 10 MeV in neutrino energy, it was decided to expand the polynomial around

this energy. In order to aim at measuring Earth matter effects, a different parameterisation

was chosen for day and night survival probability curves. The selected parameterisation

involves a second-order Pee polynomial for the day curve, which is additionally combined

with a first-order asymmetry function for the night curve. Explicitly, the expressions for
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Pee are the following:

Peeday(Eν) = Pee0 + Pee1(Eν − 10 MeV) + Pee2(Eν − 10 MeV)2 (4.61)

Peenight(Eν) = Peeday(Eν) ·
2 + Aee0 + Aee1(Eν − 10 MeV)

2− Aee0 − Aee1(Eν − 10 MeV)
, (4.62)

such that the day/night asymmetry of the survival probability, Aee(Eν), is given by

Aee(Eν) ≡ Aee0 + Aee1(Eν − 10 MeV) =
2
[
Peenight(Eν)− Peeday(Eν)

]

Peenight(Eν) + Peeday(Eν)
. (4.63)

Regarding Pee + Pea fits, the same types of expressions are used to parameterise Pea,

due to the arguments presented above, but also mainly due to the small number of ESµτ

events in the SNO data, which constitutes the only class of events constraining the shape

of Pea. For the salt phase, the ratio of the number of events for which the reconstructed

electron energy distribution depends on Pea (ESµτ ) to the number of events that are

instead affected by Pee (CC and ESe) is roughly a mere 3.5%, which shows how difficult

it is to measure the Pea polynomial parameters above the zeroth order; Eν dependencies

easily get buried in the noise caused by the other classes of events. Nonetheless, NC

allows to fix the zeroth terms and it is thus mainly these parameters that allow for the

additional freedom between the three signals that is required by a sterile model. For Pea,

the strategy adopted here is thus to use the parameterisation

Peaday(Eν) = Pea0 + Pea1(Eν − 10 MeV) (4.64)

Peanight(Eν) = Peaday(Eν) ·
2 + Aea0

2− Aea0

. (4.65)
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To summarise, from Equation (4.36), the α scales of the SNO signals, as a function

of the probability functions, are given by

αCC = αB

∫ +∞

−∞
Pee(Eν)f(Eν |CC)dEν (4.66)

αESe = αB

∫ +∞

−∞
Pee(Eν)f(Eν |ESe)dEν (4.67)

αESµτ = αB

∫ +∞

−∞
[1− Pee(Eν)] f(Eν |ESµτ )dEν (4.68)

αNC = αB, (4.69)

in the case of the Pee fits, and

αCC = αB

∫ +∞

−∞
Pee(Eν)f(Eν |CC)dEν (4.70)

αESe = αB

∫ +∞

−∞
Pee(Eν)f(Eν |ESe)dEν (4.71)

αESµτ = αB

∫ +∞

−∞
Pea(Eν |ESµτ )f(Eν |ESµτ )dEν (4.72)

αNC = αB

∫ +∞

−∞
[Pee(Eν) + Pea(Eν)] f(Eν |NC)dEν (4.73)

for the Pee + Pea fits.

4.4.2 Binned Polynomial

In this chapter, different methods involving binned survival probability analytical functions

were presented. By definition, and as shown in Equation (4.38), these fit methods require

to evaluate definite integrals of the Pee (or Pea) expressions for each bin in neutrino energy.

It is straightforward to do in the case of a day curve as expressed in Equation (4.61), where
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the indefinite integral of Peeday(Eν), evaluated at an energy Eν = ∆Eν +10 MeV, simply

gives

[∫

Peeday(Eν)dEν

]

∆Eν+10 MeV

= ∆Eν

[

Pee0 +∆Eν

(
Pee1

2
+ ∆Eν

Pee2

3

)]

. (4.74)

An analytical expression for the integral of Peenight is however not as trivial to evaluate

numerically. The indefinite integral of Peenight(Eν), evaluated at an energy Eν = ∆Eν +

10 MeV is given by the expression

[∫

Peenight(Eν)dEν

]

∆Eν+10 MeV

=

− 1

6Aee
3
1

{

Aee1∆Eν

[

6
(

Pee0Aee
2
1 + 4 [Pee1Aee1 + Pee2(2−Aee0)]

)

+Aee1∆Eν [3(Pee1Aee1 + 4Pee2) + 2Pee2Aee1∆Eν ]
]

+ 24 log |Aee0 +Aee1∆Eν − 2|

· [Aee1(2Pee1 + Pee0Aee1) + 4Pee2(1−Aee0) +Aee0(Pee2Aee0 − Pee1Aee1)]

}

. (4.75)

This expression being undefined at Aee1 = 0, and noticing that the evaluation of the

natural logarithm can easily lead to truncation error in the context of a definite integral,

it is natural to develop the expression of the logarithm around Aee1 = 0. Given an

integration range between ∆Eν1 + 10 MeV and ∆Eν2 + 10 MeV, this gives

log

∣
∣
∣
∣

Aee0 + Aee1∆Eν2 − 2

Aee0 + Aee1∆Eν1 − 2

∣
∣
∣
∣
= −

∞∑

n=1

[∆Eν
n
2 −∆Eν

n
1 ]

n(2−Aee0)n
Aee

n
1 . (4.76)

Equation (4.75) has to be finite when Aee1 → 0. In fact, since Aee1 = 0 leads to an

asymmetry that does not depend on Eν , it has to give

lim
Aee1→0

[∫

Peenight(Eν)dEν

]

=
2 + Aee0

2−Aee0

[∫

Peeday(Eν)dEν

]

. (4.77)
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The expansion in Equation (4.76) must thus allow to cancel any term in Equation (4.75)

that has a power of Aee1 less than or equal to -1. Replacing Equation (4.76) in Equation

(4.75) (using only the upper limit), expanding for n ≤ 3 and after doing some algebra

and simplification, this gives

[∫

Peenight(Eν)dEν

]

∆Eν+10 MeV

=

1

6(Aee0 − 2)3

{

6Pee0

(

Aee0[4 +Aee0(2−Aee0)]− 8
)

∆Eν

+ 3
[

Pee1

(

Aee0[4 +Aee0(2−Aee0)]− 8
)

− 4Pee0Aee1(2−Aee0)
]

∆E2
ν

+ 2
[

Pee2

(

Aee0[4 +Aee0(2−Aee0)]− 8
)

− 4Pee1Aee1(2−Aee0)− 4Pee0Aee
2
1

]

∆E3
ν

}

+ 4[Aee1(2Pee1 + Pee0Aee1) + 4Pee2(1 −Aee0) +Aee0(Pee2Aee0 − Pee1Aee1)]

·
∞∑

n=4

∆En
ν

n(2−Aee0)n
Aee

n−3
1 + C, (4.78)

where C is simply a constant that contains the terms that cancel out in the context of a

definite integral. Finally, if the following variables are defined:

C1 = 2−Aee0 (4.79)

C2 = − 1

6C3
1

(4.80)

C3 = Aee0(4 +Aee0C1)− 8 (4.81)

C4 = 4Aee1C1 (4.82)

C5 = 6Pee0C3 (4.83)

C6 = 3(Pee1C3 − Pee0C4) (4.84)

C7 = 2(Pee2C3 − Pee1C4 − 4Pee0Aee
2
1) (4.85)

C8 = 4[Aee1(2Pee1 + Pee0Aee1) + 4Pee2(1−Aee0) +Aee0(Pee2Aee0 − Pee1Aee1)], (4.86)
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Equation (4.78) simplifies to

[∫

Peenight(Eν)dEν

]

∆Eν+10 MeV

=

C2∆Eν(C5 +∆Eν(C6 + C7∆Eν)) + C8

∞∑

n=4

∆En
ν

nCn
1

Aee
n−3
1 + C. (4.87)

This simple expression can typically be computed very quickly and converges after only a

few terms. It reduces to Equation (4.77) when Aee1 = 0.

4.5 Summary

Table 4.1 presents a summary of the different fit configurations discussed in this chapter.

Pee +Pea methods are not shown although they are very similar to the corresponding Pee

method. The meaning of the different indices and variables is the following:

j : Class of event (CC, ESe, ESµτ ). 1 ≤ j ≤ nclasses.

k, m: Reconstructed electron energy (Teff) bins. 1 ≤ k ≤ nunconstr, m(Teff) ⊆ k(Teff).

l, p : Neutrino energy (Enu) bins. 1 ≤ l ≤ nν , 1 ≤ p ≤ n′
ν , nν ≤ n′

ν .

~y : All observables used in parameter extraction, excluding Teff .

~z′ : Subset of observables from ~y having significant correlations with Eν for a given

Teff .

The index m has been used to replace the reconstructed electron energy Teff in the ta-

ble, since it is the binning scheme that is chosen when the conditional PDFs are generated

from Monte Carlo samples. For the same reason, all the unbinned PDFs are now written

as binned PDFs. As it can be seen, except for the particular case of the unbinned Pee poly-

nomial method, all the methods form binned observable PDFs fb(~x| . . .) by using binned
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Method Fit Param. (# param.) CC and ES PDFs νf(~x|j)
Unconstr. Reconst. Teff αjk (nunconstrained ×nclasses) fb(m|j), fb(~y|j, k) (4.13)

Unconstr. Eν αjl (nν × nclasses) P (l|j), fb(m|j, l),
fb(~y|j, l, k)

(4.32)

Unbinned Pee pol. Pee pol. pars, αB

(pol. order+2)
fb(~x|j, Pee)

Binned Pee pol. Pee pol. pars, αB

(pol. order+2)
fb(l|j), fb(m|j, l),
fb(~y|j, l, k)

(4.37)

Binned Pee Peel, αB (nν + 1) P (l|j), fb(m|j, l),
fb(~y|j, l, k)

Improved unconstr. Eν αjl (nν × nclasses) P (l|j), P (l|j,m, ~z′),
fb(m|j), fb(~y|j, k)

(4.56)

Improved binned Pee pol. Pee pol. pars, αB

(pol. order+2)
fb(p|j), fb(l|j,m, ~z′),
fb(m|j), fb(~y|j, k)

(4.59)

Improved binned Pee Peel, αB (nν + 1) P (l|j), P (l|j,m, ~z′),
fb(m|j), fb(~y|j, k)

Table 4.1: Summary of the different fit configurations in Chapter 4. For the improved
methods, the reconstructed electron energy Teff in the conditional PDFs has been replaced
by the associated bin index m.

conditional Teff spectral PDFs fb(m| . . .) and binned conditional PDFs fb(~y| . . . , k). Al-

though building the likelihood function using these PDFs would be absolutely correct,

it is a simplification of how it is actually done in QSigEx, because of the optimisation

mentioned in Section 3.3. In reality, one of these two types of conditional distributions is

always a normalised histogram and the other is a PMF, since it is normalised only by the

number of Monte Carlo events. As shown, extra distributions are required by the methods

that use neutrino energy spectra. For these, as a general rule, the binned fits in Eν and

Pee use PMFs instead of PDFs while the Pee polynomial methods use regular PDFs.
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In this chapter, multiple methods were derived to perform spectral extractions of CC

and ES SNO signals. In the context of a multi-phase fit that involves varying detector

response and where the ultimate goal is to extract the neutrino survival probability, it

appears that the best method is the unbinned Pee polynomial fit. This method reflects

the sensitivity of the SNO detector and is based on a statistical model which is not

underconstrained like unconstrained methods. It does not bin the neutrino energy, a non-

observable, and also uses reduced PDF dimensionality; both factors contribute to reduce

biases. However, such a method is computationally very challenging to use, because

it is extremely slow. The improved binned Pee polynomial method constitutes the best

alternative, since it is much faster and can potentially allow for a large number of neutrino

energy bins. Both the improved binned Pee polynomial method and the unbinned Pee

polynomial method are used for the final fits, as described in Chapter 7. It will be shown

in Chapter 6 how the two methods generate very similar results. If the Pee methods

are perfectly suited for the extraction of the survival probability parameters for a three

neutrino flavour model, it is not as true for cases with non-active flavours for which a

less constrained model is required. Corresponding Pee + Pea methods have thus been

developed to perform a fit for such cases.

As all the elements of the likelihood function have now been presented, the details of

the three-phase extraction with QSigEx will be covered in the next chapter.



Chapter 5

Signal Extraction

Although Chapters 3 and 4 described the general form of the different building blocks of

the extended log-likelihood function used by QSigEx, specific details regarding the three-

phase signal extraction have not yet been covered. This chapter provides information

regarding data selection, PDF parameters and the signal extraction process, information

which is relevant for the ensemble tests analysed in Chapter 6 as well as for the real data

fits presented in Chapter 7.

5.1 Data Selection

To perform the three-phase extraction, the PMT events are selected using the same criteria

as for the previous analyses of these data [7, 4]. In particular, the analysis window that is

defined for the LETA observables is given by

3.5 MeV ≤ Teff < 20.0 MeV

0 ≤ ρ < 0.77025

−0.12 ≤ β14 < 0.95

−1 ≤ cos θ⊙ < 1

120
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and the window for the NCD phase is defined by

6.0 MeV ≤ Teff < 20.0 MeV

0 ≤ ρ < 0.77025

−1 ≤ cos θ⊙ < 1.

In addition to the above criteria, more advanced algorithms referred to as “high level cuts”

have been used to enhance background rejection. More information regarding these tests

can be found in [7, 4, 49, 50].

5.2 PDF Binning and Configuration

5.2.1 Observable and Monte Carlo Variable Binning

As explained in Section 3.3, for a given dataset, QSigEx uses the same observable binning

for the data and the signal extraction PDFs. The binning described in this section thus

applies to all classes of events. This also holds for the CC, ESe and ESµτ PDFs, but in

some cases these signals use additional binning of the reconstructed electron energy to

generate conditional PDFs. The regular binning of Teff as an observable uses the index m

and that for the conditional PDFs uses the index k, as described in Section 4.1. However,

for the fit methods selected for the three-phase analysis, the same binning is actually used.

Binned Pee polynomial fits also bin the neutrino energy, a non-observable. Two binning

schemes are used for Eν , which are referred to by using indices l and p. Tables 5.1, 5.2

and 5.3 give the binning used for the three-phase analysis.
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Observable # bins Binning

Teff (m, k) 21
0.25 MeV-wide bins from 3.5 to 5.0 MeV
0.5 MeV-wide bins from 5.0 to 12.0 MeV
8.0 MeV-wide bin above 12.0 MeV

cos θ⊙ 8 0.25-wide bins from -1 to +1
ρ 5 0.15405-wide bins from 0 to 0.77025
β14 15 0.0713̄-wide bins from -0.12 to +0.95

Table 5.1: Observable binning used for LETA.

Observable # bins Binning

Teff (m, k) 13
0.5 MeV-wide bins from 6.0 to 12.0 MeV
8.0 MeV-wide bin above 12.0 MeV

cos θ⊙ 25 0.08-wide bins from -1 to +1
ρ 10 0.077025-wide bins from 0 to 0.77025

Table 5.2: Observable binning used for the NCD phase.

Variable # bins Binning

Eν (l) 32
4.0 MeV-wide bin from 1.0 to 5.0 MeV
0.3 MeV-wide bins from 5.0 to 14.0 MeV
3.0 MeV-wide bin from 14.0 to 17.0 MeV

Eν (p) 96

3.00 MeV-wide bin from 1.00 to 4.00 MeV
0.75 MeV-wide bin from 4.00 to 4.75 MeV
0.25 MeV-wide bin from 4.75 to 5.00 MeV
0.10 MeV-wide bins from 5.00 to 14.00 MeV
0.25 MeV-wide bin from 14.00 to 14.25 MeV
0.75 MeV-wide bin from 14.25 to 15.00 MeV
2.00 MeV-wide bin from 15.00 to 17.00 MeV

Table 5.3: Monte Carlo variable binning used for the three-phase analysis.
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5.2.2 PDF Configuration

5.2.2.1 CC, ESe and ESµτ Signals

For the CC and ES signals, the different PDF configurations were described almost entirely

in Section 4.5. However, in the case of the improved binned Pee polynomial fit, the subset

of observables ~z′ has not been specified. For this fit the CC, ESe and ESµτ PDFs were

found to be given by

f(~x|j, Pee) =

nν∑

l=1

{[∫

l
gj(Eν , Pee)dEν

]
f(~x|j)fb(l|j, Teff , ~z′)

}

nν∑

l=1

{[∫

l
gj(Eν , Pee)dEν

] [∫ +∞
−∞ f(~x|j)fb(l|j, Teff , ~z′)dV

]} (5.1)

in Equation (4.59), where ~x(D2O,salt) ≡ (Teff , ρ, cos θ⊙, β14) for the D2O and salt phases

and ~xNCD−PMT ≡ (Teff , ρ, cos θ⊙) for the NCD phase. In the same equation, gj(Eν , Pee)

is given by Pee(Eν), 1− Pee(Eν) or Pea(Eν), depending on the signal j, and the integral

of the denominator is performed over the volume/hypervolume of the entire observable

space. A vector ~y was defined as the subset of ~x that excludes Teff . The vector ~z′ was

defined as the subset of ~y whose observables are correlated to the neutrino energy for

a given reconstructed electron energy. This partitioning of ~y allowed to significantly re-

duce the dimensionality of the PDF f(Eν |j, ~x) such that it could be approximated by

f(Eν |j, Teff , ~z′) (Equation (4.49)). For the CC and ES signals, the correlations between

the observables of the ~y subset and the neutrino energy for a given reconstructed elec-

tron energy are expected to be small, because they are only induced through observable

reconstruction. Effectively, for a given electron energy in the detector, the true values of

the ρ, cos θ⊙ and β14 observables are not correlated to the neutrino energy.
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After using CC and ES Monte Carlo samples to compute the correlations between the

reconstructed observables and the neutrino energy, for narrow bins of electron energies,

the ~z′ subset for D2O and salt phases was defined as

~z′
(D2O,salt) ≡ (β14), (5.2)

since this observable has the largest correlation with a maximum correlation coefficient of

only about 0.038 among all the defined Teff bins and a correlation of ≈ 0.02 around 10

MeV. For the NCD phase β14 is not used in signal extraction, so ~z′ is defined as

~z′
NCD−PMT ≡ (cos θ⊙) (5.3)

instead, since the maximum value for the related correlation is about 0.035.

