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Abstract

The Sudbury Neutrino Observatory has successfully demonstrated neutrino flavour
transformation of the neutrinos produced in the Sun. The use of heavy water as
the detection medium allowed a measurement of both the total active solar neutrino
flux and the pure electron neutrino component. This work presents the results of a
neutrino oscillation analysis of the latest combined analysis of all phases of the exper-
iment, aiming to obtain the most precise measurement of the neutrino mixing param-
eters relevant for solar neutrinos. The results obtained show a precision on tan2 θ12

better than 10% both on a two and three flavour analysis of all solar neutrino data.
A three-flavor neutrino oscillation analysis combining the results of all solar neutrino
experiments and the KamLAND experiment yielded ∆m2

21 = (7.41+0.21
−0.19)× 10−5 eV2,

tan2 θ12 = 0.446+0.030
−0.029, and sin2 θ13 = (2.5+1.8

−1.5)× 10−2, which implies an upper bound
of sin2 θ13 < 0.053 at the 95% confidence level (C.L.). The newly obtained results
also demonstrate a shift of the θ12 mixing angle towards lower values, increasing the
tension with the KamLAND experiment slightly increasing the significance of a non-
zero θ13. A combined analysis of neutrino data from multiple sources was performed
in an attempt to obtain an enhanced constrain on θ13, with a result of a non-zero θ13

with a statistical significance of 3.2 σ. This work also presents improvements in the
optical calibration of the detector during the NCD phase, having reached a precision
in the optical parameters comparable to the results of the previous phases, despite
the added difficulty with the introduction of the neutral current detector (NCD) into
the heavy water (D2O) volume. These improvements permitted to reduce the sys-
tematic uncertainties on the energy reconstruction and therefore extract the most
interesting physics from the full data set of SNO.

Keywords: Solar neutrinos; Neutrino oscillations; Low background detectors; Water
Čerenkov detectors; Optical calibration.
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Sumário

O Sudbury Neutrino Observatory (SNO) foi a primeira experiência a demonstrar
a mudança de sabor nos neutrinos solares, resolvendo o denominado Problema dos
Neutrinos Solares. Usando água pesada como meio activo, foi possível a SNO medir
de forma independente o fluxo total de neutrinos de todos os sabores por intermédio
da reacção de correntes neutras (NC), e também o fluxo de neutrinos de electrão por
intermédia da reacção de correntes carregadas (CC). Neste trabalho são apresentados
os resultados da análise de oscilação a dois e três sabores dos dados combinados das
três fases da experiência, analisados simultâneamente como um conjunto único. Estes
resultados demonstram uma melhoria na precisão do parâmetro de oscilação tan2 θ12

tendo-se obtido uma incerteza abaixo dos 10% em ambas as análises a dois e três
sabores de todos os dados de neutrinos solares. Ao efectuar uma análise combinada
dos dados de todas as experiências de neutrinos solares juntamente com a experiência
de reactor KamLAND obtiveram-se os resultados de ∆m2

21 = (7.41+0.21
−0.19)× 10−5 eV2,

tan2 θ12 = 0.446+0.030
−0.029, e sin2 θ13 = (2.5+1.8

−1.5)× 10−2, implicando um limite superior de
sin2 θ13 < 0.053 com 95% de grau de confiança. Verificou-se ainda que os novos dados
de SNO induzem a uma variação no ângulo de mistura para valores mais baixos, o
qual é propagado nas análises combinadas com dados de outras experiências, tendo
como consequência um aumento da anti-correlação com os resultados de KamLAND
levando a um ligeiro aumento da significância estatística de um valor de θ13 não nulo.
Foi ainda efectuada uma análise combinada de dados de neutrinos de múltiplas fontes,
de forma a obter o máximo de informação em relação à possibilidade de um valor
de θ13 não nulo tendo-se obtido um resultado com uma significância estatística de
3.2σ. São ainda apresentados várias melhorias implementadas na calibração óptica de
SNO, com particular ênfase na terceira fase da experiência. Estas melhorias levaram
a uma precisão nos parâmetros ópticos comparável aos resultados obtidos na primeira
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e segunda fase, apesar de na terceira fase haver a dificuldade adicional imposta pela
introdução dos contadores proporcionais (NCDs) no detector. Esta precisão permitiu
reduzir as incertezas sistemáticas na reconstrução em energia de forma a ser possível
extrair os melhores resultados de Física possíveis dos dados de SNO.

Numa fase inicial deste trabalho (Capítulo 1) é feita uma introdução à física
de neutrinos solares, enquadrando este trabalho no conhecimento actual e na moti-
vação para a medição precisa dos parâmetros de oscilação. De seguida é efectuada
uma introdução ao detector SNO (Capítulo 2), apresentando informação sobre a sua
estrutura, os principais tipos de fundos e as diversas calibrações efectuadas, com
particular incidência sobre a instrumentação da calibração óptica, que consiste num
laser e uma esfera difusora quasi-uniforme. É então feito um enquadramento do
trabalho desenvolvido no âmbito da calibração óptica (Capítulo 3), sendo apresen-
tados os métodos e os princípios gerais, nomeadamente uma descrição dos diferentes
objectivos da calibração óptica, do modelo óptico usado para efectuar a caracteri-
zação do detector e das optimizações a cortes de qualidade aplicados para obter a
descrição mais fiável das propriedades do detector. De seguida são apresentados os
dois métodos usados na análise de dados das diferentes fases da experiência. Após
esta introdução são então apresentados os resultados das diversas actividades efectu-
adas na calibração óptica (Capítulo 4) focando nos resultados com influência directa
na análise dos dados de neutrinos, tais como a implentação de novos cortes de qual-
idade. São também abordadas outras actividades que, não tendo influência directa
na análise dos dados de neutrinos, serviram para testar outros elementos do mod-
elo óptico (por exemplo o estudo da reflectividade dos contadores proporcionais e a
assimetria cima-baixo) ou serviram para validar outras análises já efectuadas (como
por exemplo o estudo da correcção de ocupância dos PMTs baseado em simulações
de Monte Carlo) . No final deste capítulo são descritos os resultados de um reproces-
samento de uma selecção de dados de calibração óptica, sendo então efectuada uma
avaliação quantitativa das propriedades ópticas do detector ao longo das três fases,
assim como algumas considerações sobre a sua variação durante o tempo de vida da
experiência. No capítulo seguinte (Capítulo 5) é explicado o método usado na análise
dos dados de neutrinos. Neste capítulo são inicialmente explicados os diversos ob-
serváveis usados na análise dos dados de neutrinos. Posteriormente são explicados os
métodos de análise focando sobretudo no novo método usado na análise combinada
das três fases de SNO, em que é efectuada uma análise espectral obtando-se uma
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parametrização funcional da distorção do espectro de neutrinos solares provenientes
da reacção de 8B. É depois apresentada uma análise efectuada no âmbito desta
tese para a determinação da melhor parametrização a usar para se poder extrair o
máximo de informação dos dados. Finalmente são apresentados os resultados finais
da análise dos dados de neutrinos usando a parametrização escolhida, sendo então
efectuada uma breve análise dos resultados obtidos. Finalmente são apresentados
os resultados da parte principal deste trabalho, que consiste na medição precisa dos
parâmetros de oscilação dos neutrinos solares. É então efectuada uma pequena re-
visão da fenomenologia das oscilações de neutrinos, tanto no vácuo como assumindo
efeitos de matéria. Neste ambito é apresentada uma derivação da probabilidade de
sobrevivência implementada na análise de oscilação de neutrinos de forma a melhorar
a precisão na determinação dos parâmetros de oscilação. Esta implementação calcula
a probabilidade de sobrevivência por intermédio de uma aproximação adiabática, a
qual permite obter uma descrição analítica da mesma. Os diferentes dados necessários
para obter a probabilidade de sobrevivência são então descritos, sendo efectuada uma
avaliação quantitativa do efeito de cada parâmetro na probabilidade de sobrevivência.
É então explicado o método de análise usado para os diferentes tipos de dados usa-
dos, focando sobretudo no método para SNO, em que se faz a análise do espectro de
energia medido sob a forma de uma parametrização polinomial da probabilidade de
sobrevivência. Tanto a parametrização como o método de análise são uma novidade
em relação os métodos usados no passado, sendo também demonstrados os resulta-
dos de estudos de validação do método. Finalmente são apresentados os resultados
de diversas análises de oscilação efectuadas, tanto no âmbito de dois como de três
sabores de neutrinos. Uma vez que no âmbito de neutrinos solares nenhuma exper-
iência é capaz de reduzir a região dos parâmetros de oscilação a um único mínimo, a
análise de oscilações de neutrinos é efectuada não só para os resultados de SNO, mas
também para os dados combinados de todas as experiências de neutrinos solares. São
ainda apresentados outros estudos efectuados, tais como o efeito de usar diferentes
modelos solares ou assumir que os neutrinos apresentam-se com hierarquia invertida
de massas. Tendo como objectivo obter os resultados mais precisos dos parâmetros
de oscilação, são depois efectuadas análises combinadas usando dados de neutrinos de
outras fontes, tais como os dados da experiência de reactor KamLAND e os dados de
experiências de acelerador com o objectivo de obter a melhor estimativa to valor do
ângulo de mistura θ13. Por fim, é efectuada uma análise de sensibilidade da possível
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melhoria dos parâmetros de oscilação, assumindo diferentes cenários numa possível
medição do fluxos de neutrinos da reacção de pep por parte da experiência SNO+,
sucessora de SNO, demonstrando que SNO+ tem todas as condições para aumentar
ainda mais a precisão do ângulo de mistura θ12 e aumentar a significância estatítica
de um valor não nulo no ângulo de mistura θ13.