5.2.2.2 NC Signal and Backgrounds

For the NC signal, the direction of the emitted photons following the neutron capture is

totally uncorrelated with the direction of the neutrino, such that the cos θ⊙ observable

can be marginalised in its own PDF. The PDF configuration for NC is thus

f(~x|NC) = f(Teff , ρ, β14|NC)f(cos θ⊙|NC) (5.4)

for LETA, and

f(~x|NC) = f(Teff , ρ|NC)f(cos θ⊙|NC) (5.5)

for the NCD phase.
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For backgrounds, the cos θ⊙ distributions are also uncorrelated with the other observ-

ables, such that they use the same PDF configuration as for the NC signal.

5.3 Likelihood Function Minimisation

To minimise the three-phase negative extended log-likelihood function, the QSigEx signal

extraction package relies on TMinuit, the version of the MINUIT minimisation package

implemented in ROOT [3]. TMinuit has the capability to handle the large number of

floating parameters of the three-phase fit as well as the ability to find the global minimum

in a reasonable number of iterations. In QSigEx, the negative extended log-likelihood

function is minimised by using the MIGRAD algorithm. To evaluate parameter uncertain-

ties, MIGRAD is called a second time in order to get a better estimate of the covariance

matrix and then the MINOS algorithm is used to compute the asymmetrical uncertainty

values.

5.4 Treatment of Systematic Uncertainties

The three-phase extraction of the survival probability involves a large number of fit param-

eters. Excluding the signal parameters, the likelihood function contains 36 parameters for

the background rates and 117 systematic uncertainty parameters (nuisance parameters).

Since systematic uncertainty parameters represent degrees of freedom in the statistical

model of the likelihood function, similar to the signal parameters, the data themselves

can constitute an indirect measurement of the systematic uncertainty parameters. The
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data thus have the potential to provide additional constraints on the systematic uncer-

tainties, albeit at various degrees, depending on the significance of the changes in the

observable distributions, including scaling effects, that occur when these parameters are

varied within their nominal range. Hence it can be beneficial to float systematic uncer-

tainty parameters in the fit. These additional constraints contribute to reduce the effects

of the systematic uncertainty parameters on the signal parameters. However, many sys-

tematic uncertainty parameters affect observable values, allowing Monte Carlo events to

fall in different PDF bins depending on the uncertainty parameter value. Due to the finite

number of Monte Carlo events, this causes discontinuities in the likelihood function, which

prevent minimisation and uncertainty estimation algorithms from working properly. Fi-

nally, some systematic uncertainty parameters either have very small effects on the signal

parameters, or are not significantly constrained by the data. Varying all these parameters

in the fit would significantly increase the required time to evaluate the uncertainties of the

signal parameters, without providing any benefit for the quality of the results. For all the

above reasons, it is thus preferable to resort to an ensemble of methods to evaluate the

effects of systematic uncertainties. The following sections describe the different strategies

that are used by QSigEx.

5.4.1 Floated Parameters

Since many systematic uncertainty parameters affect observable values, only a fraction

of them can truly be floated without causing minimisation problems such as the ones

discussed in the previous section. Among the remaining parameters, most of them have

very small effects on signal parameters, such that it is not very useful to float them rather
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than using the shift and refit method described below. The only parameters that are truly

floated in the three-phase fit are the NC capture efficiency relative uncertainties for the

NCD phase, which are defined in Appendix D.

5.4.2 Scanned Parameters

Among the parameters that are not truly floated, some have the potential to be signifi-

cantly constrained by the data. These include parameters such as energy scales, energy

resolution shifts, β14 scales and the parameters for the PMT β-γ analytical PDFs. To

determine ranges for these uncertainties that are additionally constrained by the data,

the approach taken is to iteratively scan the likelihood space along the direction of the

individual scanned parameters, each time finding the point in the floated parameter space

that minimises the negative extended log-likelihood function. After each scan, the best

fit value for the current parameter is updated and the algorithm proceeds to the next

parameter. This technique, as well as a more extensive discussion about the selection of

the scanned systematic uncertainty parameters, can be found in [49]. Compared to the

previous analysis, the technique used in the three-phase analysis is more automated. An

algorithm has been developed to search for the negative likelihood minimum when scan-

ning parameters as well as to define scanning ranges for the next iteration, which notably

allows to “zoom in” around the negative likelihood minimum to enhance accuracy. This

algorithm is the following:

1. The next systematic uncertainty parameter that needs to be scanned is selected.
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2. The parameter is scanned using a specified number of equally spaced parameter

values. The scan range is given by the value computed during the previous iteration

or by using 2.5 times the nominal systematic uncertainty value in the case of the

first iteration. To compute the negative log-likelihood value for each scan point,

the other parameters are fixed to their current best fit values and the negative

log-likelihood is minimised using the floating parameters.

3. An asymmetrical parabola (that is to say, the negative logarithm of an asymmetrical

Gaussian function) is fitted to the resulting curve, after determining a fit range

given by the set of scan points around the minimum position that are less than two

likelihood units (two sigmas) larger than the minimum value.

4. The updated best fit value for the current scan parameter is given by the fitted value

for the parabola minimum. The new scan range on each side of the fitted minimum

is computed using the largest value between twice the largest fitted asymmetrical

uncertainty value and half the previous scan range.

5. Steps 1 to 4 are repeated until all parameters have been scanned.

6. Steps 1 to 5 are repeated until convergence is achieved, which generally occurs when

parameter fit values stop systematically drifting from one iteration to the other.

7. The fitted values and uncertainties for the systematic uncertainty parameters are

given by the fitted peak and widths of the fitted asymmetrical Gaussian functions

as provided by the last iteration.

The main advantage of the above algorithm, in addition to providing an automated method

to scan the systematic uncertainty parameters, is that it allows to evaluate parameters
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Figure 5.1: Example of scan iterations of the correlated energy scale systematic uncertainty
parameter. Shown are the computed likelihood values along with the fitted asymmetrical
parabolas.

that would otherwise be quite challenging to scan manually, due to discontinuities in the

likelihood space caused by the finite number of Monte Carlo events that are moved to

different observable bins, but also in and out of the analysis window, when varying these

systematic uncertainty parameters. Figure 5.1 presents an example of scan iterations for

the correlated energy scale systematic uncertainty parameter. It shows such discontinu-

ities, along with some drift of the best fit value for the first five iterations.

5.4.3 Shift and Refit Parameters

For the remaining systematic uncertainty parameters, as well as for the parameters whose

most probable values and uncertainties are determined by the scan procedure as described
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in the previous section, the associated systematic uncertainties on the extracted param-

eters, such as the 8B scale and the Pee parameters, are computed using a shift and refit

procedure. In the previous SNO analyses that used a maximum likelihood procedure,

these systematic effects were typically computed by minimising the negative log-likelihood

function using single one-sigma shifts of the parameters on each side of the most probable

values.

In QSigEx, the shift and refit procedure has been modified in order to improve the

evaluation of the systematic effects in cases where the relation between a systematic uncer-

tainty parameter and the position of the minimum of the negative log-likelihood function

is non-linear. Instead of performing a single shift of a systematic uncertainty parameter

on each side of its most probable value, QSigEx performs 100 random shifts according to

an asymmetrical Gaussian distribution whose parameters are set using the most probable

value and parameter uncertainties. For each shift, the negative log-likelihood function is

minimised within the floating parameter space, as usual. The fitted value for the floating

parameters is recorded for each fit. Finally, to obtain the resulting uncertainties for one

of these parameters, the RMS of its fitted values is computed separately on each side

of the most probable floating parameter value (the value obtained when using the most

probable systematic uncertainty parameter values) and also relatively to this value. This

ensures that the most probable value for the floating parameters correspond to the “best”

parameter value. This procedure is also equivalent to fitting the widths of an asymmetrical

Gaussian function whose peak is forced to be located at the “best” floating parameter

value.
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5.4.4 Error Combination

To combine the individual effects of the shifted systematic uncertainty parameters, in-

cluding the parameters that are scanned beforehand, the method followed by the previous

SNO analyses consisted of adding the positive sides of the systematic uncertainty effects

in quadrature, and similarly for the negative sides. The intent of this procedure was to

combine the effects under the assumption that the systematic uncertainties are not corre-

lated. However, this method was not completely correct, because under the no-correlation

assumption, total systematic shifts result from individual effects in random directions.

To more correctly combine the effects of the systematic uncertainties, QSigEx relies on

a simple Monte Carlo simulation. For each floating parameter, it generates a distribution of

total systematic shifts by drawing random individual shifts according to the asymmetrical

Gaussian distributions that are computed during the shift and refit procedure. Each total

shift value in this distribution is computed simply by adding linearly the individual random

shifts. The distribution is populated using 106 of these computed shifts. Finally, the

total asymmetrical systematic uncertainties on the floating parameters are obtained by

computing RMS values of the distributions about zero on the positive and negative sides

separately.



Chapter 5 Signal Extraction 132

5.5 Summary

Combined with the information contained in Appendix D, the elements presented in this

chapter represent the more specific aspects of the analysis that are used to perform the

three-phase SNO extraction. In the next chapter, results from thorough tests of the

extraction procedure are presented.
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Ensemble Testing of SNO

6.1 Introduction

Chapters 3 to 5 have shown the complexity of the SNO signal extraction for the three-

phase analysis. In QSigEx, this process involves minimising the likelihood function over

30 000 times, while floating 45 parameters and scanning or shifting randomly over 115

systematic uncertainty parameters, which trigger the regeneration of the PDFs using over

3.5 GB of Monte Carlo simulation data. Although QSigEx’s code has been designed to

minimise the possibility of unnoticed bugs to find their way into the final fit, notably

by making its structure as flexible as possible such that its code can be reused multiple

times in many contexts without having to change input values in different locations, it

remains essential to ensure that the results it provides are not affected by any significant

inconsistency. Although this chapter is quite substantial, its sole purpose can nonetheless

be summarised as verifying and proving that the extracted signal parameters are bias-free

in the frequentist sense.

To perform ensemble testing, that is to say to produce and analyse fit results ob-

tained using multiple fake datasets generated using known parameters, allows not only to

133
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identify bugs in QSigEx’s code, but also to find problems resulting from neglected corre-

lations and/or non-linearities due to the involvement of multiple observables, systematic

uncertainty parameters and classes of events in the parameter extraction process. Ensem-

ble testing allows also to tune different parameters, such as observable bin size, in order

to minimise the expected total uncertainty on the fitted signal parameters. Finally, this

technique is useful to establish criteria of comparison for the real data fit, when this is

performed via multiple extraction packages.

In the context of SNO, different factors influence how ensemble testing can be per-

formed. The main factor is the limited Monte Carlo statistics, which allows to generate

only a few fake datasets for some of the background events due to the low efficiency with

which they can be generated inside the analysis window. Another challenge consists of the

computational resources involved in a SNO three-phase fit, which constrain how ensemble

testing can be performed while propagating all of the systematic uncertainties of the real

data fit.

To reduce the effects of these constraints, two techniques were used for the three-

phase analysis. The first one is to generate fake data for one event class at a time, then

to combine them using a progressive approach:

1. Using only signal (CC, ES, NC) events.

2. Using signal events and background events with high statistics (that is to say,

background classes with high Monte Carlo multiplicity).

3. Using all signal and background events.
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4. Using all signal and background events, and varying the main scanned systematic

uncertainty parameters.

For each type of dataset, fits were performed using only the corresponding classes of

events. This approach allows to perform ensemble testing in decreasing order of both

sensitivity and of possible negative consequences. Performing ensemble testing using

hundreds of signal-only fake datasets allows to ensure that the QSigEx package builds

the likelihood function properly given a 8B flux and survival probability parameters. It

also allows to probe the chosen PDF configuration using the best sensitivity possible.

Adding high-statistics backgrounds allows to verify the proper behaviour of the code that

builds the likelihood for any background while retaining almost the same sensitivity as for

signal-only testing. It also gives the chance to test the PDF configuration for the selected

backgrounds and to see how these classes of events interact with the signals in the fit. The

inclusion of the remaining classes of events allows only to ensure the proper interaction

of these backgrounds in the fit, admittedly with significantly less sensitivity. Finally,

ensemble testing of full fake sets while varying the main scanned systematic uncertainty

parameters is useful to verify the parameter scanning and zooming procedure, to test the

proper implementation of these systematic uncertainties at some extent and also to assess

their effect on the reliability of the extracted signal parameters. The progressive ensemble

testing was performed separately for the LETA component and the NCD phase, and then

for the three-phase analysis. The individual LETA and NCD phase fits allow to possibly

show problems pertaining to one of the two sub-analyses, which could be suppressed

when performing three-phase fits. However, only the results from the three-phase tests

are included in this thesis, because of the similarity in the results and the large number of

involved plots.
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The second technique allows to reduce the effects of the SNO constraints by performing

the ensemble tests mentioned above twice; the second time using fake datasets generated

with a different random number generator seed. This gives the possibility to generate

split sets that, although not statistically independent from each other, allow to appreciate

the effects of the limited number of sets on the results from ensemble testing. Thus, if

results from the first ensemble test are a source of concern, it is possible to see how much

these results change using the second ensemble. If the new results move considerably in

the other direction, one can conclude that the initial shifts were statistical fluctuations.

Otherwise, more investigation could be necessary.

6.2 Fake Data and PDF Event Generation

As mentioned in the previous section, to perform the multiple ensemble tests presented

later in this chapter, fake sets were first generated for each class of events. To correctly

model the stochastic nature of event detection, these sets were generated by randomly

drawing events from the Monte Carlo simulation data without replacement, with the

number of drawn events being Poisson-distributed. The Poisson means were chosen such

that they matched the number of expected events in the analysis window, as computed

using Monte Carlo samples with event production rates set to known values when available.

The production rates for the signals were set to the BP2000 SSM 8B flux [51] and the

background production rates were set to the values measured using external assays when

available [4, 7]. Otherwise, the values obtained from previous SNO analyses were used to

set the background Poisson parameters.
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For the 8B signals, the acceptance-rejection method was used to generate events with

the required dependency on the survival probability functions. The survival probability

parameters were chosen to be

Peeday = 0.325− 8.88× 10−3 MeV−1(Eν − 10 MeV) +

1.22× 10−3 MeV−2(Eν − 10 MeV)2 (6.1)

Peenight = Peeday ·
2 + 2.80× 10−2 + 4.78× 10−3 MeV−1(Eν − 10 MeV)

2− 2.80× 10−2 − 4.78× 10−3 MeV−1(Eν − 10 MeV)
(6.2)

Peaday = 0.650 + 7.92× 11−3 MeV−1(Eν − 10 MeV) (6.3)

Peanight = Peaday ·
2 + 2.23× 10−2

2− 2.23× 10−2
, (6.4)

where Pea functions were used only for Pee+Pea fits. The hep events have been generated

using 0.35 SSM, 0.47 SSM and 1.00 SSM for hep CC, hep ES and hep NC, respectively.

Tables C.1 to C.4 in Appendix C show the content of the fake datasets and the associated

PDF events.

6.3 Ensemble Testing

As mentioned earlier, ensemble tests allow to identify possible problems in signal extrac-

tion. In order to analyse the ensemble tests, various metrics must be defined. All of the

ensemble tests of this chapter have been analysed using the following figures of merit:
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Fractional Bias The fractional bias is defined as

Fractional Bias ≡ Fit value− Nominal value

Nominal value
. (6.5)

In the bias plots, drawn error bars indicate the uncertainty on the average bias, which

corresponds approximately to the sample standard deviation of the bias divided by the

square root of the number of samples.

Pull The pulls are defined as

Pull ≡ Fit value− Nominal value

Fitted Uncertainty
. (6.6)

In the pull plots, drawn error bars show the sample standard deviation of the pull and

not the uncertainty on the average pull. Statistics predict these error bars to have an

expectation value of approximately 1 − 1
4(n−1)

and an uncertainty of about 1√
2(nsamples−1)

.

The expected uncertainty on the pull average, which is given by 1√
nsamples

from statistics, is

shown on the plots using dashed lines. The expected uncertainty bands for the locations

of the ends of the error bars, given the computed averages, are also shown using grey

strips.

Relative Uncertainty The relative uncertainties are defined as

Relative Uncertainty ≡ Fitted Uncertainty

Nominal value
· 100%. (6.7)
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In the associated plots, average relative uncertainties are shown along with the uncertainty

on this average, which is the sample standard deviation of the relative uncertainties divided

by the square root of the number of samples.

In order to satisfy the assumption of the likelihood function that all data events and

measurements are independent, the means for all the penalty terms used during ensem-

ble testing have been randomly fluctuated via Gaussian random values. This simulates

multiple measurements for these penalty terms and ensures in particular that the pull

uncertainties are not artificially reduced. The following sections show the ensemble test

results for the three-phase analysis.

6.4 Three-Phase Testing

This section presents results of the different types of ensemble tests as described in Section

6.1, when using three-phase fake datasets.

6.4.1 Pee Polynomial Fits

6.4.1.1 Signal-Only Testing

In this section, results of ensemble testing of the Pee fit are shown; these results were

obtained when using only signal (CC, ESe, ESµτ and NC) events. As mentioned earlier,

such tests allow to use a maximum number of fake sets (250 three-phase sets) to look

at the test variables with the best sensitivity to eventual problems related to the Pee
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parameterisation. This permits to decouple these possible problems from other factors

related to the backgrounds.

Figure 6.1 presents the fractional biases obtained from both the improved binned Pee

polynomial and the unbinned Pee polynomial fit. As the figure shows, although the bias

for Pee2 on the top plot might seem to be significant at first sight, the bottom plot,

which was generated using the alternate ensemble test, reveals that they are in fact only

fluctuations due to the limited statistics in the Monte Carlo samples used to generate

the signal extraction PDFs. The same can be said about the 8B scale for the top plot

of Figure 6.2, when comparing the mean value to the expected uncertainty on the mean

(dashed line) with 250 fake sets. Additionally, this second figure shows that the size of

the error bars for the pulls are in good agreement with the expected spread, which is

indicated by the grey strips. The two figures thus show that three-phase ensemble testing

using only the signals leads to bias-free results that also have expected pull distributions.

Finally, Figure 6.3 shows the computed relative uncertainties obtained for both the regular

and alternate ensemble tests. For these tests, the relative uncertainty on the 8B scale is

(2.260± 0.003)% and the one on Pee0 is (4.22± 0.01)%.

6.4.1.2 Signal with High-Statistics Monte Carlo Backgrounds

Tables C.1 to C.4 show that it is possible to perform three-phase ensemble testing with

250 sets as for the previous section, but this time including backgrounds, except for Bi and

Tl events for LETA and neutral counter photodisintegration events from the NCD phase.

Since all backgrounds are handled by the same code in QSigEx (except the analytical

backgrounds), this allows to test all the components that are used by full set fits, but
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Figure 6.1: Fractional biases for ensemble testing of the three-phase analysis (250 signal-
only fake sets). Shown are the results for the improved binned Pee fit and the unbinned
Pee fit, for regular (top) and alternate (bottom) ensembles.



Chapter 6 Ensemble Testing of SNO 142

b

b

b

b
b

b b

b

ut

ut

ut

ut
ut

ut ut

ut

−1.0

−0.5

0.0

0.5

1.0

1.5

b 3-Phase Binned Pee Pol.
ut 3-Phase Pee Pol.

P
u
ll

b

b

b
b

b
b

b
b

ut

ut

ut ut ut
ut

ut
ut

8
B

S
ca
le

P
e
e
0

P
e
e
1

P
e
e
2

A
e
e
0

A
e
e
1

N
C
D
-P

M
T

N
C

C
a
p
tu
re

N
C
D
-N

C
D

N
C

C
a
p
tu
re

−1.0

−0.5

0.0

0.5

1.0

1.5

P
u
ll

Figure 6.2: Pulls for ensemble testing of the three-phase analysis (250 signal-only fake
sets). Shown are the results for the improved binned Pee fit and the unbinned Pee fit, for
regular (top) and alternate (bottom) ensembles. The one-sigma bands for the pull mean
(dashed lines) and the expected spread (grey strips) are also drawn.
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Figure 6.3: Uncertainties for ensemble testing of the three-phase analysis (250 signal-only
fake sets). Shown are the results for the improved binned Pee fit and the unbinned Pee

fit, for regular (top) and alternate (bottom) ensembles.
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with a much better sensitivity. Figures 6.4 to 6.6 show the results of this test. Similarly to

the results obtained with the signal-only fake sets, these figures show no significant biases

for the signal parameters. The pull plots also give results which are within the expected

uncertainties.

Since it has now been shown that the inclusion of backgrounds led to good results,

it is interesting to look at the fluctuations of the test parameters when computing them

using only the first 14 sets from the previous test that was shown to be unbiased, because

this is the number of fake sets used when performing full ensemble testing. This gives the

results of Figures 6.7 to 6.9. These plots show many more fluctuations between regular

and alternate ensemble tests when compared to the previous set, that is to say bias and pull

shifts that appear to be further from the origin and more unstable pull spreads compared

to the expected fluctuations from Gaussian statistics.

6.4.1.3 Full Fake Set Testing

Ensemble testing using fake sets that include all the backgrounds allows to simulate the

real data fit as closely as possible. However, the limited available Monte Carlo statistics,

particularly for Bi and Tl events of LETA, allows to generate only 14 fake sets. Such a

test is thus expected to provide test variables that fluctuate quite significantly. Since only

a few full fake sets can be generated, the uncertainties on these variables are also not

expected to behave entirely like Gaussian variables, such that the size of the error bars

for the biases and pulls shown in Figures 6.10 and 6.11, as well as the size of the dashed

band for the pulls, are not expected to model the real fluctuations perfectly. In such

a case the comparison between the regular and alternate ensembles acquires a greater
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Figure 6.4: Fractional biases for ensemble testing of the three-phase analysis (250 full fake
sets excluding Bi and Tl LETA events and neutral counter photodisintegration events).
Shown are the results for the improved binned Pee fit and the unbinned Pee fit, for regular
(top) and alternate (bottom) ensembles.
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Figure 6.5: Pulls for ensemble testing of the three-phase analysis (250 full fake sets
excluding Bi and Tl LETA events and neutral counter photodisintegration events). Shown
are the results for the improved binned Pee fit and the unbinned Pee fit, for regular (top)
and alternate (bottom) ensembles. The one-sigma bands for the pull mean (dashed lines)
and the expected spread (grey strips) are also drawn.
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Figure 6.6: Uncertainties for ensemble testing of the three-phase analysis (250 full fake
sets excluding Bi and Tl LETA events and neutral counter photodisintegration events).
Shown are the results for the improved binned Pee fit and the unbinned Pee fit, for regular
(top) and alternate (bottom) ensembles.
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Figure 6.7: Fractional biases for ensemble testing of the three-phase analysis (first 14
full fake sets excluding Bi and Tl LETA events and neutral counter photodisintegration
events). Shown are the results for the improved binned Pee fit and the unbinned Pee fit,
for regular (top) and alternate (bottom) ensembles.
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Figure 6.8: Pulls for ensemble testing of the three-phase analysis (first 14 full fake sets
excluding Bi and Tl LETA events and neutral counter photodisintegration events). Shown
are the results for the improved binned Pee fit and the unbinned Pee fit, for regular (top)
and alternate (bottom) ensembles. The one-sigma bands for the pull mean (dashed lines)
and the expected spread (grey strips) are also drawn.
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Figure 6.9: Uncertainties for ensemble testing of the three-phase analysis (first 14 full fake
sets excluding Bi and Tl LETA events and neutral counter photodisintegration events).
Shown are the results for the improved binned Pee fit and the unbinned Pee fit, for regular
(top) and alternate (bottom) ensembles.
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significance. Considering these factors, the results presented for these ensemble tests do

not seem to show any significant bias or pull. Overall, ensemble testing with QSigEx

thus gives very good results. Both the improved binned and unbinned Pee polynomial fits

give similar results that do not show significant biases or pulls. Figure 6.12 presents the

corresponding fitted relative uncertainties.

6.4.1.4 Full Fake Testing with Nominal Systematic Uncertainty Shifts and

Scanned Systematic Uncertainty Parameters

The ensemble tests performed in this subsection are quite different from the ones that

have been presented so far:

1. Although their fake sets were generated using the same Pee and Poisson param-

eters (that is to say the same expected number of events when using the default

skimmed Monte Carlo) as the other ensemble tests, the observables of the sets were

smeared by all of the nominal systematic uncertainty shifts (except the day/night

asymmetries).

2. Instead of generating the maximum number of sets for each class of events, 14 sets

were generated for each class to maximise the Monte Carlo statistics used to build

the PDFs.

3. Full scanning and zooming of the systematic uncertainty parameters were performed.

The higher statistics in the PDFs ensure smoother scans of the systematic uncer-

tainty parameters, because it is less likely to have a data event that suddenly falls

into a bin that is empty for all of the PDFs while scanning.
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Figure 6.10: Fractional biases for ensemble testing of the three-phase analysis (14 full
fake sets). Shown are the results for the improved binned Pee fit and the unbinned Pee

fit, for regular (top) and alternate (bottom) ensembles.
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Figure 6.11: Pulls for ensemble testing of the three-phase analysis (14 full fake sets).
Shown are the results for the improved binned Pee fit and the unbinned Pee fit, for regular
(top) and alternate (bottom) ensembles. The one-sigma bands for the pull mean (dashed
lines) and the expected spread (grey strips) are also drawn.
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Figure 6.12: Uncertainties for ensemble testing of the three-phase analysis (14 full fake
sets). Shown are the results for the improved binned Pee fit and the unbinned Pee fit, for
regular (top) and alternate (bottom) ensembles.
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4. The means of the penalty terms for the scanned systematic uncertainty parameters

were randomly shifted, as were the means of the constraints for the backgrounds

and NC detection efficiencies. For a given dataset, these means were shifted con-

sistently for all of the fits involved in the scans. This holds for all of the scanned

parameters, except the parameters for the analytical radial PDFs of the LETA PMT

β-γ backgrounds, that could easily generate negative probability densities if they

were shifted.

5. After scanning and zooming the systematic uncertainty parameters, their effects on

the fit parameters were evaluated by a shift-and-refit procedure using the results

from the scans.

6. The ensemble test parameters were then computed using total uncertainties com-

puted from the addition in quadrature of the statistical uncertainties and the sys-

tematic uncertainties generated by the scanned systematic uncertainty parameters.

7. The whole procedure was repeated twice for the regular and alternate ensemble

tests.

This technique should normally lead to ensemble test parameters with the expected dis-

tributions, modulo the following factors:

• The means of the 2D penalty terms for the radial PDFs of the LETA PMT β-γ

backgrounds are not randomly shifted as mentioned above and this will tend to

reduce the pull spreads.
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• The test parameters do not have perfectly Gaussian distributions since they are

computed using the results from only 14 fits, as is always the case when ensemble

testing with the full fake datasets.

• Since for most signals, a large majority of the Monte Carlo statistics are used to

generate the PDFs, the comparison between the regular and alternate ensembles

must be done while considering that the observed discrepancies are mainly due to

the fake data statistics and not to the PDF statistics. To consider the latter effects,

one must consider the uncertainties due to the finite Monte Carlo statistics.

• Some systematic uncertainty parameters are constrained in an asymmetrical way by

the data, such that the average values for the fit parameters might not correspond to

the most likely values (the output from the minimisation of the likelihood function).

This could thus create biases that would not indicate problems in signal extraction.

The results for the signal parameters of the ensemble tests described above, when

using the improved binned Pee fit method, are shown in Figures 6.13 to 6.15. Overall

the results show no significant bias or pull. As expected, the results from the regular and

alternate ensembles are more correlated due to the usage of essentially the same PDF

statistics. The pull means shown in Figure 6.14 are all reasonable. The pull spreads for

the alternate ensemble appear to be a bit small, but this can be explained by the reduced

number of sets used to compute the test parameters such that their distributions are less

Gaussian.
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Figure 6.13: Fractional biases for ensemble testing of the three-phase analysis with nominal
systematic uncertainty shifts and scanned systematic uncertainty parameters. Shown are
the results for the improved binned Pee fit, for regular (top) and alternate (bottom)
ensembles.
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Figure 6.14: Pulls for ensemble testing of the three-phase analysis with nominal systematic
uncertainty shifts and scanned systematic uncertainty parameters. Shown are the results
for the improved binned Pee fit, for regular (top) and alternate (bottom) ensembles. The
one-sigma bands for the pull mean (dashed lines) and the expected spread (grey strips)
are also drawn.
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Figure 6.15: Uncertainties for ensemble testing of the three-phase analysis with nominal
systematic uncertainty shifts and scanned systematic uncertainty parameters. Shown are
the results for the improved binned Pee fit, for regular (top) and alternate (bottom)
ensembles.
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6.4.2 Pee + Pea Polynomial Fits

This section presents the ensemble test results obtained using the Pee + Pea fit methods.

6.4.2.1 Signal-Only Testing

Figures 6.16 to 6.18 present the results when ensemble testing the three-phase analysis

using the improved binned Pee + Pea and the unbinned Pee + Pea fit methods, with 250

signal-only fake sets. Both methods give similar results that do not show significant

biases or pulls. As expected, the uncertainties on the Pea parameters are huge (or even

off-scale), due to the limited ESµτ statistics, but the ones on Pee are not necessarily

increased compared to the Pee fits, although this comparison is not very meaningful since

the 8B scale has to be fixed in signal extraction when testing a sterile model.

6.4.2.2 Signal with High-Statistics Monte Carlo Backgrounds

As it was the case for the Pee fit, ensemble testing using only backgrounds having high-

statistics Monte Carlo was performed for the Pee+Pea fit, in order to test the behaviour of

the signal parameters in the presence of backgrounds using the highest possible sensitivity.

Figure 6.19 to 6.21 show the results from the regular pair of ensemble tests. The results

do not show any anomaly.
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Figure 6.16: Fractional biases for ensemble testing of the three-phase analysis (250 signal-
only fake sets). Shown are the results for the improved binned Pee + Pea fit and the
unbinned Pee + Pea fit, for regular (top) and alternate (bottom) ensembles.
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Figure 6.17: Pulls for ensemble testing of the three-phase analysis (250 signal-only fake
sets). Shown are the results for the improved binned Pee + Pea fit and the unbinned
Pee + Pea fit, for regular (top) and alternate (bottom) ensembles. The one-sigma bands
for the pull mean (dashed lines) and the expected spread (grey strips) are also drawn.
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Figure 6.18: Uncertainties for ensemble testing of the three-phase analysis (250 signal-
only fake sets). Shown are the results for the improved binned Pee + Pea fit and the
unbinned Pee + Pea fit, for regular (top) and alternate (bottom) ensembles.
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Figure 6.19: Fractional biases for ensemble testing of the three-phase analysis (250 full fake
sets excluding Bi and Tl LETA events and neutral counter photodisintegration events).
Shown are the results for the improved binned Pee + Pea fit and the unbinned Pee + Pea

fit, for regular (top) and alternate (bottom) ensembles.
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Figure 6.20: Pulls for ensemble testing of the three-phase analysis (250 full fake sets
excluding Bi and Tl LETA events and neutral counter photodisintegration events). Shown
are the results for the improved binned Pee + Pea fit and the unbinned Pee + Pea fit, for
regular (top) and alternate (bottom) ensembles. The one-sigma bands for the pull mean
(dashed lines) and the expected spread (grey strips) are also drawn.
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Figure 6.21: Uncertainties for ensemble testing of the three-phase analysis (250 full fake
sets excluding Bi and Tl LETA events and neutral counter photodisintegration events).
Shown are the results for the improved binned Pee + Pea fit and the unbinned Pee + Pea

fit, for regular (top) and alternate (bottom) ensembles.
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6.4.2.3 Full Fake Set Testing

Figures 6.22 to 6.24 present the results when ensemble testing the three-phase analysis

using the improved binned Pee+Pea and the unbinned Pee+Pea fit methods, with 14 full

fake sets. The results for both methods are similar and do not show significant biases or

pulls.

6.4.2.4 Full Fake Set Testing with Nominal Systematic Shifts and Scanned

Systematic Uncertainties

This section presents results from ensemble testing of Pee+Pea fits where the systematic

uncertainty parameters were scanned, using the same procedure described in Section

6.4.1.4. Figures 6.25 to 6.27 present the corresponding results for the signal parameters.

These plots do not show significant bias or pull anomalies.
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Figure 6.22: Fractional biases for ensemble testing of the three-phase analysis (14 full
fake sets). Shown are the results for the improved binned Pee + Pea fit and the unbinned
Pee + Pea fit, for regular (top) and alternate (bottom) ensembles.
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Figure 6.23: Pulls for ensemble testing of the three-phase analysis (14 full fake sets).
Shown are the results for the improved binned Pee + Pea fit and the unbinned Pee + Pea

fit, for regular (top) and alternate (bottom) ensembles. The one-sigma bands for the pull
mean (dashed lines) and the expected spread (grey strips) are also drawn.
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Figure 6.24: Uncertainties for ensemble testing of the three-phase analysis (14 full fake
sets). Shown are the results for the improved binned Pee + Pea fit and the unbinned
Pee + Pea fit, for regular (top) and alternate (bottom) ensembles.
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Figure 6.25: Fractional biases for ensemble testing of the three-phase analysis with nominal
systematic uncertainty shifts and scanned systematic uncertainty parameters. Shown are
the results for the improved binned Pee+Pea fit, for regular (top) and alternate (bottom)
ensembles.
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Figure 6.26: Pulls for ensemble testing of the three-phase analysis with nominal systematic
uncertainty shifts and scanned systematic uncertainty parameters. Shown are the results
for the improved binned Pee+Pea fit, for regular (top) and alternate (bottom) ensembles.
The one-sigma bands for the pull mean (dashed lines) and the expected spread (grey
strips) are also drawn.
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Figure 6.27: Uncertainties for ensemble testing of the three-phase analysis with nominal
systematic uncertainty shifts and scanned systematic uncertainty parameters. Shown are
the results for the improved binned Pee+Pea fit, for regular (top) and alternate (bottom)
ensembles.