Palavras chave: Neutrinos Solares; Oscilações de Neutrinos; Calibração Óptica.
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Chapter 1

Introduction

Neutrinos are a very interesting probe to study some of the most fundamental ques-
tions about the Universe. The same properties that make neutrinos so difficult to
detect make them the ideal means for studying subjects that would be otherwise
hard, if not impossible to address. Solar neutrinos in particular provide a unique
opportunity to study the processes in the interior of the Sun due to the large mean
free path which allows neutrinos to stream freely out of the Sun.

The detection of solar neutrinos has been discussed for several decades considering
different sources [1, 2]. The first proposal for neutrino detection as a way to verify
the hypothesis of solar fusion was carried out in a collaborative effort of Davis and
Bahcall [3, 4].

Since the very first results it became clear that neutrinos were not as well un-
derstood as it was previously thought and thus solar neutrinos became an invaluable
instrument for discovering the nature of neutrinos themselves. Since then much was
learned about them, and although the studies continue, neutrinos are now an un-
doubtedly precious tool to understand the way the stars, and the Sun in particular,
work.

1



2 Introduction

1.1 Neutrinos in the Standard Model

The existence of the neutrino was first postulated by Wolfgang Pauli in 1930 to
explain the continuous electron energy spectrum observed in nuclear beta decay [5],
without violating the principle of energy conservation.

At the time, the nuclear models considered the beta decay simply as an electron
being ejected from the nucleus. However, this model implied that the electron would
always have a fixed energy. Moreover, experimental studies demonstrated that the
electron energy had a continuous distribution up to an endpoint, instead of a discrete
distribution at that same energy. In order to be consistent with these observations
Wolfgang Pauli suggested that a third particle should participate in the decay, ac-
companying the electron. This particle should be neutral, very light and have a spin
1/2, so that it also would respect the Pauli exclusion principle and solve the spin
statistic problem in atomic nuclei. This explanation perfectly fitted the observations
of a continuous energy spectrum of the ejected electron, and at the time Pauli set
the first limit on this particle to be 1% of the proton mass [6] .

Two years later, in 1932, Chadwick discovered the neutron [7] which meant that
the previous model of the nucleus was incorrect. Although the existence of the
neutron as a component of the nucleus solved the issue of the spin statistics, the
problem of the continuous electron energy spectrum resulting from the beta decay
persisted, being Pauli’s theory the only explanation that fitted the observations.

Later, in 1934, Enrico Fermi formulated the basic model of the beta decay, which
is the foundation of the theory of weak interactions [8]. In his model, Fermi included
the light neutral particle suggested by Pauli, which he named neutrino. In his model,
beta decay occurred when a neutron converts into a proton, emitting an electron and
an antineutrino. These two particles were not considered part of the nucleus, being
spontaneously generated by the decay of the neutron. Along with this explanation,
Fermi also suggested a method to detect neutrinos via the inverse beta decay reaction:

ν + p→ n+ e+. (1.1)

The cross section of this reaction was soon estimated to be in the order of
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10−44cm2, which would make it virtually impossible to detect from radioactive sources
[9]. Neutrinos are also produced in fusion reactions, but the very high temperatures,
pressures and energies involved make it extremely difficult to observe in a laboratory.

The detection of neutrinos took twenty years until neutrino sources capable of
producing a high flux of neutrinos were created, such as nuclear reactors. It was in
fact through the inverse beta decay reaction that neutrinos were firstly detected in
1956 by Reines and Cowan [10] using antineutrinos produced by a nuclear reactor.
Since then, the neutrinos have been exclusively described by the weak interaction,
which accounts for the neutrino long penetration length in matter (on the order of
half light years through lead for neutrinos at energies typical for beta decays) and the
difficulty in its detection. Within the Standard Model of particle physics (SM) [11],
neutrinos were included as massless particles, being the neutral partner of the charged
lepton. Thus, three generations of neutrino are considered (νe; νµ; ντ ), each associated
to one of the charged leptons e, µ and τ . These three generation of neutrinos are
commonly identified as neutrino flavours. Each of these flavours have been directly
observed through their interactions with the corresponding leptons.

In the context of the SM, neutrinos have interesting properties that set them
aside from the other fundamental particles. Unlike the other fermions, neutrinos
only experience the weak interaction - they carry no electric or colour charges - and
are assumed to be massless. This latter property is related to the fact that only
left handed neutrinos have been observed to participate in weak interactions (and
correspondingly, only right handed antineutrinos have been observed). Therefore,
the neutrino exists in the Standard Model in a left-handed doublet along with its
charged lepton partner and with no right-handed field, so no mass term can be
constructed.

The weak interaction is mediated by the massive W± and Z bosons. Measure-
ments of the width of the Z boson at CERN have determined that the number of
active neutrino states to be three, which is in agreement with the Standard Model
prediction [12].

Subsequent experimental evidence from solar and atmospheric neutrino experi-
ments demonstrated a deficit on the total neutrino flux, where one of the possible
explanations was the possibility of a non-zero neutrino mass. Later results from
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Super-Kamiokande (SK) [13] and SNO [14] clearly demonstrated that the massless
assumption of the Standard Model was incomplete and that it necessitated its inclu-
sion in the theory. The results from SK demonstrated flavour and distance dependent
suppression in atmospheric neutrinos, while SNO demonstrated flavour transforma-
tion in solar neutrinos. Both results are direct evidence of non-zero neutrino masses.

1.2 Neutrino Oscillations

In the Standard Model the three quark states that participate in the weak inter-
actions are linear combinations of the states that participate in the strong inter-
actions and that have definite (although not well determined) masses. The corre-
spondence between the flavour and mass bases is given by a unitary transformation,
commonly called the mixing matrix. In the quark sector the Cabibbo-Kobayashi-
Maskawa (CKM) matrix describes the mixing between the quark mass and flavour
eigenstates.

Considering the neutrinos as having non-zero masses, one can construct a sim-
ilar formalism involving mixing between the flavour and mass neutrino states. If
the flavour eigenstates of the weak interaction are not exactly the same as the mass
eigenstates, then it is possible for neutrinos to change flavour. This effect was first
suggested by Bruno Pontecorvo [1] in the framework of neutrino-antineutrino oscil-
lations. Later, Z. Maki, N. Nakagawa and S. Sakata further developed the idea in
application to the oscillation of neutrino flavours [15]. From the works of Pontecorvo,
Maki, Nakagawa and Sakata a matrix relating the neutrino mass eigenstates and the
flavour eigenstates was developed, which is usually known as the PMNS matrix1.

Thus, in general, each of the left-handed components of the neutrino field να,
with α = e, µ, τ can be expressed as a linear combination of the mass eigenstates νi,
with i = 1, 2, 3 [16]:

να =
N=3∑

i=1

Uαiνi, (1.2)

1There is no consensus concerning the name and acronym of the matrix, being also known as
MNS matrix and MNSP matrix. Nonetheless all names identify the same matrix.
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where να are the flavour eigenstates, νi are the mass eigenstates, and Uαi is the
Pontecorvo-Maki-Nakagawa-Sakata (PMNS) mixing matrix:

U ≡ UPMNS =



Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3


 (1.3)

=




c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13


 . (1.4)

For simplicity, cij ≡ cos θij and sij ≡ sin θij. The phase δ is the CP-violating
phase, which, in case it is different from zero, breaks the symmetry of interactions
involving the mixing matrix.

Being neutral particles, unlike the quarks, it is possible that neutrinos are their
own anti-particles. This was originally suggested by Ettore Majorana [17]. It is
known that neutrinos behave differently from antineutrinos [1], but this could be
due just to their different handedness, rather than to an intrinsic quantum number.
Particles that comply with this property are known as Majorana particles. Thus, if
indeed neutrinos are Majorana particles two additional phases λ1 and λ2 must be
added to the mixing matrix:

U = UDiracUMajorana UMajorana = diag
(
1, eiλ1 ,iλ2

)
, (1.5)

and UDirac has the same form as in Equation 1.4. The Majorana phases contribute
to an overall phase shift applied to all neutrino flavours and thus cannot be observed
in neutrino oscillation experiments, leaving only the Dirac part of the matrix as the
relevant part to model the flavour change of neutrinos.

One common parameterisation of the mixing matrix consists in the separation
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into a product of three separate two-neutrino mixing matrices:

U =




1 0 0

0 c23 s23

0 −s23 c23


×




c13 0 s13e
iδ

0 1 0

−s13e
−iδ 0 c13


×




c12 s12 0

−s12 c12 0

0 0 1


 . (1.6)

In the following subsections the phenomenology of neutrino oscillations will be
explained for two particular cases: vacuum oscillations and induced matter oscilla-
tions.

1.2.1 Vacuum oscillations

A specific mass eigenstate is a linear combination of the flavour eigenstates, whose
basis transformation is also described by the mixing matrix:

|να〉 =
N=3∑

i=1

U∗αi |νi〉 |νi〉 =
∑

α={e,µ,τ}
Uαi |να〉 . (1.7)

This is the standard approach in the classical theory of neutrino mixing and
oscillations [18]. These massive states are eigenstates of the Hamiltonian of the
propagating neutrinos, being produced with definite energies2. It follows, by solving
the Schrödinger equation, that the time evolution of a neutrino state in vacuum is:

|να (t)〉 =
3∑

i=1

U∗αie
−iEit |νi〉 =

∑

β

(
3∑

i=1

U∗αie
−iEitUβi

)
|νβ〉 . (1.8)

Equation 1.8 demonstrates that a neutrino originally produced with a flavour
α, will become a superposition of the three flavour eigenstates. Hence, there is a
non-zero probability that it can be detected with a different flavour β.

2It can be shown [18] that the assumption of equal momentum implied here is not necessary for
the conclusions of the theory.
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One can now define a transition probability from initial flavour state α to a flavour
state β as the square of the transition amplitudes:

Pνα→νβ (t) = |〈νβ |να (t)〉|2 =
∑

i,j

U∗αiUβiUαjU
∗
βje
−i(Ei−Ej)t. (1.9)

As neutrinos are ultra-relativistic particles, the energy eigenvalues can be ap-
proximated as Ei ≈ Eν + m2

i/2Eν with Eν = |~p 2|. The difference between two energy
eigenvalues can now be described as

Ei − Ej =
∆m2

ij

2Eν
with ∆m2

ij = m2
i −m2

j . (1.10)

The ultra-relativistic nature of the neutrinos also allows the conversion of times
t into distances L, which are more convenient for the observation of the oscillation
effects given the distance from a detector to the neutrino source. Applying this
transformation to Equation 1.9 and combining the equations above one can rewrite
the flavour transition probability equation as:

Pνα→νβ (L,Eν) =
∑

i,j

U∗αiUβiUαjU
∗
βje
−i

∆m2
ijL

2Eν . (1.11)

This expression demonstrates that the probability of flavour transition is an os-
cillating function of the distance L and neutrino energy Eν , weighted by the elements
of the mixing matrix U and the mass-squared differences ∆m2

ij. These elements are
commonly referred as the neutrino oscillation parameters, as they are independent
of the individual experiment, unlike the distance and the energy.

One can also define a survival probability of a flavour α as Pνα→να , being the
probability that at a distance L a neutrino of energy Eν will be detected with the
same flavour that it was originally produced. As unitarity enforces the conservation
of the total survival probability of all flavours, it means that the survival probability



8 Introduction

W

νe

e−

e−

νe

(a) CC

Z

νe, νµ, ντ

e−, p, n

νe, νµ, ντ

e−, p, n

(b) NC

Figure 1.1: Feynman diagrams of the coherent forward elastic scattering interactions that
generate effective potentials affecting the neutrino propagation in matter.

can be expressed as:

Pα→α = 1−
∑

β 6=α
Pα→β. (1.12)

1.2.2 Matter Induced Oscillations

In 1978 L. Wolfenstein discovered that while travelling through matter, the neutrinos
are affected by a potential due to coherent forward elastic scattering with the electrons
and nucleons in the medium causing a modification of the vacuum evolution equation
[19] . Later, S. Mikheev and Y. Smirnov [20–22] further developed this theory,
demonstrating the existence of resonant flavour transitions when neutrinos travel
through a medium of varying density. This mechanism became known as theMikheev-
Smirnov-Wolfenstein (MSW) effect.

While propagating through matter, the evolution equation of the neutrinos is
affected by effective potentials due to weak charged current (CC) and neutral current
(NC) coherent forward elastic scatterings [18]. In this context coherent means that
the medium isn’t affected by the passage of the neutrino. The Feynman diagrams of
these scatterings are shown in Figure 1.1. As demonstrated by Mikheev, Smirnov and
Wolfenstein, this scattering effect can enhance the flavour conversion. The neutrinos
produced in the Sun are initially only in electron flavour, and are thus sensitive to
both the CC and NC potentials (VCC , VNC). The neutrinos of this flavour are the
only ones to experience the effect of the VCC potential.
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Furthermore, in astrophysical environments, such as the Sun, electrical neutrality
implies an equal number of electrons and protons. In this case, their NC potentials
cancel out, leaving only the contribution from neutrons in the VNC potential in the
medium.

Thus, the total potential induced by matter to a neutrino of flavour α is [18]:

Vα = VCCδαe + VNC =
√

2GF

(
Neδαe −

1

2
Nn

)
, (1.13)

whereNe is the density of electrons andNn is the density of neutrons. All neutrino
flavours are equally affected by the VNC potential. Here deltaαe ensures that only
electron neutrinos are sensitive to VCC . In the time evolution equation the VNC po-
tential will translate into a phase, common to all flavours, that can easily be removed
by a phase transformation. Therefore, the effect of matter in neutrino oscillations
can be accounted by adding only the contribution of VCC to the Hamiltonian.