Chapter 7

SNO Three-Phase Results

In Chapter 6, the QSigEx three-phase signal extraction procedure was throughly tested

and was shown to provide unbiased results with accurate uncertainties. It is now possible

to perform three-phase Pee and Pee + Pea fits of the SNO data. Prior to these combined

fits, individual fits were performed for LETA and the NCD phase, using configurations of

the likelihood function that were very similar to the published results. The resulting fitted

parameters were found to be in good agreement with the previous analyses.

This chapter presents the results from the three-phase Pee and Pee + Pea fits, using

the configuration described in Appendix D. The configuration for both fits is identical;

they only differ in the survival probability parameterisation for the ESµτ and NC signals.

The improved binned Pee polynomial method and the unbinned Pee polynomial method

have been shown to provide very similar results in Chapter 6, but the former is orders of

magnitude faster, while the latter should theoretically be the best. It was thus decided

to use the improved binned method to scan the systematic uncertainty parameters and

evaluate the systematic effects through the shift and refit procedure, while the unbinned

method is reserved for the final fit that extracts the floated parameters and their statistical

uncertainties. The parameterisation of the Pee + Pea fit is required to correctly analyse

the SNO results using a model that allows a non-active neutrino component. Since the

174
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nominal numbers of detected neutrino events in these fits are based on the prediction

from the BS05(OP) model [18], all 8B scale values in this chapter are relative to the 8B

flux value from this model, which is 5.69 × 106 cm−2s−1. Also, to combine statistical

and systematic uncertainties for analysis purposes, the individual uncertainties are first

symmetrised using

σ2 = σ2
+ + σ2

− − σ+σ−, (7.1)

where σ corresponds to the RMS of an asymmetrical Gaussian function when computed

around the function’s peak. Total uncertainties are then computed by adding the sym-

metrised statistical and systematic uncertainties in quadrature, which is a standard pro-

cedure [25] that assumes independent statistical and systematic effects.

7.1 Pee Fit

Tables 7.1 and 7.2 present the fitted Pee and 8B scale parameter values and correlation

matrix for the three-phase Pee fit, respectively. In Table 7.1, the “Stat.” column presents

the statistical fit uncertainties, which include the effects from all parameters that are

floated. The column “Basic Syst.” includes the effects for most of the scanned parameters

as well as the shift and refit systematic uncertainties, except for the following two columns.

Day/night asymmetry parameters effects are shown in the “D/N Syst.” column. The

column “MC Effects” shows the uncertainties on the parameters that are due to the finite

Monte Carlo statistics used to generate the PDFs of the likelihood function. Finally, the

column “Total Syst.” presents the combined effects from all the systematic uncertainties.

The values of this last column were calculated using the Monte Carlo procedure described



Chapter 7 SNO Three-Phase Results 176

Parameter Fit Value Stat. Basic Syst. D/N Syst. MC Effects Total Syst.

8B Scale 0.924 +0.028
−0.028

+0.019
−0.021

+0.002
−0.002

+0.002
−0.005

+0.019
−0.022

Pee0 0.317 +0.016
−0.016

+0.008
−0.010

+0.002
−0.002

+0.002
−0.001

+0.009
−0.009

Pee1 0.0039+0.0065
−0.0067

+0.0047
−0.0038

+0.0012
−0.0018

+0.0004
−0.0008

+0.0045
−0.0045

Pee2 −0.0010+0.0029
−0.0029

+0.0013
−0.0016

+0.0002
−0.0003

+0.0004
−0.0002

+0.0014
−0.0016

Aee0 0.046 +0.031
−0.031

+0.007
−0.005

+0.012
−0.012

+0.002
−0.003

+0.014
−0.013

Aee1 −0.016 +0.025
−0.025

+0.003
−0.006

+0.009
−0.009

+0.002
−0.002

+0.010
−0.011

Table 7.1: Fitted Pee and
8B parameters for the 3-phase Pee fit.

8B Scale Pee0 Pee1 Pee2 Aee0 Aee1

8B Scale 1.000 −0.723 0.302 −0.168 0.028 −0.012
Pee0 −0.723 1.000 −0.299 −0.366 −0.376 0.129
Pee1 0.302 −0.299 1.000 −0.206 0.219 −0.677
Pee2 −0.168 −0.366 −0.206 1.000 0.008 −0.035
Aee0 0.028 −0.376 0.219 0.008 1.000 −0.297
Aee1 −0.012 0.129 −0.677 −0.035 −0.297 1.000

Table 7.2: Correlation matrix for the Pee and
8B parameters of the 3-phase Pee fit.

in Section 5.4.4, which correctly combines asymmetrical uncertainties, and cannot be

deduced analytically.

For this fit, parameter uncertainties are all dominated by statistical uncertainties, al-

though the effects from the total systematic uncertainties are only smaller than statistical

effects by up to a factor of approximately two. Table 7.2 shows important correlations

between the different fit parameters. These correlations are expected, since the param-

eterisation is such that the numbers of CC and ES events in the fit are computed using

combinations of the parameters. In particular, the strong anti-correlation between the 8B

scale and Pee0 is due to the fact that the number of CC events is essentially determined

by the product between the 8B scale and Pee0. Since CC and NC signals constitute major

components of the SNO data and the 8B scale is mostly determined by the number of
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NC events, the scale of Pee0 is, to first order, therefore proportional to the number of CC

events divided by the 8B scale.

The fitted 8B flux, which is (5.25 ± 0.20) × 106 cm−2s−1 after symmetrising the

uncertainties and adding them in quadrature, is in good agreement with the BS05(OP)

prediction of (5.69 ± 0.91) × 106 cm−2s−1 [18]. It also agrees with the more recent

BPS09(GS) and BPS09(AGSS09) SSM predictions of (5.88 ± 0.65) × 106 cm−2s−1 and

(4.85±0.58)×106 cm−2s−1, respectively [52]. Regarding the Pee parameters, their values

are very far from the no oscillation scenario, which corresponds to Pee0 = 1, Pee1 = 0,

Pee2 = 0, Aee0 = 0 and Aee1 = 0. If the correlation matrix in Table 7.2 is inverted and

is used to perform a chi-squared test where the alternate hypothesis is the no oscillation

scenario, the resulting χ2 value is 2420 for five degrees of freedom. This value corresponds

to a p-value, the probability of an equal or larger discrepancy, smaller than 1 × 10−300.

The no oscillation hypothesis is thus very strongly rejected. However, the χ2 value is

probably not very accurate, since the tested hypothesis is so far from the central point

that the Gaussian approximation for the parameter space might not hold properly. Another

interesting test consists of verifying the possibility that there is no spectral distortion in

the νe survival probability, corresponding to a scenario where only the Pee1 parameter is

allowed to be different from zero. The χ2 value for this test is 2.02 , which corresponds to

a p-value of 73.2% for the four degrees of freedom. The no spectral distortion alternate

hypothesis cannot thus be rejected at the 95% level. Finally, the hypothesis that there

is no day/night distortion in the νe survival probability (Aee0 = 0 and Aee1 = 0) has an

associated χ2 value of 1.92 and thus a p-value of 38.3% with two degrees of freedom,

such that it cannot be rejected either using the same confidence level.

If the results presented in Table 7.1 are compared to the published LETA results [4],
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it is found that the total relative uncertainty on the fitted 8B scale parameter, 3.77%, is

not appreciably smaller than the relative uncertainty on the corresponding parameter for

LETA, which was 3.84%. Although the three-phase analysis incorporates the pulse shape

analysis and the PMT data from the NCD phase, both of which contribute to constraining

the 8B scale, different improvements to the LETA component of the fit tend to increase

the uncertainty on the same parameter. In particular, all uncertainty parameters linked to

the PMT β-γ events are now evaluated separately for day and night to account for the

possible drift of the detector response over time, which can result in effective day/night

asymmetries due to the difference between day and night live times. Also, the parameters

for the production rates of the background events are not constrained to be positive in the

three-phase analysis in order to minimise biases and also to reduce the distortion of the

likelihood space, as described in Section 3.4. For the three-phase analysis, the effects of

using finite Monte Carlo statistics to generate PDFs are also evaluated, but this was not

done in the previous analyses. Finally, improvements to the implementation of existing

systematic uncertainties and/or their constraints in the signal extraction procedure also

contribute to slightly increase the size of the uncertainties. Since the uncertainty of

the PSA constraint is 7.0%, the NCD phase provides a weak constraint on the neutron

rate compared to the constraint on the NC signal from LETA. The resulting constraint

provided by PSA for the 8B scale is even weaker, due to the uncertainties on the neutron

backgrounds and on the neutron capture efficiencies. The additional LETA background

and systematic uncertainties mentioned above thus cancel the improvements to the 8B

scale uncertainties that would normally result from the inclusion of the data from the

NCD phase. Although the uncertainties on the Pee parameters partially depend on the

8B scale uncertainty, due to the interplay between these parameters in the fit, the NCD
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phase provides a significant number of CC and ES events which allow to constrain the

Pee parameters, this contribution being enhanced when the 8B scale is constrained by all

three phases. This results in a 20% improvement of the statistical uncertainty on Pee0

when compared to the LETA result. The total relative uncertainty on this parameter is

5.8% for the three-phase analysis, versus 6.1% for LETA.

Figure 7.1 shows the one-sigma uncertainty bands for the Peeday survival probability

polynomial and for the day/night asymmetry function, along with the most likely curves.

The curves were generated using the best fit parameter values from Table 7.1. The

bands were obtained by symmetrising the uncertainties shown in Table 7.1, by adding

the resulting statistical and systematic uncertainties in quadrature and then by generating

106 sets of random values for the Pee and Aee parameters using these total uncertainties

along with the correlation matrix shown in Table 7.2. Correlated random variables can be

generated using the Cholesky decomposition method [25]. For each set of random values,

the corresponding Pee(Eν) and Aee(Eν) functions were computed for 1000 different Eν

values. Using the resulting distributions of random Pee and Aee values for each selected

Eν value, RMS values were computed on each side of the most likely Pee and Aee values

separately. This produces uncertainty bands that can be asymmetrical, although it is not

the case here because of the linear dependence of the Pee and Aee functions on the Pee

and Aee parameters and the symmetrisation of the Pee and Aee parameter uncertainties.

The resulting bands provide a more qualitative appreciation of the results from the Pee fit

that were described above. It allows to easily visualise how the no spectral distortion and

the no day/night asymmetries scenarios are not excluded by the SNO data. Furthermore,

it shows without any doubt that the SNO dataset is not compatible with Pee = 1. Hence,

it provides direct evidence of the observation of solar neutrino oscillation by SNO.
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Figure 7.1: One-sigma (symmetrised) uncertainty bands of Peeday(Eν) and Aee(Eν) for
the three-phase Pee fit, which take into account the correlations between the parameters.
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Using the fitted parameter values, including all fitted background production rates and

systematic uncertainty parameters, and the PDFs for all classes of events, reconstructed

observable distributions have been generated in order to be compared to the SNO data.

Figures 7.2 to 7.12 present the resulting day and night distributions, for all SNO phases

and observables. The data points are shown, along with the numbers of reconstructed

events and the breakdown of the reconstructed results for the different signals and the

combined backgrounds. The discontinuities in the Teff distributions are due to the variable

bin width used for this observable. Also shown are the χ2 values between the data and the

reconstructed distributions. Note that the calculation of the number of degrees of freedom

is not straightforward for these plots, since they present unidimensional projections of

results which were obtained following a multidimensional fit. In this multidimensional

space, there are 77 floated or scanned parameters that can directly or indirectly influence

the fit between the reconstructed distributions and the data. However, there are 54 penalty

terms in the likelihood function, each of which represent one additional degree of freedom.

The net reduction in the number of degrees of freedom due to the fitted parameters

is thus 23. Considering that the numbers of observable bins are 21 × 8 × 5 × 15 =

12600 for the D2O and salt phases and 13 × 25 × 10 = 3250 for the NCD phase, it

corresponds to a fractional reduction of 23/(12600 + 3250) = 0.00145 in the number

of degrees of freedom constituted by the total number of observable bins. The number

of bins in the unidimensional projections thus represents a very good approximation for

the effective number of degrees of freedom. The χ2 values for these projections all

correspond to p-values greater than 5%, showing a good agreement between the data and

the reconstructed distributions, except for the cos θ⊙ day projection of the NCD phase

in Figure 7.12. For this projection, the discrepancy appears to be due to a statistical
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Figure 7.2: Projection of Teff for the D2O phase component of the Pee fit. The top and
bottom plots present the day and night events, respectively.
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Figure 7.3: Projection of ρ for the D2O phase component of the Pee fit. The top and
bottom plots present the day and night events, respectively.
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Figure 7.4: Projection of cos θ⊙ for the D2O phase component of the Pee fit. The top
and bottom plots present the day and night events, respectively.
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Figure 7.5: Projection of β14 for the D2O phase component of the Pee fit. The top and
bottom plots present the day and night events, respectively.
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Figure 7.7: Projection of ρ for the salt phase component of the Pee fit. The top and
bottom plots present the day and night events, respectively.
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Figure 7.8: Projection of cos θ⊙ for the salt phase component of the Pee fit. The top and
bottom plots present the day and night events, respectively.
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Figure 7.9: Projection of β14 for the salt phase component of the Pee fit. The top and
bottom plots present the day and night events, respectively.
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Figure 7.10: Projection of Teff for the NCD phase component of the Pee fit. The top and
bottom plots present the day and night events, respectively.
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Figure 7.11: Projection of ρ for the NCD phase component of the Pee fit. The top and
bottom plots present the day and night events, respectively.
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Figure 7.12: Projection of cos θ⊙ for the NCD phase component of the Pee fit. The top
and bottom plots present the day and night events, respectively.
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fluctuation in the data for two of the bins near cos θ⊙ = 1, as noted in [7].

7.2 Pee + Pea Fit

As mentioned earlier, the usage of Pee results is appropriate when analysing the SNO data

in the context of a theoretical model where unitarity is assumed for the conversion of the

electron-type solar neutrinos into one of the three weak flavour eigenstates. However,

for theoretical models that consider oscillations to non-active neutrino flavours, i.e. for

neutrinos that do not interact through the weak interaction, the Pee method does not

have the degrees of freedom that are required to allow the proper relative scaling of the

expected number of CC, ES and NC events as a function of the different survival probability

parameters, as well as the possible day/night asymmetry for the NC signal. The Pee+Pea

method introduces these additional degrees of freedom that are required for sterile neutrino

analyses on the SNO data. As it can be seen through the equations of Section 4.4.1,

for such a model, the 8B flux cannot be measured by neutrino experiments such as

SNO that only detect solar neutrinos through weak interactions. Such an experimental

measurement could only be performed through the measurement of the solar neutrino rate

via gravitational interactions, which is extremely difficult to realise. Since it is currently

impossible to experimentally constrain the 8B flux in the context of a sterile neutrino

model, the Pee + Pea method must thus rely on the theoretical value for the 8B flux in

order to provide measurements of the Pee and Pea parameters. However, as explained in

Section 4.2.5, the extraction of the Pee and Pea parameters for SNO can be performed

independently of the 8B flux prediction, because the likelihood space only depends on the

product between the 8B scale and the Pee and Pea parameters, such that the best fit
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parameters and their uncertainties for a given 8B scale value can always be retrieved using

P ′
ee =

αB

α′
B

Pee (4.46)

P ′
ea =

αB

α′
B

Pea. (4.47)

This allows to combine the SNO Pee + Pea results with other experimental results while

using any chosen theoretical prediction for the 8B flux.

A Pee + Pea fit was thus performed on the SNO dataset, using a procedure identical

to the one followed for the Pee fit except for the change in the signal parameterisation.

The 8B scale was also fixed to a constant value, because of the aforementioned properties

for the Pee and Pea parameters. It was arbitrarily set to the best value from the Pee fit,

only to facilitate the comparison of the results from both methods, before considering the

effects from the uncertainty on the 8B flux prediction, which has to be incorporated to

provide a complete measurement in the case of the Pee+Pea method. Tables 7.3 and 7.4

present the Pee+Pea fit results, including the correlation matrix for the signal parameters.

When compared to Table 7.1, Table 7.3 shows considerably smaller uncertainties for the

Pee0 parameter, as anticipated when using a constant 8B scale. The uncertainties for the

Aee parameters are considerably larger, on the other hand, since the NC signal rate is not

constrained to be the same for day and night for a sterile model. The uncertainty on Pea0

is important, while still being bounded, because of the constraint provided by the scale of

the NC signal in addition to the weak constraint from the number of ESµτ events. The

constraint provided through the NC signal scale is contingent on the accuracy of the Pee
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Parameter Fit Value Stat. Basic Syst. D/N Syst. MC Effects Total Syst.

8B Scale 0.9235 N/A N/A N/A N/A N/A

Pee0 0.316 +0.012
−0.012

+0.006
−0.007

+0.004
−0.004

+0.001
−0.001

+0.007
−0.008

Pee1 0.0076+0.0072
−0.0073

+0.0045
−0.0031

+0.0019
−0.0026

+0.0006
−0.0010

+0.0046
−0.0043

Pee2 −0.0019+0.0029
−0.0029

+0.0015
−0.0016

+0.0003
−0.0005

+0.0004
−0.0002

+0.0015
−0.0017

Aee0 0.067 +0.039
−0.039

+0.006
−0.009

+0.022
−0.021

+0.003
−0.004

+0.022
−0.025

Aee1 −0.031 +0.030
−0.030

+0.007
−0.005

+0.016
−0.014

+0.004
−0.002

+0.019
−0.015

Pea0 0.640 +0.101
−0.096

+0.026
−0.033

+0.021
−0.020

+0.010
−0.012

+0.033
−0.041

Pea1 −0.17 +0.18
−0.17

+0.03
−0.04

+0.01
−0.01

+0.02
−0.01

+0.04
−0.04

Aea0 −0.12 +0.10
−0.10

+0.05
−0.03

+0.05
−0.06

+0.02
−0.02

+0.08
−0.06

Table 7.3: Fitted Pee and Pea parameters for the 3-phase Pee +Pea fit. The 8B scale was
arbitrarily fixed to the value from the Pee fit, since it cannot be measured experimentally
in this case.

measurement though, because the NC scale is given by

αNC = αB

∫ ∞

−∞
[Pee(Eν) + Pea(Eν)] f(Eν |NC)dEν . (4.73)

The Aea parameters do not benefit from a very good constraint through the NC scale,

because the uncertainties on Aee parameters are significant. The ESµτ signal provides

an even weaker constraint on these parameters, such that their uncertainties are enor-

mous. Nonetheless, these parameters are important since they contribute to generating

the day/night uncertainty on NC, and thus have indirect effects on the Pee parameter

uncertainties. As a result of this interplay between the parameters of the Pee+Pea fit, the

correlation matrix shown in Table 7.4 differs significantly from the corresponding matrix

for the Pee fit shown in Table 7.2.

Figures 7.13 and 7.14 present the one-sigma uncertainty bands for the Peeday and Peaday

probability polynomials, respectively, along with the associated bands for the day/night
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Pee0 Pee1 Pee2 Aee0 Aee1 Pea0 Pea1 Aea0

Pee0 1.000 −0.237 −0.644 −0.617 0.332 −0.337 −0.136 0.454
Pee1 −0.237 1.000 −0.213 0.366 −0.699 0.001 −0.319 −0.323
Pee2 −0.644 −0.213 1.000 0.053 −0.054 0.166 0.287 −0.127
Aee0 −0.617 0.366 0.053 1.000 −0.523 0.281 −0.008 −0.715
Aee1 0.332 −0.699 −0.054 −0.523 1.000 −0.211 0.020 0.573
Pea0 −0.337 0.001 0.166 0.281 −0.211 1.000 0.849 −0.382
Pea1 −0.136 −0.319 0.287 −0.008 0.020 0.849 1.000 −0.036
Aea0 0.454 −0.323 −0.127 −0.715 0.573 −0.382 −0.036 1.000

Table 7.4: Correlation matrix for the Pee and Pea parameters of the 3-phase Pee+Pea fit,
when the 8B scale is arbitrarily fixed to the value from the Pee fit.

asymmetry functions and the most likely curves, when the 8B scale is arbitrarily fixed to

the value obtained from the Pee fit. The corresponding curves from the Pee fit are also

shown for comparison. Figure 7.13 shows that the additional degrees of freedom in the

Pee + Pea fit tend to pull down the Peeday curve slightly at low energy. This change is

not significant though, particularly when considering the artificially narrower uncertainties

for the Pee + Pea fit due to the fixed 8B scale. The same figure allows to appreciate the

widening of the Aee band with the Pee + Pea fit, due to the NC signal rate which is no

longer constrained to be the same for day and night. Finally, Figure 7.15 presents the

one-sigma uncertainty bands for Pesday and Pesnight, the probabilities that electron-type

neutrinos have oscillated to a sterile neutrino flavour when reaching the detector, given

by 1 − Pee − Pea. For the chosen fixed 8B scale value, these bands are consistent with

a model involving only three types of neutrinos, that is to say Pes = 0, as shown in the

figure.

Since results from a Pee + Pea fit are only meaningful after including the SSM uncer-

tainty for the 8B flux, the next step is thus to generate Pee + Pea results by transforming

the previous parameter values and correlation matrix based on a given SSM. As discussed
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Figure 7.13: One-sigma (symmetrised) uncertainty bands of Peeday(Eν) and Aee(Eν)
for the three-phase Pee + Pea fit, which take into account the correlations between the
parameters, but not the uncertainty on the 8B flux whose value cannot be measured
experimentally. The 8B scale was arbitrarily fixed to the value from the Pee fit. The bands
from the Pee fit are also shown.
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Figure 7.14: One-sigma (symmetrised) uncertainty bands of Peaday(Eν) and Aea(Eν)
for the three-phase Pee + Pea fit, which take into account the correlations between the
parameters, but not the uncertainty on the 8B flux whose value cannot be measured
experimentally. The 8B scale was arbitrarily fixed to the value from the Pee fit. Note that
the error bands are smaller because there is no 8B scale uncertainty.
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Figure 7.15: One-sigma (symmetrised) uncertainty bands of Pesday(Eν) and Pesnight(Eν)
for the three-phase Pee + Pea fit, which take into account the correlations between the
parameters, but not the uncertainty on the 8B flux whose value cannot be measured
experimentally. The 8B scale was arbitrarily fixed to the value from the Pee fit. Note that
there is no 8B scale uncertainty.
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earlier, this transformation is exact and can be done easily. Table 7.5 shows the fitted

SNO parameters for the Pee + Pea fit, based on the BS05(OP) [18] model. The “Fit

Value” column shows the most probable parameter values, which were simply obtained

by scaling the Pee and Pea parameter values from Table 7.3 by 0.9235, as prescribed by

Equations (4.46) and (4.47) with α′
B = 1, since this value corresponds to the 8B scale for

the BS05(OP) model, as mentioned at the beginning of this chapter. The “Fixed” column

presents the total parameter uncertainties, which were obtained after symmetrising the

statistical and systematic uncertainties from Table 7.3 and after scaling the uncertainties

for the Pee and Pea parameters by the same factor as for the best fit values. This column

does not include the effects from the 8B scale uncertainty however, but this can easily

be done through a simple Monte Carlo simulation. To compute the uncertainties of the

“Floated” column, as well as the correlation matrix shown in Table 7.6, 106 sets of random

Pee, Aee, Pea and Aea parameter values were generated using Tables 7.3 and 7.4, following

the same procedure used to generate the one-sigma uncertainty bands of Figures 7.13 to

7.15 as described in the previous section. However, for each set of parameter values, a

random 8B scale value was generated using the constraint of the BS05(OP) model, which

is 1.00±0.16. The random Pee and Pea parameter values for a given set were then scaled

using Equations (4.46) and (4.47), αB = 0.9325 and a value for α′
B given by the ran-

domly generated 8B scale value. The asymmetrical uncertainties of the “Floated” column

in Table 7.5 were then generated from the resulting parameter distributions by comput-

ing RMS values on each side of the most likely parameter values separately. Similarly,

the correlation matrix shown in Table 7.6 was generated by computing the covariances

of the parameter distributions around the most likely parameter values. The fitted Pee

and Pea parameters are inversely proportional to the 8B scale of the BS05(OP) model,
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Parameter Fit Value Fixed Floated

8B Scale 1.00 N/A +0.16
−0.16

Pee0 0.292 ±0.013 +0.067
−0.039

Pee1 0.0070 ±0.0079 +0.0086
−0.0080

Pee2 −0.0018 ±0.0031 +0.0032
−0.0033

Aee0 0.067 ±0.045 +0.045
−0.045

Aee1 −0.031 ±0.034 +0.034
−0.034

Pea0 0.591 ±0.098 +0.17
−0.12

Pea1 −0.16 ±0.17 +0.17
−0.18

Aea0 −0.12 ±0.13 +0.13
−0.13

Pes0 0.117 ±0.094 +0.14
−0.23

Table 7.5: Fitted Pee, Pea and
8B parameters for the 3-phase Pee+Pea fit, along with the

expression corresponding to a zeroth-order measurement of Pes. Shown are the parameter
values and uncertainties when the 8B flux is based on the BS05(OP) prediction. The first
set of uncertainties was obtained after symmetrising the total uncertainties of a fit where
the 8B flux is fixed. The second set shows corresponding results after propagating the
BS05(OP) flux uncertainties.

which has relatively large symmetrical uncertainties. Hence, the Pee and Pea parameter

uncertainties become significantly larger and asymmetrical. Uncertainties for Aee and Aea

parameters are unchanged, because these parameters are unaffected by the transforma-

tion. The computation of the asymmetrical uncertainties on 1−Pee0−Pea0, an expression

that corresponds to a zeroth-order measurement of Pes, gives a value of 0.12+0.14
−0.23, which

is not inconsistent with a model that only includes active neutrino flavours. Table 7.6

shows how the 8B scale in a Pee + Pea fit is typically very strongly anti-correlated with

the Pee0 and Pea0 parameters. Except for the three correlations between the Aee and Aea

parameters, the correlation factors are all affected when including the uncertainty on the

8B flux from the SSM.

Figures 7.16 to 7.18 present the one-sigma uncertainty bands for the Pee+Pea results
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8B Scale Pee0 Pee1 Pee2 Aee0 Aee1 Pea0 Pea1 Aea0

8B Scale 1.000 −0.926 −0.147 0.094 0.001 0.000 −0.695 0.157 0.001
Pee0 −0.926 1.000 0.091 −0.254 −0.152 0.081 0.647 −0.193 0.111
Pee1 −0.147 0.091 1.000 −0.224 0.357 −0.680 0.113 −0.335 −0.315
Pee2 0.094 −0.254 −0.224 1.000 0.053 −0.056 0.042 0.299 −0.126
Aee0 0.001 −0.152 0.357 0.053 1.000 −0.522 0.190 −0.006 −0.716
Aee1 0.000 0.081 −0.680 −0.056 −0.522 1.000 −0.143 0.018 0.573
Pea0 −0.695 0.647 0.113 0.042 0.190 −0.143 1.000 0.455 −0.258
Pea1 0.157 −0.193 −0.335 0.299 −0.006 0.018 0.455 1.000 −0.036
Aea0 0.001 0.111 −0.315 −0.126 −0.716 0.573 −0.258 −0.036 1.000

Table 7.6: Correlation matrix for the Pee, Pea and
8B parameters of the 3-phase Pee+Pea

fit, when the 8B flux is floated according to the BS05(OP) constraint.

based on the BS05(OP) model, along with the bands from the Pee fit, when applicable.

The Peeday band in Figure 7.16 shows a good overlap between the Pee and Pee + Pea

results. The best fit curve for Pee + Pea is lower on average, due to the fact that the

BS05(OP) model predicts a higher 8B flux than the best fit value obtained by the Pee fit.

Figure 7.18 presents the Pes bands for day and night. It shows how the SNO results alone

are consistent with a model that only includes three types of neutrinos, with no significant

day/night asymmetries for Pes. The agreement between the reconstructed distributions

and the SNO dataset is very similar to what was obtained for the Pee fit in Figures 7.2 to

7.12.
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Figure 7.16: One-sigma (symmetrised) uncertainty bands of Peeday(Eν) and Aee(Eν)
for the three-phase Pee + Pea fit, which take into account the correlations between the
parameters. Results have been generated using the BS05(OP) 8B flux and uncertainties.
The bands from the Pee fit are also shown.
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Figure 7.17: One-sigma (symmetrised) uncertainty bands of Peaday(Eν) and Aea(Eν)
for the three-phase Pee + Pea fit, which take into account the correlations between the
parameters. Results have been generated using the BS05(OP) 8B flux and uncertainties.
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Figure 7.18: One-sigma (symmetrised) uncertainty bands of Pesday(Eν) and Pesnight(Eν)
for the three-phase Pee + Pea fit, which take into account the correlations between the
parameters. Results have been generated using the BS05(OP) 8B flux and uncertainties.



Chapter 8

Conclusions

Designed to solve the solar neutrino problem, the SNO experiment has been very successful

at measuring the total 8B solar neutrino flux as well as the electron-type component of

this flux. In its first published results in 2001 [26], SNO presented the first evidence for

the oscillation of solar neutrinos. This result was obtained via the assumption that the CC

energy spectrum was undistorted, since the D2O phase only allowed to efficiently separate

the CC and NC signals statistically using the reconstructed energy.

The data collected during the salt phase of the experiment allowed to better discrim-

inate between the CC and NC signals, through the differentiation of their event isotropy.

This allowed the SNO publication that analysed data from the salt phase [53] to suc-

cessfully measure day and night CC energy spectra, which provided a model-independent

measurement of the neutrino fluxes.

An analysis of the data from the NCD phase of the SNO experiment was completed

in 2008 [7]. This phase provided an almost independent measurement of the 8B flux,

through the detection of neutrons from deployed proportional 3He gas counters. Due to

the breaking of the spherical geometry of the detector by the cylindrical NCDs, this phase

necessitated the development of new pattern recognition algorithms for the detection of

206
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light by the PMTs. The author of this thesis designed and implemented an efficient algo-

rithm that allowed to recover approximately half of the loss in the reconstructed position

uncertainty between the D2O and NCD phases caused by the significant shadowing of the

SNO PMTs by the NCDs.

In 2010, the collaboration published the results from a low-energy-threshold analysis

of the D2O and salt phases [4]. This analysis drastically reduced the measurement un-

certainties due to the very significant increase of the signal statistics resulting from the

lower energy threshold combined with careful studies of the SNO detector response, the

backgrounds and systematic uncertainties. This publication also presented the first direct

extraction of the survival probability function using SNO data. It was achieved using the

binned Pee fit method created by the author of this thesis, as described in Section 4.2.4.

In order to provide the best SNO measurement of the 8B flux and the survival prob-

ability, it was then decided to perform a final SNO analysis which would consist of a

three-phase extraction of these parameters. A pulse shape analysis of the data from the

NCDs was used in order to reduce α and instrumental contamination of the neutron sig-

nal. To conduct such a combined analysis represented a considerable challenge, due to

the number of floating systematic uncertainty parameters and the amount of Monte Carlo

statistics involved. The author of this thesis thus designed QSigEx, a new signal extrac-

tion library which uses a variety of parallelisation, memory management and optimisation

mechanisms to significantly reduce the time required to evaluate a likelihood function,

while maintaining a very flexible structure that can support different types of analyses. In

addition to these ameliorations at the programming level, significant work was performed

to improve the efficiency and accuracy of the SNO likelihood function, as described in

Chapters 3 and 4. Notably, an improved binned Pee polynomial method was developed to
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minimise biases in the extraction of the SNO signals, while being sufficiently efficient to

allow the minimisation of the negative log-likelihood function in a reasonable amount of

computer time.

A Pee polynomial fit provides the best SNO constraint of the survival probability for

electron-type neutrinos, for a theoretical model which does not allow non-active neutrino

flavours, but it does not include the degrees of freedom which are necessary to correctly

measure survival probabilities using other theoretical models, such as sterile neutrino mod-

els. In Chapter 4, Pee+Pea methods are derived, which allow to introduce these necessary

degrees of freedom to test these models.

For the three-phase analysis, improvements were also performed related to the Monte

Carlo statistics. The significantly faster QSigEx library allowed to increase the sample size

used to build the CC and ESe PDFs by a factor of four and also to introduce the ESµτ

signal to the analysis, in addition to doubling the statistics for the simulation data used to

generate some of the background PDFs. Although this increase in statistics contributed

to reducing the signal extraction uncertainties due to statistical uncertainties of the PDFs,

an algorithm was added to evaluate these uncertainties related to the finite Monte Carlo

statistics. QSigEx also allowed to test the SNO signal extraction procedure for pulls and

biases at an unprecedented level and to perform the final fits of the three-phase analysis

using an unbinned Pee polynomial method. The new signal extraction tool was also used

to reproduce the results from the first analysis of the NCD phase data [7], as well as the

results for the unconstrained and Pee fits from LETA [4].

Pee and Pee + Pea combined fits of the three phases of the SNO experiment were

then performed by the author of this thesis. As published in [39], the Pee fit led to a



Chapter 8 Conclusions 209

value of 5.25+0.16
−0.16(stat.)

+0.11
−0.13(syst.)× 106 cm−2s−1 for the total flux of neutrinos from 8B

decays in the Sun, assuming only active neutrino flavours and no constraint on the shape

of the 8B neutrino energy spectrum. The measurement of the Pee0 parameter resulted

in a value of 0.317+0.016
−0.016(stat.)

+0.009
−0.009(syst.) that corresponds to direct evidence for flavour

transformation of solar neutrinos. The precision of the Pee1 and Pee2 parameters does not

allow SNO to reject the alternate hypothesis for the absence of spectral distortion. The

fitted value for the Aee0 parameter is 0.046+0.031
−0.031(stat.)