In order to consider the enhancement caused by matter the flavour basis Hamil-
tonian has to be re-written in order to accommodate both the vacuum and matter
components [18]:

Hf = H0 +H1, (1.14)

where H0 is the vacuum Hamiltonian and H1 is the Hamiltonian of the matter
component that includes the effective potential Vα affecting the neutrino of flavour
α:

H0 |νi〉 =Ei |νi〉 (1.15)

H1 |να〉 =Vα |να〉 . (1.16)

Following a procedure similar to the one employed for the vacuum oscillations, the
time evolution equation for a neutrino produced in an initial flavour state |να(0)〉 =
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|να〉 is given by:

i
d

dt
|να(t)〉 = H |να(t)〉 . (1.17)

Developing this equation and performing the approximation for ultra-relativistic
neutrinos, and performing a transformation t → x, one can obtain the following
evolution equation in space coordinates:

i
d

dx
Aαβ(x) =

(
E +

m2
1

2E
+ VNC

)
Aαβ(x)+

∑

η

(∑

i

Uβi
∆m2

i1

2E
U∗ηi + δβeδηeVCC

)
Aαβ(x).

(1.18)

As it is easily observed, the first term of Equation 1.18 is common to all flavours
and can be eliminated by a phase transformation without producing any effect on
the flavour transition probability:

Aαβ(x)→ Aαβ(x)e
−i
(
E+

m2
1

2E

)
x−i

∫ x
0 VNC(x

′
)dx
′

. (1.19)

Further developing Equation 1.18 one can obtain the effective Hamiltonian Hf :

Hf =
1

2E

(
UM2U† + A

)
, (1.20)

with U being the PMNS matrix and

M2 =




0 0 0

0 ∆m2
21 0

0 0 ∆m2
31


 and A =



ACC (Ne) 0 0

0 0 0

0 0 0


 , (1.21)

with ACC ≡ 2EVCC = 2
√

2EGFNe (x), where GF is the Fermi constant, and Ne

is the electron density in the medium. This potential is usually very small (due to
the dimension of GF ), unless the electron density grows very large, as in the case of
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the Sun. Note that for a non-point like source, this term will vary along the traveling
path (hence the representation as a function of the traveled distance x).

One interesting feature of the matter oscillations is that, from Equation 1.20 now
there exists a new basis - the matter eigenstate basis - where the Hamiltonian is
diagonal. One can now solve the Hamiltonian in this basis and find a transformation
leading back to the flavour basis [23]. This procedure leads to the definition of a
new set of effective angles and masses - the matter mixing parameters - which can
be treated in the same way as in the flavour case. In the case of the oscillation
parameters relevant for a solar neutrino analysis, one obtains two effective effective
mixing angles in matter [18]

tan 2θM12 =
tan 2θ12

1− cos2 θ13ACC
cos 2θ12∆m2

21

sin θM13 = sin θ13

[
1 +

ACC
∆m2

31

cos2 θ13

]
(1.22)

and an effective mass squared difference,

∆m2
M21 =

√
(∆m2

21 cos 2θ12 − cos2 θ13ACC)
2

+ (∆m2
21 sin 2θ12)

2
. (1.23)

Equation 1.22 presents a resonance for

cos2 θ13ACC = cos 2θ12∆m2
21, (1.24)

where the mixing in matter can be large, regardless of the vacuum mixing an-
gle. The development of Equations 1.22 was of major importance for the study of
solar neutrino oscillations. In order to explain the deficit of electron flavoured so-
lar neutrinos through vacuum neutrino oscillations, it was necessary to fine-tune the
input parameters, such as the distance Sun-detector, in order for the oscillations to
effectively explain the data. By considering induced oscillations in matter, a good
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agreement between data and the oscillations model was easily achieved without need
of any fine tuning.

The treatment of matter oscillations in three active flavours is extremely hard to
achieve as it requires solving Equation 1.18 and it can lead to interplays of effects
from the different ∆m2 terms. Usually a numerical solution is achieved by performing
a numerical integration of the time evolution equation over the Solar radius.

Alternatively, it is possible to employ a series of approximations for different
oscillation scenarios, deriving analytical solutions to describe the survival probability.
One such treatment consists in performing an adiabatic transport of the neutrino
states [20]. When the electron density in the medium presents a small variation when
compared with the neutrino oscillation length in matter one can consider that there
is no transition between the mass eigenstates in the neutrino propagation. Therefore,
the neutrinos propagate through matter in the same mass eigenstate, with the flavour
change being explained by the changing flavour composition of the mass eigenstates
in matter. In this case one describes the evolution of the neutrino wave function in
terms of stationary eigenstates of the time dependent Hamiltonian evaluated for the
instantaneous electron density.

Considering the present knowledge of the neutrino oscillation parameters, this
approximation can safely be applied, providing a fast and accurate calculation of the
survival probability. More details about this calculation shall be given in Chapter 6.

1.3 Solar Neutrinos

The study of solar neutrinos is a very productive and rich area of neutrino physics.
The Sun is a very powerful source of neutrinos in the MeV range, producing neutrinos
up to 18 MeV, in thermonuclear reactions in the solar core. As stated previously, by
being subject only to the weak interaction, neutrinos interact very weakly and thus
the vast majority of the neutrinos produced in the Sun flow undisturbed from its
interior into space.

Although the flux of neutrinos produced in the interior of the Sun is approximately
1011cm−2s−1, the small interaction cross sections make them extremely difficult to
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detect and therefore large detectors are necessary. These detectors are usually placed
underground, in order to reduce the backgrounds, especially cosmic muons whose
interactions in the detector would easily outnumber the neutrino interaction rate.

Although neutrino physics is very often considered an area of particle physics,
the study of solar neutrinos is strongly tied to the physics of the Sun and its good
understanding. These two fields of research are strongly tied as neutrinos present
themselves as the best possible means to "look" into de center of the Sun, and
only with a correct understanding of the Sun thermonuclear fusion one can hope to
correctly understand the properties of the detected solar neutrinos.

There is yet another reason why solar neutrinos are an extremely useful tool to
study the properties of neutrinos. The matter enhanced oscillations have a very weak
potential, and thus require a very high electron density to become relevant. While the
electron density in the Earth is too small to have a significant effect in the neutrino
oscillations, the Sun has a very high density, especially in the region where neutrinos
are produced. In fact, as it will be discussed later, the neutrino oscillations in the
Sun are dominated by this effect, which would be very difficult to observe in any
experiment using a neutrino source at the Earth.

1.3.1 The Standard Solar Model

The Solar Standard Model (SSM) is a model describing the physical properties of the
Sun, such as its luminosity, temperature and radius at the present epoch, while also
matching the observed ratio of heavy elements, when compared to hydrogen, at its
surface [24].

As is easily understandable, an SSM uses several independent sources of input
and depends on many internal parameters which cannot be compared to independent
measurements. In recent years, different SSMs were developed, or updated, based on
different assumptions on some of the parameters and new updated measurements of
some of the Sun properties. In Table 1.1 some of the Sun’s fundamental properties
that are common to all recent SSMs, are shown.

Multiple SSMs will be considered in the present analysis, as each solar model
predicts different neutrino fluxes and different electron densities in the Sun. Thus,
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Solar luminosity L = (2.400± 0.005)× 1026 MeV s−1

Solar Radius R� = (6.9551± 0.0004)× 1010 cm
Solar Mass M� = (1.9984± 0.0002)× 1030kg
Astronomical unit 1au = (149.59787066± 0.00000002)× 106km
Solar Constant K� = L/4π1au ≈ 8.534× 1011MeV cm−2s−1

Year 1yr = 3.15569252× 107s

Table 1.1: Some fundamental properties of the Sun-Earth system. Information from [12].

BS05(OP) BPS09(GS) BPS09(AGSS09)
Φpp(1010) 5.99 (1± 0.01) 5.97 (1± 0.006) 6.03 (1± 0.005)
Φpep(108) 1.42 (1± 0.017) 1.41 (1± 0.011) 1.44 (1± 0.01)
Φhep(103) 7.93 (1± 0.155) 7.91 (1± 0.15) 8.18 (1± 0.15)
Φ7Be(109) 4.84 (1± 0.105) 5.08 (1± 0.06) 4.64 (1± 0.06)

Φ8B(106) 5.69 (1± 0.163) 5.88 (1± 0.11) 4.85 (1± 0.12)

Φ13N(108) 3.07
(
10.312
−0.281

)
2.82 (1± 0.14) 2.07

(
1+0.14
−0.13

)

Φ15O(108) 2.33
(
10.332
−0.288

)
2.09

(
10.16
−0.15

)
1.47

(
10.16
−0.15

)

Φ17F(106) 5.84 (1± 0.522) 5.65
(
1+0.17
−0.16

)
3.48

(
1+0.17
−0.16

)

Table 1.2: Solar neutrino fluxes predicted by the BS05(OP) [25], BPS09(GS) [26] and
BPS09(Asplund:2009fu) [26] SSMs. Fluxes are given in units of cm−2s−1. The scale of
the fluxes are given in the first column.

in order to aim for a precise measurement of the neutrino oscillation parameters, one
has to consider multiple SSMs. In this thesis, three SSMs are used, which are hence-
forward named as BS05(OP) [25], BPS09(GS) [26, 27] and BPS09(AGSS09) [26, 28].
All these models predicted observables in good agreement with the helioseismological
measurements, such as the helium concentration in the surface of the Sun and the
depth of the convective zone. The latter models make use of updated measurements,
and most up to date simulations of the Sun’s interior. The major difference between
these models comes from the abundances of heavy elements in the Sun that affect
not only the rates of the fusion reactions, but also the density of electrons along
the solar radius, which are the most important parameters in determination of the
neutrino survival probability. The fluxes predicted by these SSMs are listed in Table
1.2, together with the respective uncertainties.

Figure 1.2 summarises the fusion chain of reactions that occur in the Sun, respon-
sible for producing the solar neutrinos. There are two independent chains responsible
for the solar neutrino flux: the so called pp chain, which is the major contributor for
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energy and neutrino production yielding neutrinos up to 18 MeV; and the Carbon-
Nitrogen-Oxygen cycle (CNO), which produces low energy neutrinos from reactions
involving heavier elements. Neutrinos from this latter chain have not yet been ob-
served, as the flux is strongly suppressed by the more intense pp chain and its de-
tection made harder by the higher background levels from radioactive sources and
cosmogenic activations. Figure 1.2 shows a diagram of the pp chain.

p + p → 2H + e+ + νe

pp

p + e− + p → 2H + νe

pep

2H + p → 3He + γ

99.77% 0.23%

3He + 3He → 4He + p + p

3He + 4He → 7Be + γ

3He + p → 4He + e+ + νe

hep

84.92%

15.08%

≈ 10−5%

7Be + e− → 7Li + νe

7Be
7Be + p → 8B + γ

99.9% 0.1%

7Li + p → 4He + 4He 8B → 8Be
∗

+ e+ + νe

8B

8Be
∗ → 4He + 4He

Figure 1.2: Nuclear reactions involved in the proton-proton (pp) fusion chain.

Since the elements are heavier in the CNO cycle, the model prediction of its
reaction rates is not as precise as rates resulting from the pp chain. Also as it can
be observed in Table 1.2 that the uncertainties on the neutrino fluxes from the pp
chain have been dramatically reduced in the most recent SSMs. Figure 1.3 shows
the energy spectra of the neutrino fluxes from the pp chain and CNO cycle in the
BS05(OP) SSM [25].

Considering the logarithmic scale, it becomes clear that the pp reaction3 produces
the most part of the solar neutrinos. Unfortunately, most of the current experiments

3Not to be confused with the pp chain, which encloses the whole reaction cycle shown in Figure
1.2, and which starts precisely with the pp reaction.
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Figure 1.3: Neutrino flux spectra with model uncertainties. Image taken from [25]. Neu-
trinos produced through the pp chain are shown as continuous lines; those produced by the
CNO cycle are shown as dashed lines.

are not sensitive to their low energy (Eν < 0.43MeV ), but rather to the less intense
high-energy 8B and hep fluxes.

1.4 The Solar Neutrino Problem

In 1964, John Bahcall and Raymond Davis, Jr. planned an experiment to detect
solar neutrinos through the capture on 37Cl (see Section 1.5.1) [3, 4] following a
study of Luiz Alvarez [29] developed from the original proposal for neutrino detection
suggested by Pontecorvo [30]. The primary purpose of the experiment was to test
the hypothesis of fusion reactions in the Sun and thus testing the solar model that
had been proposed [31].

As explained in their proposal, neutrinos were a natural test candidate, as their
low interaction cross sections would permit them to quickly exit the Sun retaining
their original energy.

The experiment was built in the Homestake mine, in South Dakota and in 1970
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the first results were published [32]. These measurements clearly demonstrated that
something was wrong either with the model of the Sun, or with Standard Model
description of neutrinos, as they only measured one third of the predicted flux. This
discrepancy became known as the "Solar Neutrino Problem". However, no inde-
pendent verification of the Homestake measurements existed and thus it was possible
that the problem was in the experiment itself. However, further experiments were set
up (which will be described below), also demonstrating a clear deficit in the detected
solar neutrino flux. The results of Homestake, and other solar neutrino experiments,
together with the theoretical predictions, are shown in Figure 1.4.

In the following decades a series of experiments were built aiming to uncover the
"Solar Neutrino Problem". In particular, the Kamiokande experiment [33], besides
detecting solar neutrinos, was also able to detect atmospheric neutrinos coming from
cosmic ray showers. In this case the neutrinos were produced from the decays of
secondary and tertiary particles, which would result in a well predicted ratio of νµ
and νe. However, the results, which were confirmed by the IMB experiment [34],
showed a clear deficit of νµ.

The first unambiguous evidence of neutrino flavour disappearance was reported
by Super-Kamiokande in 1998 through the observation of atmospheric neutrinos [35].
Having a much larger active volume (50 kt of H2O), this experiment was able to
gather high statistics while mapping the zenith angle distribution of the neutrino flux,
which was dependent of the ratio of L/E. The results showed that the ratio of νµ
and νe depended on the distance traveled by neutrinos. The neutrinos produced right
above the detector have a considerably lower distance to travel than the neutrinos
produced on the other side of the Earth. The results could be explained by the
neutrino oscillation hypothesis (c.f. Section 1.2).

The resolution of the Solar Neutrino Problem came finally in 2001 and 2002 with
the measurements of the Sudbury Neutrino Observatory (SNO) [14, 36]. Like Super-
Kamiokande, SNO was also a water Čerenkov detector, but using D2O instead of
light water (H2O). As a result SNO was able to measure not only the flux of νe, but
also the flux in all active flavours νe, νµ and ντ . While the measurement of the νe
flux was consistent with the solar neutrino flux measurement of Super-Kamiokande,
the total neutrino flux measurement was consistent with the solar model predictions.
This milestone marked the first detection of neutrino flavour appearance and the
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solution to the Solar Neutrino Problem.

Figure 1.4: Comparison of solar neutrino results from seven experiments with the corre-
sponding predictions from the SSM. The experiments have different thresholds, making them
sensitive to solar neutrinos from different reactions, which are shown in different colours.
The results from the radiochemical experiments are given in units of SNU, while the results
from the other experiments are given as a fraction of the SSM prediction. Figure from [37].

In the following section a more detailed description of the different solar neutrino
experiments will be presented.