+0.014
−0.014(syst.), which does not allow

the rejection of a hypothesis that predicts no day/night asymmetry. The Pee + Pea fit

results, when applied to the BS05(OP) model, provide measurements of 0.292+0.067
−0.039 for

Pee0 and 0.12+0.14
−0.23 for Pes0 (defined as 1 − Pee0 − Pea0) that are not inconsistent with

three active neutrino flavours.

The data of SNO show neither a large energy distortion nor a time-like asymmetry,

but SNO clearly establishes in this analysis an undeniable signature of solar neutrino

oscillations. The three-phase results can be seen as the legacy of the SNO experiment in

the study of solar neutrinos.



Appendix A

Analytical PDF Event Generation

A.1 LETA PMT β-γ PDF/Events Generation

For LETA, an analytical multidimensional function is used to describe the PMT β-γ

background events. The PDF is proportional to

f(Teff , β14, ρ, cos θ⊙) ∝eǫ TeffN (β14 | β̄14 = ω0 + ω1(ρ− 0.61), σ = βs)

(|b+ 1| − 1 + eνρ), (A.1)

where N (x|x̄, σ) is a Gaussian distribution with the given mean and width. To simplify

the notation in the following discussion, B is defined as

B ≡ |b+ 1| − 1. (A.2)

Since QSigEx uses binned PDFs for the other backgrounds and the signals, Equation

(A.1) also has to be binned to avoid a biased fit (c.f. Section 3.3). Since the presence

of the Gaussian function and the correlation with the event radius prevent the use of an

analytical integration to generate this binned PDF, it is thus required to use a numerical

method. One solution is to fill a histogram using values from random variables following

210



Appendix A Analytical PDF Event Generation 211

this distribution. It is also required to have such an event generation method to produce

the fake datasets used for ensemble testing of the signal extraction code.

Luckily, this can be achieved quite efficiently using the transformation method. This

method is based on the fact that given a random variable u with a known PDF fu(u), the

probability of obtaining a value for a random variable y = y(u) in the interval [y(u), y(u)+

dy(u)], fy(y(u))dy, corresponds to the probability of u to be in the interval [u, u+ du],

fu(u)du. If the function y(u) is chosen such that the minimal and maximal values for y

and u (that is to say the minimal and maximal values of the random variables such that

their respective PDFs are non-zero) are ymin = y(umin) and ymax = y(umax), respectively,

the integration of the probabilities from umin to some u value gives:

∫ u

umin

fu(u
′)du′ =

∫ y(u)

ymin

fy(y
′)dy′ = Fy(y(u)), (A.3)

where Fy(y) is the cumulative distribution for y. Solving for y(u) gives

y(u) = F−1
y

(∫ u

umin

fu(u
′)du′

)

; (A.4)

this simplifies to

y(u) = F−1
y (u), (A.5)

with y in the interval ]ymin, ymax], if u is a uniform deviate in the interval ]0, 1]. Since

histograms are usually defined such that a bin i has a range in an interval [xi, xi+∆x(i)[,

it is thus more convenient to generate y values in the interval [ymin, ymax[ using the

transformation

y(u) = F−1
y (1− u), (A.6)
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with u being the same standard uniform deviate in the interval ]0, 1].

Using Equation (A.6) and the marginal PDF for the kinetic energy T that can be

obtained from Equation (A.1), it is easy to show that proper random energies in the

interval [Tmin, Tmax[ can be generated using

T =
1

ǫ
log
[
(1− u0)

(
eǫTmax − eǫTmin

)
+ eǫTmin

]
, (A.7)

where u0 is a standard uniform deviate.

Since the distribution for β14 in Equation (A.1) depends on ρ, it is easier to generate

random values for the latter variable first and then use these values in the generation

of random values for β14 (using a Gaussian random number generator). Although the

expression for the distribution in ρ, B + eνρ, is very simple, random values for ρ cannot

be generated directly using the transformation method because the function Fρ cannot

be inverted analytically. However, for a positive value of B, one can notice that the PDF

for ρ can be written as

f(ρ) = P (flat)f(ρ|flat) + P (exp)f(ρ|exp), (A.8)

where P (flat) is the probability for ρ to be located in the “flat” component, where f(ρ|flat)

is the PDF for ρ given that it is located in this area, and where P (exp) and f(ρ|exp)

are defined similarly for the exponential component. For the range [ρmin, ρmax[ for ρ,

it is straightforward to show, by integrating the areas of the two components, that the
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probability P (flat) is given by

P (flat) =
B(ρmax − ρmin)

B(ρmax − ρmin) +
1
ν
(eνρmax − eνρmin)

. (A.9)

For positive values of B, random ρ values can thus be generated using the following

procedure:

1. Draw a pair of uniform deviates (u1, u2).

2. If u1 ≤ P (flat), set ρ to

ρ = ρmax − u2(ρmax − ρmin). (A.10)

Otherwise, set ρ to

ρ =
1

ǫ
log [(1− u2) (e

ǫρmax − eǫρmin) + eǫρmin] . (A.11)

In the alternate case where B < 0, the technique described above does not work and Fρ

has to be inverted numerically. Since Fρ(ρ) is given by

Fρ(ρ) =
Bν[ρ − ρmin] + eνρ − eνρmin

Bν(ρmax − ρmin) + eνρmax − eνρmin
, (A.12)

solving for

Fρ(ρ) = 1− u, (A.13)
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where u is the value of a standard uniform deviate, is equivalent to finding the root of

G(ρ) ≡ B(ρ− ρmin) +
1

ν
(eνρ − eνρmin)

+ (u− 1)

[

B(ρmax − ρmin) +
1

ν
(eνρmax − eνρmin)

]

. (A.14)

An efficient way to find this root is to use the Householder’s method of order three, which

leads to the following optimised algorithm:

1. Draw a pair of standard uniform deviates (u3, u4).

2. Set

C0 = eνρmin (A.15)

C1 = (u3 − 1)

[

B(ρmax − ρmin) +
1

ν
(eνρmax − C0)

]

(A.16)

ρ0 = ρmax − u4(ρmax − ρmin). (A.17)

3. Compute

Dn = eνρn (A.18)

En = B +Dn (A.19)

G(ρn) = B(ρn − ρmin) +
1

ν
(Dn − C0) + C1 (A.20)

g(ρn) =
E2

n

νDn
(A.21)

ρn+1 = ρn +
3G(ρn)[2g(ρn)−G(ρn)]

6En[G(ρn)− g(ρn)]− νG2(ρn)
. (A.22)
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4. Repeat Step 3 until the desired error on ρ, approximated by

∆ρn ≈ G(ρn)

En

, (A.23)

is reached.

In the above procedure, the expression for ∆ρ is simply obtained by evaluating the first-

order expansion of G(ρ) at ρ = ρ∞+∆ρ, where ρ∞ is the root of G(ρ). For typical values

of the PMT PDF parameters, approximately only 3.6 iterations on average are necessary

to achieve an accuracy of 1× 10−12, which makes this algorithm very fast.

A.2 16N Source First Interaction Point

This section presents the details of a calculation that leads to an expression for the

PDF of the 16N interaction point along a Cartesian axis, under an isotropic point source

approximation. Although the corresponding 3D PDF has a simple analytical expression,

the projection on one of the axes cannot be expressed analytically. It is however possible

to reduce it to a known integral form, for which numerical approximations already exist.

The distribution can also be generated with a simple Monte Carlo simulation, using the

transformation method.

From statistics, the distance between the centre of the 16N source and the first inter-

action point of gamma rays follows an exponential distribution with a mean free path λ.
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The marginal PDF f(r) in spherical coordinates is thus given by

f(r) =
1

λ
e−

r
λ . (A.24)

For an isotropic source, the random variables r, θ and φ are not correlated, such that

the joint PDF f(r, θ, φ) is given by

f(r, θ, φ) = f(r)f(θ, φ) = f(r)f(θ)f(φ). (A.25)

The marginal PDF f(φ) is simply a uniform distribution defined between 0 and 2π:

f(φ) =
1

2π
. (A.26)

For an isotropic source in an isotropic medium, the probability of an event to occur in

a given solid angle Ω must be proportional to that solid angle and must not depend on θ

or φ, for any chosen solid angle. This can be translated to

P =

∫∫

Ω

f(θ, φ)dθdφ

=
1

2π

∫∫

Ω

f(θ)dθdφ ∝ Ω, ∀Ω. (A.27)

This must also hold at the infinitesimal level, where dΩ = sin θdθdφ and where dP =

1
2π
f(θ)dθdφ. This implies that f(θ) ∝ sin θ and gives, after normalisation,

f(θ) =
1

2
sin θ. (A.28)



Appendix A Analytical PDF Event Generation 217

Therefore, from Equations (A.24), (A.25), (A.26) and (A.28), the joint PDF becomes

f(r, θ, φ) =
1

4πλ
e−

r
λ sin θ. (A.29)

Since all marginal PDFs have been normalised, the expression for f(r, θ, φ) is already

normalised when integrating over the random variables:

∫ ∞

0

∫ π

0

∫ 2π

0

f(r, θ, φ)dφdθdr =

∫ ∞

0

f(r)dr

∫ π

0

f(θ)dθ

∫ 2π

0

f(φ)dφ = 1. (A.30)

The PDF f(x, y, z) in Cartesian coordinates can be obtained from f(r, θ, φ) using the

Jacobian between the two coordinate systems:

f(x, y, z) =
f(r(x, y, z), θ(x, y, z), φ(x, y, z))

|J(x, y, z)|

=
f(r(x, y, z), θ(x, y, z), φ(x, y, z))

r2(x, y, z) sin [θ(x, y, z)]

=
1

4πλ

e−
r(x,y,z)

λ

r2(x, y, z)
. (A.31)

The marginal PDF f(x) is obtained by integrating f(x, y, z) over y and z:

f(x) =

∫ ∞

−∞

∫ ∞

−∞
f(x, y, z)dydz

=
1

4πλ

∫ ∞

−∞

∫ ∞

−∞

e−
√

x2+y2+z2

λ

x2 + y2 + z2
dydz. (A.32)

There is no analytical solution to the integrals in Equation (A.32). However, the

expression for f(x) can be simplified to a known integral form. First, the integral is



Appendix A Analytical PDF Event Generation 218

expressed using spherical coordinates, by choosing the axes such that x′ = r cos θ and by

using the property δ(au) = 1
|a|δ(u):

4πλf(x) =

∫ +∞

−∞

∫ +∞

−∞

e
−
√

x2+y2+z2

λ

x2 + y2 + z2
dydz

=

∫ +∞

−∞
δ(x′ − x)dx

∫ +∞

−∞

∫ +∞

−∞

e
−
√

x2+y2+z2

λ

x2 + y2 + z2
dydz

=

∫ 2π

0

∫ 1

−1

∫ +∞

0

δ(r cos θ − x)
e−r/λ

r2
r2drd cos θdφ

f(x) =
1

2λ

∫ 1

−1

∫ +∞

0

δ
[

cos θ
(

r − x

cos θ

)]

e−r/λdrd cos θ

=
1

2λ

∫ 1

−1

∫ +∞

0

1

| cos θ|δ
(

r − x

cos θ

)

e−r/λdrd cos θ

=
1

2λ

∫ 1

−1

1

| cos θ|e
−x

λ cos θ d cos θ







1 x
cos θ

≥ 0,

0 otherwise

=
1

2λ

∫ 1

0

1

cos θ
e

−|x|
λ cos θ d cos θ. (A.33)

Using the change of variable |x|
λ cos θ

→ t, the last expression transforms to

f(x) = − 1

2λ

∫ |x|
λ

+∞

e−t

|x|/(λt)
|x|
λt2

dt =
1

2λ

∫ +∞

|x|
λ

e−t

t
dt. (A.34)

A random variable following the f(x) distribution can also be generated using the

transformation method [54] with Equations (A.24), (A.26) and (A.28). For a set of

random variables u, u′ and u′′ uniformly distributed between 0 and 1, the transformation
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method leads to

r = −λ ln u

φ = 2πu′

cos θ = 1− 2u′′, (A.35)

where r, φ and θ are random variables distributed according to Equations (A.24), (A.26)

and (A.28), respectively.

Since x = r sin θ cosφ, this gives

x = −2λ ln u
√

u′′(1− u′′) cos(2πu′). (A.36)

In this equation, x is a random variable that is distributed according to f(x).



Appendix B

ES Direction Systematic Uncertainty

In Section 2.1.1.2.8, it was mentioned that the angular resolution function used to evaluate

the SNO vertex reconstruction algorithms is given by the analytical expression

P (cos θ) = αM
βMe

βM(cos θ−1)

1− e−2βM
+ (1− αM)

βSe
βS(cos θ−1)

1− e−2βS
, (2.9)

where θ is the angle between the true and the reconstructed event direction, βS is the

parameter for the exponential component associated to the main peak and βM is the

parameter associated to the multiple scattering component.

For ES events, the direction of electrons is strongly correlated with the incoming

neutrino’s direction, such that the cos θ⊙ PDF itself has a shape that is well modelled by

Equation (2.9). If the angular resolution systematic uncertainties are propagated in this

PDF using the remapping equation

cos θ′⊙ = 1 +
cos θ⊙ − 1

1±∆θ
, (B.1)

where ∆θ is the relative systematic uncertainty on both βM and βS (the relative systematic

uncertainties on βM and βS have been found to be very similar and to have a strong,
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positive correlation [55]), it transforms the PDF modelled by P (cos θ) into

P ′(cos θ′⊙) =αM
βM(1±∆θ)e

βM(1±∆θ)(cos θ
′
⊙−1)

1− e−2βM
+

(1− αM)
βS(1±∆θ)e

βS(1±∆θ)(cos θ
′
⊙−1)

1− e−2βS
. (B.2)

This follows from

g(y) = f(x(y))

∣
∣
∣
∣

dx

dy

∣
∣
∣
∣
, (B.3)

which relates the PDF g(y) to the PDF f(x) through the usage of the Jacobian between

x and y. From Equation (2.9), the true variation of the angular resolution function due

to a relative systematic uncertainty ∆θ on βM and βS is given by

P ′′(cos θ) =αM
βM(1±∆θ)e

βM(1±∆θ)(cos θ−1)

1− e−2βM(1±∆θ)
+

(1− αM)
βS(1±∆θ)e

βS(1±∆θ)(cos θ−1)

1− e−2βS(1±∆θ)
. (B.4)

Comparing Equations (B.2) and (B.4), it can be seen that only the exponentials of the

denominators are different. Equation (B.2) is normalised for−2/(1±∆θ) < (cos θ′⊙−1) <

0 while Equation (B.4) is normalised for−2 < (cos θ−1) < 0. The integration of Equation

(B.2) on the interval −2 < (cos θ′⊙ − 1) < 0 gives

∫ 1

−1

P ′(cos θ′⊙)d cos θ
′
⊙ = αM

1− e−2βM(1±∆θ)

1− e−2βM
+ (1− αM)

1− e−2βS(1±∆θ)

1− e−2βS
. (B.5)

Since βM and βS are typically greater than 3 and 15, respectively [55], the effect of ∆θ in

the previous equation is quite negligible, such that the relative weights of the exponential

components are not significantly modified by the smearing.
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The Equation (B.1) is thus a good approximation for the smearing of the ES cos θ⊙

PDF due to the systematic uncertainties on βM and βS. Finally, at first-order approxima-

tion,

cos θ′⊙ = 1 +
cos θ⊙ − 1

1±∆θ
≈ 1 + [1∓∆θ](cos θ⊙ − 1), (B.6)

which is equivalent to Equation (2.11).