1.5 Solar Neutrino Experiments

As described in the previous section, the detection of solar neutrinos, and the subse-
quent resolution of the Solar Neutrino Problem, was a process that involved several
decades. Several experiments have tested SSM neutrino flux predictions by directly
sampling various energy regions of the spectra shown in Figure 1.3.
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In this section a summary of solar neutrino experiments will be presented along
with its results and different technologies applied. Additionally, a description of
the KamLAND reactor experiment will also be given. Despite being a reactor anti-
neutrino experiment, their results are important in the context of neutrino oscilla-
tions, being strongly related with the solar neutrino experiments due to its sensitivity
to the same oscillation parameters. The SNO experiment itself is also briefly discussed
here and a more thorough description is given in Chapter 2.

1.5.1 Radiochemical Experiments

The first solar neutrino observations came from a radiochemical experiment (Home-
stake). The principle of operation of this type of experiment consists in having large
volumes of a material containing a target nuclei that can be changed into some other
nuclei by electron neutrino charged current interactions. The changed nuclei are later
collected and counted through their radioactive decay and the number of neutrino-
induced reactions is inferred from the extracted number of nuclei.

This type of experiments cannot retain any directional or time information, and
the only information comes from the energy threshold of the nuclear capture reaction.

The Homestake Chlorine Experiment

The first detection of solar neutrinos was performed by Ray Davis Jr. in the 37Cl

radiochemical experiment [38]. This experiment consisted in a tank of 650 tons of
C2Cl4, located inside the Homestake gold mine in Lead, South Dakota.

Located 1870 m below the surface, with 4200 meter water equivalent (m.w.e.) of
shielding from cosmic rays, the Homestake experiment could detect solar neutrinos
through the inverse β-decay Cl-Ar reaction

37Cl + νe → 37Ar + e− (1.25)
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which has a threshold of 814keV . Therefore, this experiment was only sensitive
to 7Be, pep, 8B, and hep neutrinos. As the detection cross section increases with
energy, the majority of the observed neutrinos came from the 8B reaction.

The Ar daughter nuclei were extracted through chemical methods [38] with 90%
efficiency, and the radioactive 37Ar were then counted using small proportional coun-
ters which detected the Auger electron produced in the electron-capture of 37Ar.

The average solar neutrino rate measured was [38]:

Rexp
37Cl

= 2.56± 0.16(stat.)± 0.16(syst.)SNU (1.26)

while the theoretically predicted rate by the BS05(OP) solar model was of Rexp
37Cl

=

8.5±1.8 SNU, which is approximately three times the measured rate. The units are in
Solar Neutrino Unit (SNU), which correspond to 10−36 neutrino captures per target
atom per second.

The Gallium Experiments

After the results of Homestake, a series of similar experiments were deployed using
Gallium as the active medium.

There were three Gallium based solar neutrino experiments: GALLEX [39], GNO
[40]4 and SAGE [41]. These experiments detected solar neutrinos in a similar way to
Homestake through the reaction

71Ga + νe → 71Ge + e−, (1.27)

which has a much lower energy threshold of 0.233 MeV, permitting to detect
neutrinos produced by all reactions. In these experiments the Germanium atoms
produced by solar neutrino interactions are extracted through chemical processes
and counted using proportional counters by observing the decay back to 71Ga.

4It is common to consider GALLEX and GNO as a single experiment, as GNO was a follow-up
of GALLEX. Originally GALLEX ran from 1991 to 1997, being followed by GNO, which used the
same detector, but improved extraction equipment.
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Unlike Homestake, the low threshold makes pp neutrinos the major contribution
to the observed rate. Thus these experiments were extremely important to the study
of the solar models since the pp reaction is the first in the pp chain, being directly
tied to the luminosity of the Sun.

The results reported by these experiments were [40–42]:

77.5± 6.2(stat)+4.3
−4.7(syst) SNU (GALLEX)

62.9+5.5
−5.3(stat)± 2.5(syst) SNU (GNO)

69.1+4.3
−4.2 SNU. (SAGE)

The Standard Solar Model at the time (BP2000 [24]) predicted 128 ± 8 SNU,
clearly in disagreement with the experiments.

A more recent combined measurement for the neutrino flux of all three Gallium
experiments is 66.1±3.1 SNU, where all statistical and systematic uncertainties have
been combined [43]. In Figure 1.5 the results of the SAGE experiment, over the
whole experiment run time from 1990 to 2007 are shown.
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Figure 1.5: Results from the SAGE radiochemical experiment from 1990 to 2007. Figure
from [41].
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1.5.2 Light Water Čerenkov Experiments

Water Čerenkov experiments use large volumes of water surrounded by photomulti-
plier tubes (PMTs) light detectors to detect neutrino interactions in real time. When
the ultra-relativistic leptons generated by the neutrino interactions pass with a ve-
locity v > c/n through a medium with a refractive index n, the lepton generates a
cone of Čerenkov light around the direction of motion.

Water has a refractive index of n ≈ 1.33, which means that the relativistic elec-
trons will generate a cone of light with a half-opening angle of θ ≈ 41◦ [12]. For each
cm of track, approximately 340 photons are generated, whose wavelengths range from
300 nm to 600 nm, and are collected by the PMTs. With a good discrimination of
the arrival time of the photons at each PMT, it is possible to determine the origin of
the interaction, the direction of the electron and its energy.

It is also important to note that these experiments operate at significantly higher
energy thresholds than the radiochemical experiments because of backgrounds at low
energy from naturally occurring radioactivity in the detector and its surroundings.
This limits water Čerenkov experimental sensitivity to 8B and hep neutrinos.

Super-Kamiokande

The Super-Kamiokande experiment was a much larger version of its predecessor
KamiokaNDE, which was originally planned to observe proton decays, and later
upgraded to observe solar neutrinos, being the first experiment to successfully detect
8B solar neutrinos in real time [44].

Following the success of the Kamiokande experiment, the much larger Super-
Kamiokande was built and continues to collect neutrino data from different sources
[45]. Although Super-KamiokaNDE’s first major result was regarding atmospheric
neutrinos [35, 46], the detector also has substantial sensitivity to solar neutrinos,
being also used as the far detector for accelerator neutrinos in the KEK to Kamioka
(K2K) experiment [47, 48] and, more recently, in the Tokai to Kamioka (T2K) ex-
periment [49].
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SK is a 50 kton water Čerenkov detector located in the Kamioka mine. The water
volume is surrounded by 11 146 inward facing 50 cm diameter PMTs, which provided
a coverage of 40%.

The experiment measured the solar neutrino flux through the elastic scattering
reaction

νx + e− → νx + e−, (1.28)

which is mostly sensitive to electron neutrinos, due to available channels for the
interaction. In the case of electron neutrinos, this reaction can occur both through W
and Z exchanges, while for neutrinos of any other flavour this reaction can only occur
through the Z exchange. The Feynman diagrams of the different channels of neutrino-
electron elastic scattering are shown in Figure 1.6. The different interaction channels
give the elastic scattering experiments some sensitivity to all neutrino flavours in the
proportion φνe + 1

6

(
φνµ + φντ

)
. However, in the presence of neutrino oscillations an

experiment detecting events only through elastic scattering alone cannot perform a
measurement of neither the total electron neutrino flux nor the total active neutrino
flux (all flavours), as both the oscillation parameters and the fluxes are unknown.

The direction of the recoil electron of the elastic scattering (ES) interaction is
strongly correlated with the direction of the incoming neutrino. This allows to dis-
tinguish solar neutrino events from the isotropic background by measuring the direc-
tional correlation of the recoil electron with the Sun.

The first phase of the experiment (SK-I), started in 1996 and ended in 2001.
The data from the first 280 days of the experiment were analysed with an energy
threshold of Eth

e = 6.5MeV and the remaining 1216 days were analysed with an
energy threshold of Eth

e = 5.0MeV [50].