Appendix C

Configuration of Ensemble Test Fake

Datasets

This appendix shows the configuration of the fake datasets and PDFs used for most

ensemble tests. In each table, the second column gives the Poisson parameters used to

generate the sets. These values exclude any Pee/Pea effect. The fourth column gives the

number of “raw” PDF events, defined as the number of events in the skimmed Monte

Carlo. The fifth column gives the number of “clean” PDF events, defined as the number

of events in the analysis window. For the NCD phase, since the same events are used

to generate NC, D2O photodisintegration and atmospheric PDFs, the fake datasets have

been generated by dividing about 50% of the events among the classes. For the NCD

side, this also holds for NC, external neutrons, NCD, K2 and K5 photodisintegration

backgrounds using the 24Na source data.
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Fake Data PDF Events
Event Class Poisson Param. # Samples # Raw # Clean

D2O
8B CC 6257.910 992 4186597 3131937

D2O
8B ESe 779.970 1985 1291739 779833

D2O
8B ESµτ (Pee) 125.300 3000 3745027 2246251

D2O
8B ESµτ (Pea) 125.300 3000 3744905 2245974

D2O
8B NC 908.850 250 268343 226689

D2O
8B NC (Pee + Pea) 908.850 250 215538 182242

D2O AV neutrons 41.490 2316 207629 95752
D2O Bi D2O 2145.700 64 2762655 100776
D2O Tl D2O 805.030 56 836317 44405
D2O Bi AV bulk 42.800 19 284546 823
D2O Tl AV bulk 66.600 15 257192 1027
D2O Bi H2O 85.070 14 759561 1238
D2O Tl H2O 106.500 16 556711 1713
D2O hep CC 10.703 1000 762996 600770
D2O hep ES 1.246 1000 156847 104702
D2O hep NC 4.470 1000 5347 4504
D2O PMT β-γ 2700.000 1000
salt 8B CC 8757.490 993 5839418 4377605
salt 8B ESe 1093.390 1986 1798262 1094917
salt 8B ESµτ (Pee) 175.800 3000 5221626 3151762
salt 8B ESµτ (Pea) 175.800 3000 5220337 3151427
salt 8B NC 3369.410 250 1019554 840471
salt 8B NC (Pee + Pea) 3369.410 250 823874 679162
salt AV neutrons 150.000 2316 1104379 346879
salt Bi D2O 3447.000 64 3801369 163874
salt Tl D2O 1134.800 66 1150156 75708
salt 24Na 390.300 347 1103113 134986
salt Bi AV bulk 81.100 18 377112 1511
salt Tl AV bulk 142.110 16 299586 2052
salt Bi H2O 161.540 14 999577 2296
salt Tl H2O 144.290 23 730405 3341
salt hep CC 15.061 1000 1074232 845508
salt hep ES 1.748 1000 218905 146946
salt hep NC 16.510 1000 19837 16305
salt PMT β−γ 5300.000 1000

Table C.1: Poisson parameters in the LETA fake datasets and associated number of raw
and clean PDF events for the different signals and backgrounds.
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Fake Data PDF Events
Event Class Poisson Param. # Samples # Raw # Clean

D2O
8B CC 6257.910 992 4183691 3129633

D2O
8B ESe 779.970 1985 1296830 782864

D2O
8B ESµτ (Pee) 125.300 3000 3745684 2246160

D2O
8B ESµτ (Pea) 125.300 3000 3745472 2245972

D2O
8B NC 908.850 250 268755 227201

D2O
8B NC (Pee + Pea) 908.850 250 217342 183607

D2O AV neutrons 41.490 2316 208117 95930
D2O Bi D2O 2145.700 63 2840712 103541
D2O Tl D2O 805.030 55 851125 45276
D2O Bi AV bulk 42.800 19 275737 763
D2O Tl AV bulk 66.600 15 256566 1006
D2O Bi H2O 85.070 14 733985 1195
D2O Tl H2O 106.500 16 518561 1596
D2O hep CC 10.703 1000 763213 601009
D2O hep ES 1.246 1000 156858 104721
D2O hep NC 4.470 1000 5322 4521
D2O PMT β-γ 2700.000 1000
salt 8B CC 8757.490 992 5836635 4377206
salt 8B ESe 1093.390 1985 1798552 1095011
salt 8B ESµτ (Pee) 175.800 3000 5221045 3151373
salt 8B ESµτ (Pea) 175.800 3000 5224535 3153237
salt 8B NC 3369.410 250 1020327 841558
salt 8B NC (Pee + Pea) 3369.410 250 826103 681390
salt AV neutrons 150.000 2316 1106265 348260
salt Bi D2O 3447.000 64 3805842 163924
salt Tl D2O 1134.800 66 1145795 75772
salt 24Na 390.300 347 1104300 135071
salt Bi AV bulk 81.100 18 360360 1478
salt Tl AV bulk 142.110 15 314336 2115
salt Bi H2O 161.540 14 983038 2269
salt Tl H2O 144.290 23 718818 3324
salt hep CC 15.061 1000 1074066 845386
salt hep ES 1.748 1000 218885 146941
salt hep NC 16.510 1000 20005 16497
salt PMT β−γ 5300.000 1000

Table C.2: Poisson parameters in the LETA alternate fake datasets and associated number
of raw and clean PDF events for the different signals and backgrounds.
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Fake Data PDF Events
Event Class Poisson Param. # Samples # Raw # Clean

NCD-PMT 8B CC 5603.875 997 5816578 2816786
NCD-PMT 8B ESe 481.596 2001 1797864 485016
NCD-PMT 8B ESµτ (Pee) 74.833 3000 5252316 1353036
NCD-PMT 8B ESµτ (Pea) 74.833 3000 5255566 1354234
NCD-PMT 8B NC 240.569 448 500125 122398
NCD-PMT 8B NC (Pee + Pea) 237.636 370 500125 122398
NCD-PMT External n 20.754 2877 563920 59181
NCD-PMT Strings p.d. 5.938 15 157189 70092
NCD-PMT K2 p.d. 9.402 15 227498 112558
NCD-PMT K5 p.d. 8.378 15 288624 118326
NCD-PMT D2O p.d. 8.305 448 500125 122398
NCD-PMT Atmos. 24.681 448 500125 122398
NCD-PMT hep CC 12.844 1000 1061931 724284
NCD-PMT hep ES 1.068 1000 218602 90581
NCD-PMT hep NC 1.156 1000 5417 1266
NCD-NCD 8B NC 907.889 57 15632 14319
NCD-NCD External n 40.900 57 15632 14319
NCD-NCD Strings p.d. 35.600 57 15632 14319
NCD-NCD K2 p.d. 32.800 57 15632 14319
NCD-NCD K5 p.d. 31.600 57 15632 14319
NCD-NCD D2O p.d. 31.000 57 15632 14319
NCD-NCD Atmos. 13.600 57 15632 14319
NCD-NCD hep NC 4.363 57 15632 14319

Table C.3: Poisson parameters in the NCD phase fake datasets and associated number of
raw and clean PDF events for the different signals and backgrounds.
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Fake Data PDF Events
Event Class Poisson Param. # Samples # Raw # Clean

NCD-PMT 8B CC 5603.875 997 5812480 2816837
NCD-PMT 8B ESe 481.596 2001 1792257 484284
NCD-PMT 8B ESµτ (Pee) 74.833 3000 5252635 1353535
NCD-PMT 8B ESµτ (Pea) 74.833 3000 5250438 1353066
NCD-PMT 8B NC 240.569 448 500673 121940
NCD-PMT 8B NC (Pee + Pea) 237.622 370 500673 121940
NCD-PMT External n 20.754 2877 571079 60081
NCD-PMT Strings p.d. 5.938 15 157161 70075
NCD-PMT K2 p.d. 9.402 15 227545 112586
NCD-PMT K5 p.d. 8.378 15 288648 118340
NCD-PMT D2O p.d. 8.305 448 500673 121940
NCD-PMT Atmos. 24.681 448 500673 121940
NCD-PMT hep CC 12.844 1000 1061587 724206
NCD-PMT hep ES 1.068 1000 218503 90540
NCD-PMT hep NC 1.156 1000 5173 1232
NCD-NCD 8B NC 907.889 57 15496 14325
NCD-NCD External n 40.900 57 15496 14325
NCD-NCD Strings p.d. 35.600 57 15496 14325
NCD-NCD K2 p.d. 32.800 57 15496 14325
NCD-NCD K5 p.d. 31.600 57 15496 14325
NCD-NCD D2O p.d. 31.000 57 15496 14325
NCD-NCD Atmos. 13.600 57 15496 14325
NCD-NCD hep NC 4.363 57 15496 14325

Table C.4: Poisson parameters in the NCD alternate phase fake datasets and associated
number of raw and clean PDF events for the different signals and backgrounds.



Appendix D

Final Configuration of Three-Phase

Fits

This appendix provides the numerical values along with some details concerning the con-

figuration of the three-phase fits [39].

D.1 Nominal number of events

Tables D.1 to D.3 give the nominal number of events (“νnom”, as described in Chapter

3) that are used in the final three-phase fits. For solar neutrino classes, the provided

numbers are based on BS05(OP) [18] predictions and they are not modified by the survival

probability functions. In the case of hep CC and hep ES, constant survival probabilities

values of 0.35 and 0.47 are used, respectively.
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Event Class # Day Events # Night Events

D2O
8B CC 2939.54 3901.26

D2O
8B ESe 368.57 483.72

D2O
8B ESµτ 59.16 77.75

D2O
8B NC 415.61 553.49

D2O AV neutrons 17.46 22.98
D2O Bi D2O 905.91 1183.65
D2O Tl D2O 339.42 444.58
D2O Bi AV bulk 18.61 23.08
D2O Tl AV bulk 30.58 41.49
D2O Bi H2O 85.13 107.53
D2O Tl H2O 44.75 58.97
D2O Other n 1.33 1.77
D2O hep CC 11.09 14.73
D2O hep ES 0.97 1.26
D2O hep NC 1.59 2.08
D2O Atmos. 8.85 11.70
D2O Leslie 13.32 10.27
D2O PMT β-γ 1167.53 1532.47

Table D.1: Nominal number of events used by the final three-phase fit for the D2O phase.
The values correspond to the expected number of events in the analysis window. The
numbers of events are not modified by survival probabilities.



Appendix D Final Configuration of Three-Phase Fits 230

Event Class # Day Events # Night Events

salt 8B CC 4307.56 5302.95
salt 8B ESe 540.58 658.61
salt 8B ESµτ 86.99 105.81
salt 8B NC 1619.71 1996.45
salt AV neutrons 66.18 80.98
salt Bi D2O 1522.03 1847.47
salt Tl D2O 500.03 609.59
salt 24Na 172.55 209.00
salt Bi AV bulk 35.07 44.23
salt Tl AV bulk 69.32 85.16
salt Bi H2O 111.29 131.64
salt Tl H2O 63.81 77.29
salt Other n 5.18 6.39
salt hep CC 16.35 20.12
salt hep ES 1.42 1.73
salt hep NC 6.10 7.56
salt Atmos. 13.14 15.79
salt Leslie 16.14 18.94
salt PMT β−γ 2390.29 2909.71

Table D.2: Nominal number of events used by the final three-phase fit for the salt phase.
The values correspond to the expected number of events in the analysis window. The
numbers of events are not modified by survival probabilities.
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Event Class # Day Events # Night Events

NCD-PMT 8B CC 2821.95 3375.53
NCD-PMT 8B ESe 247.05 285.56
NCD-PMT 8B ESµτ 38.35 44.41
NCD-PMT 8B NC 123.29 142.76
NCD-PMT External n 9.64 11.11
NCD-PMT Strings p.d. 2.72 3.22
NCD-PMT K2 p.d. 4.32 5.08
NCD-PMT K5 p.d. 5.55 6.51
NCD-PMT D2O p.d. 3.85 4.46
NCD-PMT Atmos. 11.44 13.24
NCD-PMT hep CC 14.24 17.05
NCD-PMT hep ES 0.90 1.04
NCD-PMT hep NC 0.45 0.54

Event Class # Events

NCD-NCD 8B NC 1004.06
NCD-NCD External n 40.90
NCD-NCD Strings p.d. 35.60
NCD-NCD K2 p.d. 32.80
NCD-NCD K5 p.d. 45.50
NCD-NCD D2O p.d. 31.00
NCD-NCD Atmos. 13.60
NCD-NCD hep NC 3.72

Table D.3: Nominal number of events used by the final three-phase fit for the NCD phase.
The values correspond to the expected number of events in the analysis window. The
numbers of events are not modified by survival probabilities.
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Constrained Parameter σr+ σr−
[%] [%]

αD2O Bi D2O 33.33 20.00
αD2O Tl D2O 46.66 44.44
αD2O Bi H2O 17.30 17.30
αD2O Tl H2O 33.43 28.35

αsalt Tl D2O 46.05 59.21
αsalt 24Na 28.57 28.57
αsalt Bi H2O 24.22 24.22
αsalt Tl H2O 30.69 30.69

Table D.4: Relative constraints on day/night averaged background production rates used
by the final three-phase fit for the D2O and salt phases. The constraints are applied as
described in Section 3.5.4, with the sum over the day and night components and µr = 1.
Day/night background rates are free to float separately only for D2O, H2O, salt

24Na
backgrounds and PMT β-γ events.

D.2 Background Constraints

In this section, constraints on the background production rates are presented. Although

these constraints always affect the α parameters (see Equations (3.15) and (3.17) for the

parameterisation of the generic form of the likelihood function) rather than the number

of detected events, they are applied differently depending on the SNO phase. In the

case of the D2O and the salt phases, day and night rates are floated separately and the

constraints are applied to the averaged day and night rates, as described in Section 3.5.4.

For the NCD phase, the background rates are parameterised using day/night asymmetries,

as presented in Section 3.7, so simple univariate penalty terms are used to constrain the

resulting parameters. Table D.4 shows the constraints used for LETA and Tables D.5 and

D.6 present the constraints used for the NCD phase.
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Constrained Parameter σr+ σr−
[%] [%]

αNCD-PMT External n 50.37 50.37
αNCD-PMT Strings p.d. 34.27 34.27
αNCD-PMT K2 p.d. 15.85 15.85
αNCD-PMT K5 p.d. 16.48 18.46
αNCD-PMT D2O p.d. 15.48 15.48
αNCD-PMT Atmos. 19.85 19.85

Table D.5: Relative constraints on day/night central background production rates used
by the final three-phase fit for the NCD phase. The constraints are applied as simple
univariate penalty terms (Section 3.5.1) with a most probable value of µ = 1.

Constrained Parameter µ σ

ANCD-PMT External n −0.0195 0.0112
ANCD-PMT D2O p.d. −0.034 0.112

Table D.6: Constraints on background day/night asymmetries used by the final three-
phase fit for the NCD phase. The constraints are applied as simple univariate penalty
terms (Section 3.5.1). Asymmetries for the other backgrounds of third phase are fixed to
0.
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D.3 Systematic Uncertainties

This section presents the systematic uncertainty constraints that are used for the final

fits. Since some of these uncertainties are correlated between phases, event classes or

particle types, some uncertainties are expressed as a product between a fixed scale and a

constrained variable. Variables that are represented using the symbol ℵ are constrained

using N(0, 1) Gaussian penalties.

D.3.1 Reconstructed Kinetic Energy

D.3.1.1 Scale

Energy scale systematic uncertainties are propagated as

T
(D2O,salt)
eff′ =

{

1 + Ecorr
scale + E

(D2O,salt)
scale ± 1

2

[

Adiu

(

E
(D2O,salt)
scale

)

+

ℵ(D2O,salt)
Escale

A
(CC,ES)
dir

(

E
(D2O,salt)
scale

) ]}

T
(D2O,salt)
eff (D.1)

TNCD−PMT
eff′ =

(
1 + Ecorr

scale + ENCD−PMT
scale

)
{

1± 1

2

[

Adiu

(
ENCD−PMT

scale

)
+

ℵNCD−PMT
Escale

AES
dir

(
ENCD−PMT

scale

) ]
}

TNCD−PMT
eff , (D.2)

where Adir

(

E
(D2O,salt)
scale

)

only applies for the indicated event classes and where the positive

shift is used for night events and the negative shift for day events.
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Parameter Nominal σ+ σ−

Ecorr
scale 0.0000 0.0041 0.0041

ED2O
scale 0.0000 0.0039 0.0047

Esalt
scale 0.0000 0.0034 0.0032

ENCD−PMT
scale 0.0000 0.0081 0.0081

Adiu

(
ED2O

scale

)
0.00% 0.32% 0.32%

Adiu

(
Esalt

scale

)
0.0% 0.4% 0.4%

Adiu

(
ENCD−PMT

scale

)
0.00% 0.38% 0.38%

ACC
dir

(
ED2O

scale

)
0.09%

AES
dir

(
ED2O

scale

)
-0.92%

ACC
dir

(
Esalt

scale

)
0.09%

AES
dir

(
Esalt

scale

)
-0.79%

AES
dir

(
ENCD−PMT

scale

)
-0.99%

Table D.7: Energy scale systematic uncertainty parameters.

D.3.1.2 Non-linearity

The energy non-linearity systematic uncertainty is applied as

T e−

eff′′ = T e−

eff′

(

1 + Enon−lin.
T e−

eff′ − 5.05 MeV

19.0 MeV − 5.05 MeV

)

. (D.3)

The same transformation is used for the three phases and does not apply to neutron

events (T n
eff′′ = T n

eff′).

Parameter Nominal σ

Enon−lin. 0.0000 0.0069

Table D.8: Energy non-linearity systematic uncertainty parameter.
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D.3.1.3 Resolution

Energy resolution systematic uncertainties are propagated as

TD2O
eff′′′ =TD2O

eff′′ + Gauss

{

0,
[
ED2O

res

]2
+

[

−0.516 MeV + 0.612 MeV1/2
√

TD2O
eff′′

]2

[

H
(
±Adiu

(
ED2O

res

))
+H

(

±ℵD2O
Eres

A
(CC,ES)
dir

(
ED2O

res

))]

[

2 +H
(
±Adiu

(
ED2O

res

))
+H

(

±ℵD2O
Eres

A
(CC,ES)
dir

(
ED2O

res

))]
}

(D.4)

T
salt(e−,n)
eff′′′ =T

salt(e−,n)
eff′′ + Gauss

{

0,
[

Esalt(e−,n)
res

]2

+

[

−0.570 MeV + 0.651 MeV1/2

√

T
salt(e−,n)
eff′′

]2

[

H
(
±Adiu

(
Esalt

res

))
+H

(

±ℵsalt
Eres

A
(CC,ES)
dir

(
Esalt

res

))]

[

2 +H
(
±Adiu

(
Esalt

res

))
+H

(

±ℵsalt
Eres

A
(CC,ES)
dir

(
Esalt

res

))]
}

(D.5)

T
NCD−PMT(e−)
eff′′′ =T

NCD−PMT(e−)
eff′′ + ENCD−PMT

rel res E
NCD−PMT(e−)
res scale

[

T
NCD−PMT(e−)
eff′′ − TNCD−PMT(e−)

gen

]

{

1± 1

2

[

ℵNCD−PMT
Eres

AES
dir

(
ENCD−PMT

res

) ]
}

(D.6)

T
NCD−PMT(n)
eff′′′ =T

NCD−PMT(n)
eff′′ + ENCD−PMT

rel res E
NCD−PMT(n)
res scale

[

T
NCD−PMT(n)
eff′′ − 5.646 MeV

]

{

1± 1

2

[

ℵNCD−PMT
Eres

AES
dir

(
ENCD−PMT

res

) ]
}

, (D.7)
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where Gauss(µ, σ2) is a function that generates a random variable distributed according

to N(µ, σ2), where H(x) is the Heaviside step function and where the positive signs are

used for night events. Tgen is the Monte Carlo generated kinetic energy.