An accident in 2001 destroyed approximately half of the PMTs. The experiment
redistributed the remaining PMTs and started their second phase (SK-II), which
ran from December 2002 to October 2005. However, even after the redistribution
of the PMTs, the coverage was reduced to 19% [51]. Due to the low coverage, the
uncertainties were considerably higher, resulting in an analysis with a higher energy
threshold ( Eth

e = 7.0MeV ).
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Figure 1.6: Feynman diagrams of the neutrino-electron elastic scattering interactions. While
being the only detection method of the Super-Kamiokande experiment, SNO also detects
events through these interactions, but with low statistics due to the considerably smaller size
of its volume.

At the end of SK-II, the lost PMTs were replaced , restoring the total coverage
to 40%, and starting the third phase of the experiment (SK-III), which ran from
October 2006 until August 2008. The analysis methods were also improved in this
phase, with better simulations and calibrations that allowed to achieve more accurate
results than any of the previous phases with an energy threshold of Eth

e = 5.0MeV ,
even though the running period was smaller.

The results released by the SK Collaboration from the three phases, SK-I and
SK-II and SK-III, with measured solar neutrino fluxes of [51–53]:

ΦES = 2.35± 0.02(stat)± 0.08(syst)× 106cm−2s−1 (SK-I)

ΦES = 2.38± 0.05(stat)+0.16
−0.15(syst)× 106cm−2s−1 (SK-II)

ΦES = 2.32± 0.04(stat)±+0.05(syst)× 106cm−2s−1 (SK-III)
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Figure 1.7: Results from the Super-Kamiokande experiment. Figure 1.7(a) shows the result
of the measured flux and its separation in components taking into account different intervals
of zenith angle. Figure 1.7(b) shows the flux result as a fraction of the solar model prediction
and as a function of total electron energy. Figures from [52, 53].

which are far below the predictions of the solar models [26]. Figure 1.7 shows
the results from two phases of SK. The experiment is now in its fourth phase (SK-
IV), after upgrading the electronics, expecting to further improve their neutrino
measurements, both on atmospheric, accelerator and solar neutrinos.

1.5.3 Liquid Scintillator Experiments

Liquid Scintillator (LS) experiments are also designed to detect solar neutrinos in
real time, but, unlike Čerenkov detectors, their event detection is based on the scintil-
lation light generated by the ionisation of the active medium, allowing to reach lower
energies than what is possible with Čerenkov detection. This opens the possibility
to reach low enough energies to probe in the regions dominated by the much more
intense 7Be neutrino fluxes. However, to reach these low energies, some tradeoffs had
to be made.

The LS experiments observe solar neutrinos through the ES of electrons by in-
coming neutrinos. However, unlike Čerenkov light, the scintillator does not provide
any directional information, which makes background rejection much more difficult.
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In order to reach low energy ranges of ∼ 1 MeV, it is necessary to achieve extremely
high levels of radio-purity of the order of 10−16 g(U,Th)/g(medium) .

Borexino

The Borexino experiment is currently the only solar neutrino experiment of this type
in operation [54] being designed primarily to observe 7Be neutrinos.

The detector is composed by a spherical inner target volume of 300 tons of pseu-
documene with 1.5 g/L of PPO mixed in as a fluor. Encased in a thin nylon vessel,
the scintillator is suspended in a larger sphere of buffer liquid (pseudocumene with
a scintillation quencher), surrounded by 2212 PMTs in a spherical, inward looking
configuration. Of these, 1828 have light concentrators to increase the effective pho-
tocathode coverage.

In Figure 1.8 the latest results of the experiment are shown. The Borexino col-
laboration successfully achieved to observe 7Be neutrinos (Figure 1.8(a) [55, 56], and
also reported the observation of the higher energy 8B neutrinos (Figure 1.8(b)) [57].
The latter observation, however, has very large uncertainties due to the low statistics.

(a) Energy spectrum in the 7Be energy range.
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(b) Energy spectrum in the 8B energy range.

Figure 1.8: Reconstructed energy spectra from the Borexino experiment in the energy ranges
of 7Be and 8B energy ranges. Figures from [56, 57].

The 192 day result of Borexino shows an interaction rate of 7Be neutrinos of
49 ± 3(stat) ± 4(syst) counts per day per 100 tons which again is far below the
unoscillated SSM prediction of 74± 4 counts per day per 100 tons.
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KamLAND

The KamLAND experiment [58] is another liquid scintillator detector, but designed
for a completely different purpose. Instead of searching for solar neutrinos, Kam-
LAND detects antineutrinos produced by nuclear reactors in Japan and neighbouring
areas, with an average baseline of 180 km. The L/E ratio for reactor antineutrinos
over this baseline gives KamLAND sensitivity to the same range of mixing param-
eters observed in the solar experiments. This provides a valuable crosscheck, and
complementary measurements to the solar results, as this experiment is looking into
a completely independent source of neutrinos, its measurements being independent
of the solar model.

The detector is located in the original Kamiokande detector hall, and is comprised
of 1 kton of liquid scintillator (80% dodecane, 20% pseudocumene, and 1.52 g/L of
PPO). Antineutrinos interact with hydrogen in the detector through the inverse beta
decay process

p+ ν̄e → n+ e+ (1.29)

the same reaction used to first discover neutrinos. The prompt positron annihi-
lation followed by a delayed neutron capture provides a coincidence signal with high
background rejection. Both signals are observed in the scintillator by a total of 1879
PMTs.

The outgoing positron energy is strongly correlated with the incoming neutrino
energy. Unlike the solar neutrino experiments, where the sensitivity lies, as we will
see, mostly in the θ12 mixing angle, the KamLAND experiment is mostly sensitive
to the ∆m2

21 parameter due to its much better known ratio of L/E. In fact, the
KamLAND experiment was able to observe the oscillation pattern of this ratio [59],
which is shown in Figure 1.9(b).

Combining the observations with the solar neutrino experimental results is a
straightforward operation as both types of experiments are independent of each other,
providing nearly orthogonal constraints on the mixing parameters. This allows to
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combine the good sensitivity of the solar neutrino experiments on the parameter
tan2 θ12 to the high sensitivity of KamLAND on the parameter ∆m2

21 .

In Figure 1.9 two major results from this experiment are shown [59–62]. Figure
1.9(b) shows the oscillatory pattern observed by the KamLAND experiment, while
Figure 1.9(a) shows the observed energy spectrum of antineutrino events, together
with the non-oscillated prediction.
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Figure 1.9: Latest results from the KamLAND experiment [62].

1.5.4 The SNO Experiment

The experiments discussed previously, while providing valuable information to the
solar neutrino picture, always incorporated an uncertainty that limited the physical
interpretation of the results: the solar model itself. Although the consistent neutrino
flux deficit observed by all experiments, none of those could actually make a statement
about the actual neutrino flux coming from the Sun.

It was strongly suggested that an explanation of this deficit lies in physics beyond
the standard electroweak model (e.g. oscillations) rather than new solar models
or systematic problems with the experiments. In order to undoubtedly solve the



1.5 Solar Neutrino Experiments 29

Solar Neutrino Problem, and confirm the hypothesis of new physics, an independent
measurement of the total neutrino flux was necessary.

The radiochemical experiments mentioned above were sensitive only to elec-
tron neutrinos. The light water Čerenkov experiments (Kamiokande and Super-
Kamiokande) had additional sensitivity to other active neutrino flavours (νµ, ντ )

through the neutral current component to neutrino-electron elastic scattering. How-
ever, this sensitivity was weak, as the cross section for the Z channel is weaker in the
order of νe

(
σνe ∼ 6σνµ,ντ

)
. Furthermore, the NC interactions could not be separated

by the dominant CC interactions. Without additional information on flavour content
of solar neutrinos, a direct determination of whether the neutrino deficit was due to a
simple suppression (fewer νe’s produced in the Sun or νe → νe oscillations) or active
flavour neutrino oscillations (νe → νµ, ντ ) remained inconclusive.