Parameter Nominal σ+ σ−

ED2O
res [MeV] 0.155 0.041 0.080

E
salt(e−)
res [MeV] 0.168 0.041 0.080

E
salt(n)
res [MeV] 0.154 0.018 0.018

ENCD−PMT
rel res 1.0000 0.8739 0.8739

E
NCD−PMT(e−)
res scale [MeV] 0.016184

E
NCD−PMT(n)
res scale [MeV] 0.0119

Adiu

(
ED2O

res

)
0.0% 0.3% 0.3%

Adiu

(
Esalt

res

)
0.0% 0.5% 0.5%

ACC
dir

(
ED2O

res

)
0.14%

AES
dir

(
ED2O

res

)
-0.64%

ACC
dir

(
Esalt

res

)
0.13%

AES
dir

(
Esalt

res

)
-1.3%

AES
dir

(
ENCD−PMT

rel res

)
-1.2%

Table D.9: Energy resolution systematic uncertainty parameters.

D.3.2 Position

D.3.2.1 Shift

For all phases, position shift systematic uncertainties are applied as

(x′, y′, z′) = (x, y, z) + (x, y, z)shift, (D.8)

where the uncertainties (x, y, z)shift are specific to each phase.
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Parameter Nominal σ+ σ−
[cm] [cm] [cm]

xD2O
shift 0.00 1.15 0.13

yD2O
shift 0.00 2.87 0.17

zD2O
shift 5.00 2.58 0.15
xsalt
shift 0.00 0.62 0.07

ysaltshift 0.00 2.29 0.09
zsaltshift 5.00 3.11 0.16
xNCD−PMT
shift 0.0 4.0 4.0

yNCD−PMT
shift 0.0 4.0 4.0
zNCD−PMT
shift 5.0 4.0 4.0

Table D.10: Position shift systematic uncertainty parameters.

D.3.2.2 Scale

Position scale systematic uncertainties are applied as

(x′′, y′′)(D2O,salt) =

{

1 + V
(D2O,salt)
r scale ± 1

2

[

Adiu

(

V
(D2O,salt)
scale

)

+

ℵ(D2O,salt)
V
r scale

A
(CC,ES)
dir

(

V
(D2O,salt)
scale

) ]}

(x′, y′)(D2O,salt) (D.9)

z′′(D2O,salt) =

{

1 + V
(D2O,salt)
r scale + V

(D2O,salt)
z scale ± 1

2

[

Adiu

(

V
(D2O,salt)
scale

)

+

ℵ(D2O,salt)
Vr scale

A
(CC,ES)
dir

(

V
(D2O,salt)
scale

) ]}

z′(D2O,salt) (D.10)

(x′′, y′′)NCD−PMT =
(
1 + V NCD−PMT

r scale

)
{

1± 1

2

[

Adiu

(
V NCD−PMT
scale

)
+

ℵNCD−PMT
V
r scale

AES
dir

(
V NCD−PMT
scale

) ]
}

(x′, y′)NCD−PMT (D.11)

z′′NCD−PMT =
(
1 + V NCD−PMT

r scale + V NCD−PMT
z scale

)
{

1± 1

2

[

Adiu

(
V NCD−PMT
scale

)
+

ℵNCD−PMT
V
r scale

AES
dir

(
V NCD−PMT
scale

) ]
}

z′NCD−PMT, (D.12)
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where the positive signs are used for night events.

Parameter Nominal σ+ σ−

V D2O
r scale 0.0000 0.0010 0.0057

V D2O
z scale 0.0000 0.0040 0.0000

V salt
r scale 0.0000 0.0004 0.0034

V salt
z scale 0.0000 0.0003 0.0025

V NCD−PMT
r scale 0.0000 0.0029 0.0077

V NCD−PMT
z scale 0.0000 0.0015 0.0012

Adiu

(
V D2O
scale

)
0.0% 0.2% 0.2%

Adiu

(
V salt
scale

)
0.0% 0.3% 0.3%

Adiu

(
V NCD−PMT
scale

)
0.0% 0.1% 0.1%

ACC
dir

(
V D2O
scale

)
0.04%

AES
dir

(
V D2O
scale

)
-0.5 %

ACC
dir

(
V salt
scale

)
0.02%

AES
dir

(
V salt
scale

)
-0.15%

AES
dir

(
V NCD−PMT
scale

)
-0.18%

Table D.11: Position scale systematic uncertainty parameters.
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D.3.2.3 Resolution

Position resolution systematic uncertainties are propagated as

(x′′′, y′′′, z′′′)D2O =(x′′, y′′, z′′)D2O + Gauss

{

0,
[

V D2O
res (x,y)

]2

+

H
(
±Adiu

(
V D2O
res

))2
}

(D.13)

(x′′′, y′′′, z′′′)salt =(x′′, y′′, z′′)salt + Gauss

{

0,
[
V salt
res (x,y)

]2
+

[

H
(
±Adiu

(
V salt
res

))
+H

(

±ℵsalt
Vres

A
(CC,ES)
dir

(
V salt
res

))]2
}

(D.14)

(x′′′, y′′′)NCD−PMT =(x′′, y′′)NCD−PMT +
[
V NCD−PMT
res xy 0 + V NCD−PMT

res xy 1 z + V NCD−PMT
res xy 2 z2

]

[
(x′′, y′′)NCD−PMT − (xgen, ygen)

NCD−PMT
]

(D.15)

z′′′NCD−PMT =z′′NCD−PMT +
[
V NCD−PMT
res z 0 + V NCD−PMT

res z 1 z
]

[
z′′NCD−PMT − zNCD−PMT

gen

]
, (D.16)

where Gauss(µ, σ2) and H(x) are defined as mentioned in Section D.3.1.3 and where the

Gaussian random values are uncorrelated across phases.

D.3.2.4 Energy Dependence

To propagate the systematic uncertainties for the energy dependence of the fiducial vol-

ume, each event is weighted using the equation

W =1 + VE dep(Teff′′′ − 5.05 MeV), (D.17)

where the systematic uncertainties VE dep are specific to each phase.
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Parameter Nominal σ
[cm] [cm]

V D2O
res x 0. 3.3

V D2O
res y 0. 2.2

V D2O
res z 0. 1.5

V salt
res x 0. 3.1

V salt
res y 0. 3.4

V salt
res z 0. 5.3

V NCD−PMT
res xy 0 0.06546 see Table D.13

V NCD−PMT
res xy 1 -5.501×10−5 see Table D.13

V NCD−PMT
res xy 2 3.9×10−7 see Table D.13

V NCD−PMT
res z 0 0.07096 see Table D.14

V NCD−PMT
res z 1 1.155×10−4 see Table D.14

Adiu

(
V D2O
res

)
0. 6.82

Adiu

(
V salt
res

)
0. 7.21

ACC
dir

(
V salt
res

)
1.02

AES
dir

(
V salt
res

)
3.36

Table D.12: Position resolution systematic uncertainty parameters.

V NCD−PMT
res xy 0 V NCD−PMT

res xy 1 V NCD−PMT
res xy 2

V NCD−PMT
res xy 0 0.000818124 -2.24984×10−7 -4.19131×10−9

V NCD−PMT
res xy 1 -2.24984×10−7 3.66098×10−9 3.71423×10−12

V NCD−PMT
res xy 2 -4.19131×10−9 3.71423×10−12 3.92118×10−14

Table D.13: Covariance matrix used to apply the position resolution uncertainty in the x
and y directions.

V NCD−PMT
res z 0 V NCD−PMT

res z 1

V NCD−PMT
res z 0 0.00078696 3.47188×10−7

V NCD−PMT
res z 1 3.47188×10−7 6.80761×10−9

Table D.14: Covariance matrix used to apply the position resolution uncertainty in the z
direction.
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Parameter Nominal σ+ σ−
[MeV−1] [MeV−1] [MeV−1]

V D2O
E dep 0 0.0085 0.0049

V salt
E dep 0 0.0041 0.0048

V NCD−PMT
E dep 0 0.0088 0.0067

Table D.15: Fiducial volume energy dependence systematic uncertainty parameters.

D.3.3 Direction

Systematic uncertainties on the cos θ⊙ observable are applied as

cos θ
′(D2O,salt)
⊙ =1 +

[

1 + ∆
(D2O,salt)
θ ± 1

2
ℵ(D2O,salt)
∆

θ
AES

dir

(

∆
(D2O,salt)
θ

)]

(cos θ
(D2O,salt)
⊙ − 1) (D.18)

cos θ′NCD−PMT
⊙ =1 +

[
1 + ∆NCD−PMT

θ

]
[

1± 1

2
ℵNCD−PMT
∆

θ
AES

dir

(
∆NCD−PMT

θ

)
]

(cos θNCD−PMT
⊙ − 1), (D.19)

using the same sign convention as the previous uncertainties.

Parameter Nominal σ

∆D2O
θ 0. 0.11

∆salt
θ 0. 0.11

∆NCD−PMT
θ 0. 0.12

AES
dir

(
∆D2O

θ

)
-2.18%

AES
dir

(
∆salt

θ

)
-5.2%

AES
dir

(
∆NCD−PMT

θ

)
-6.9%

Table D.16: cos θ⊙ systematic uncertainty parameters.



Appendix D Final Configuration of Three-Phase Fits 243

D.3.4 Isotropy

D.3.4.1 Scale

β14 scale systematic uncertainties are propagated as

β
′(D2O,salt e−)
14 =β

(D2O,salt e−)
14

[

1 +B
(D2O,salt e−)
scale shift 0 +BD2O & salt e−

scale 0 +

Bscale 1

(

T
(D2O,salt e−)
eff − 5.589 MeV

) ]

(D.20)

β ′salt n
14 =βsalt n

14

[
1 +Bsalt n

scale 0 +Bscale 1

(
T salt n
eff − 5.589 MeV

)]
. (D.21)

Parameter Nominal σ+ σ−

BD2O
scale shift 0 −0.0081

Bsalt e−

scale shift 0 0.

BD2O & salt e−

scale 0 0. 0.002084 0.002084
Bsalt n

scale 0 −0.0144 0.0038 0.0020
Bscale 1 [MeV−1] 0.00275597 0.00048790 0.00048790

Table D.17: β14 scale systematic uncertainty parameters.

D.3.4.2 Shift

The β14 shift systematic uncertainty is propagated as

β
′′(D2O,salt)
14 =β

′(D2O,salt)
14 ± 1

2

[

Adiu

(

B
(D2O,salt)
shift

)

+

ℵ(D2O,salt)
Bshift

A
(CC,ES)
dir

(

B
(D2O,salt)
shift

) ]

, (D.22)

using the usual conventions.
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Parameter Nominal σ

Adiu

(
BD2O

shift

)
0. 0.0043

Adiu

(
Bsalt

shift

)
0. 0.0043

ACC
dir

(
BD2O

shift

)
0.00038

AES
dir

(
BD2O

shift

)
−0.0034

ACC
dir

(
Bsalt

shift

)
0.00038

AES
dir

(
Bsalt

shift

)
−0.0034

Table D.18: β14 shift systematic uncertainty parameters.

D.3.4.3 Width

β14 width systematic uncertainties are applied as

β
′′′D2O(e−,n)
14 =β

′′D2O(e−,n)
14 +BD2O & salt e−

width

[

β
′′D2O(e−,n)
14 − β̄

D2O(e−,n)
14j

(

T
D2O(e−,n)
eff

) ]

(D.23)

β ′′′salt e−

14 =β ′′salt e−

14 +BD2O & salt e−

width

[

β ′′salt e−

14 − β̄salt e−

14j

(

T salt e−

eff

) ]

(D.24)

β ′′′salt n
14 =β ′′salt n

14 + Gauss
(

0,
[
Bsalt n

width

]2
)

, (D.25)

where the functions β̄14j
(Teff) give the β14 mean in the simulation data as a function of

the kinetic energy for a given type of particle (electron-like or neutrons) and a given class

of events, and where Gauss(µ, σ2) is defined as usual.

Parameter Nominal σ

BD2O & salt e−

width 0. 0.003315
Bsalt n

width 0.0150 0.0045

Table D.19: β14 width systematic uncertainty parameter.
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D.3.5 PMT Photodisintegration Events

PMT β − γ background events for the D2O and salt phases are modelled using the

analytical PDF

f(Teff , β14, ρ, cos θ⊙) ∝eǫ TeffN (β14 | β̄14 = ω0 + ω1(ρ− 0.61), σ = βs)

(|b+ 1| − 1 + eνρ), (A.1)

where N (x|x̄, σ) is a Gaussian distribution with the given mean and width. All parameters

are phase and day/night specific. Parameters b and ν are expressed as

b =b0 + buℵ1 (D.26)

ν =ν0 + νu

(

ρ[b, ν]ℵ1 +
√

1− ρ[b, ν]2ℵ2

)

, (D.27)

where ℵ1 and ℵ2 are also specific (independent) for each phase and day/night.

Parameter D2O Phase salt Phase
Day Night Day Night

ǫ −6.73 ±1.29 −5.64 ± 1.02 −6.26 ±0.91 −6.98 ±0.91
ω0 0.533±0.014 0.533± 0.014 0.511±0.007 0.511±0.007
ω1 0.182±0.095 0.182± 0.095 0.237±0.051 0.237±0.051
βs 0.182±0.011 0.182± 0.011 0.195±0.007 0.195±0.007
b0 ± bu −1.00 ±1.29 3.27 ±12.04 −0.33 ±2.08 0.49 ±3.02
ν0 ± νu 6.63 ±0.93 6.78 ± 1.52 5.32 ±1.01 5.66 ±1.07
ρ[b, ν] 0.60 0.96 0.91 0.94

Table D.20: Systematic uncertainty parameters for the PMT β-γ analytical PDFs.
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D.3.6 Other

D.3.6.1 Winter et al. 8B Spectral Shape Uncertainty

For the three phases, the Winter et al. [56] 8B spectral shape uncertainty is propagated

by reweighting the CC, ES and NC events using the function

W (CC,ES,NC) =1 +
ℵ(CC,ES,NC)

8B

3
[0.018− 0.001999 MeV−1 × Eν−

8.8769× 10−5 MeV−2 ×E2
ν ], (D.28)

where parameters ℵ8B are phase-correlated.

D.3.6.2 Salt Phase 24Na Distribution

For the salt phase, the uncertainty associated to the distribution of 24Na background

events is evaluated by reweighting these events using

W =
(z′′′ ± 600)2

432000
. (D.29)
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D.3.6.3 Efficiency Systematic Uncertainties

Efficiency systematic uncertainties are applied as

W (D2O NC,salt NC) =1 +∆ǫcorrn +∆ǫ(D2O,salt)
n (D.30)

W (D2O n bg,salt n bg) =
[
1 + ∆ǫcorrn +∆ǫ(D2O,salt)

n

]
[1 + ∆ǫphoto] (D.31)

W (NCD−PMT NC,NCD−NCD NC) =ǫ
(NCD−PMT,NCD−NCD)
NC , (D.32)

where ∆ǫcorrn is the correlated neutron capture efficiency uncertainty, where ∆ǫD2O
n and

∆ǫsaltn are the neutron capture efficiency uncertainties for the D2O and salt phases respec-

tively, where ∆ǫphoto is the efficiency uncertainty for photodisintegration events and where

ǫNCD−PMT
NC and ǫNCD−NCD

NC are respectively the NC capture efficiency uncertainties for the

PMT and NCD side of the NCD phase.

Parameter Nominal σ

∆ǫcorrn 0 0.007
∆ǫD2O

n 0 0.0187
∆ǫsaltn 0 0.0124
ǫNCD−PMT
NC 1 0.0279
ǫNCD−NCD
NC 1 0.0237
∆ǫphoto 0 0.02

Table D.21: Efficiency systematic uncertainty parameters.

D.3.6.4 Sacrifice Uncertainties

In addition to the systematic uncertainties that were presented in the previous section,

other parameters are added to consider the uncertainties on the effects of the analysis
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cuts [57]. These uncertainties have been evaluated separately for each signal and back-

ground in an energy-dependent fashion and they are applied as such during the signal

extraction process.

D.4 PSA Constraint

As shown in Section 3.6, the PSA constraint is applied as

LLPSA = −1

2





[
∑

j∈{n classes} αjνjexp(~η)
]

− nn

nnδnn





2

. (3.33)

The constraint mean and uncertainty are shown on Table D.22.

Parameter Nominal σ

nn ± nnδnn 1114.6 78.3

Table D.22: PSA constraint used by the final three-phase fits.
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