In 1985, Herb Chen further stressed this point and also provided a possible so-
lution [63]5. Chen pointed out that a heavy water (D2O) Čerenkov detector would
be able to detect neutrinos through CC and NC reactions independently, besides the
ES interaction:

νx + d→ n+ p+ νx (NC)

νe + d→ p+ p+ e− (CC)

νe,(µ,τ) + e− → νe,(µ,τ) + e− (ES)

with νx ≡ (νe, νµ, ντ ). The Feynman diagrams of the CC and NC interactions are
shown in Figure 1.10.

SNO is a water Cerenkov detector which uses 1 kt of D2O as the interaction and
detection medium. The detector is located near Sudbury, Ontario, Canada at the
6800 ft level (2072 m) of an active nickel mine operated by Vale Canada Limited. SNO
is the deepest solar neutrino experiment, with more that 6000 m.w.e. of overburden
limiting the rate of comic ray components to less than 80 muons per day. More
details about the detector will be given in Chapter 2.

5The paper by Herb Chen already includes contributions obtained through collaborative discus-
sions with the newly founded Sudbury Neutrino Observatory collaboration.
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As originally suggested by H. Chen, SNO could detect neutrinos through three
types of interactions:

The NC breakup of the deuteron is independent of neutrino flavour, producing
a neutron that then termalises and is subsequently detected. This means that the
observed NC rate would give a measurement of the total solar neutrino flux that was
unaffected by oscillations.

On the other hand, at solar neutrino energies the CC interaction of neutrinos on
deuterium results in an electron that would be detected through its Čerenkov light.
This interaction would be only sensitive to νe, meaning that in the same detector it
would be possible to measure simultaneously the flux of electron flavoured neutrinos
and the flux of all types of neutrinos.

This idea was further developed in the following years, resulting in the construc-
tion of the Sudbury Neutrino Observatory (SNO).
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Figure 1.10: Feynman diagrams of the CC and NC interactions that occur in SNO. The ES
interactions shown in Figure 1.6 also occur in SNO, but with a much lower probability.

In the ES reaction, neutrinos scatter with electrons in the water volume produc-
ing relativistic electrons that are detected through Čerenkov light. This reaction
corresponds to the same method of detection used by SK, which allows for a direct
comparison of the results. However, due to the smaller fiducial volume of SNO, this
detection method suffers from low statistics.

In addition to the ES interaction with electrons, neutrinos interact with deuterons
through two different reactions. As explained before, the CC reaction only occurs
for electron neutrinos with energy greater than 1.44 MeV. The electron direction is
slightly forward/backward asymmetric having a 1−0.340 cos θeν angular distribution,
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where θeν is the angle between the incident neutrino direction and the initial direction
of the electron. The energy of CC electrons is much more closely related to the
neutrino energy than the ES reaction that has an almost flat distribution in energy
up to the kinematic limit.

Also, neutrinos can also break up the deuteron through the neutral current reac-
tion which occurs at the same rate independent of neutrino flavour. The threshold
for the NC reaction is 2.2 MeV. In contrast to the ES and CC reactions, the NC
reaction results in a free neutron and the subsequent signal does not provide any
angular or energy information (aside from the production threshold).

The SNO experiment took data in three phases, distinguished by the method
used to detect the neutrons from the NC reactions: pure D2O, D2O loaded with two
tonnes of NaCl and a set of 3He proportional counters (NCDs). More details about
the three phases and further details about the SNO detector are given in Chapter 2.

The SNO Collaboration has already confirmed the hypothesis of neutrino oscil-
lation with the simultaneous measurement of the CC and NC fluxes, in the form of
the CC/NC ratio [14, 36, 64]:

Φ (νe)

Φ (νx)
≈ Φ (CC)

Φ (NC)
= 0.34± 0.023(stat)+0.029

−0.031(syst), (1.30)

which proves the conversion of νe’s into νµ,τ ’s as solar neutrinos travel from dif-
ferent regions of the Sun to the various detectors on Earth, while the NC flux agrees
with the SSM predicted flux:

Φ (NC) = 5.54+0.33
−0.31(stat)+0.36

−0.34(syst)× 106cm−2s−1. (1.31)

Figure 1.11 shows the relation between the different fluxes observed by SNO as
well as the solar model prediction (dashed lines), which can be confirmed to agree
quite well with the total flux measurement of SNO.

After providing a major contribution to the resolution of the Solar Neutrino Prob-
lem, the SNO experiment proceeded to re-analyse their data, entering a period of
precision physics.
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1.5.5 Present Status of Solar Neutrino Physics

The considerable diversity of solar neutrino experiments is a fundamental tool to un-
derstand the underlying physics of neutrinos. All these experiments can be combined
to produce a best estimate of the solar neutrino mixing parameters. The indepen-
dent measurement of the total 8B solar neutrino flux performed by SNO, allowed a
deeper study of neutrino oscillations. This led to the observation that, unlike in the
Cabibbo-Kobayashi-Maskawa (CKM) matrix, the PMNS matrix is not characterised
by small mixing angles, but rather by large mixing angles contradicting, once again,
the best bet of many theories. Figure 1.12 shows how the knowledge of the neutrino
oscillations evolved in the solar sector until the results from SNO.

Furthermore, the excellent agreement between the oscillation parameters obtained
with solar and terrestrial neutrinos [59, 65, 67–69] reflects the great success of the
neutrino oscillation experiments. This agreement is shown in Figure 1.13, where con-
tours of the allowed values of neutrino oscillation parameters relevant in the context
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Figure 1.12: The evolution of the constrain on solar neutrino oscillation parameters as of
2006. Since then, more experiments have contributed to the knowledge, entering a phase of
precision measurements. Figure from [66].

of solar neutrinos are shown from a combined analysis from all solar neutrino ex-
periments, and compared to the corresponding contours obtained by the KamLAND
experiment. This analysis was performed with an effective 2ν oscillation model (two-
flavour), where the effects from θ13, ∆m2

31 and the CP violating phase δ are ignored
(2ν analysis). As it is possible to observe, the agreement is good with an overlap of
the 68.30% confidence regions. The figure shows the only allowed region, which is
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called the Large Mixing Angle (LMA) region.
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Figure 1.13: Global analysis of all solar neutrino experimental results as of 2009 in a two-
flavour framework. The result from the KamLAND experiment is also shown. Figure from
[70].

Figure 1.13 is depicting that by introducing the θ13 parameter to the fit for a 3ν os-
cillation model (three-flavour), the agreement between the solar neutrino experiments
and the reactor experiment KamLAND improved, which could imply a non-vanishing
θ13 mixing angle. However the uncertainties are yet very large [67, 68, 70].

In Table 1.3 the present knowledge on the neutrino oscillations is compiled in
terms of the values and uncertainties of all neutrino mixing parameters. The Ma-
jorana phases are not shown since there is no data to constrain those phases at the
moment.

1.6 Motivation and Scope of this Thesis

At this point, considering the numerous results from solar neutrino experiments,
there is little doubt that neutrinos do experience flavour oscillations. However, like
in many fields, the solution to a problem opens several doors to new challenges.
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Figure 1.14: Allowed values of the oscillation parameters from a global three-flavour analysis
combining all solar neutrino experiments and the KamLAND results. Figure from [70].

∆m2
21 =7.59± 0.20

(
+0.61
−0.69

)
× 10−5eV 2

∆m2
31 =

{
−2.36± 0.11 (±0.37)× 10−3eV 2 (Inverted Hierarchy)
+2.46± 0.12 (±0.37)× 10−3eV 2 (Normal Hierarchy)

θ12 =34.4± 1.0
(

+3.2
−2.9

)◦

θ23 =42.8 +4.7
−2.9

(
+10.7
−7.3

)◦

θ13 =5.6 +3.0
−2.7 (≤ 12.5)◦

δCP ∈ [0, 360]◦

Table 1.3: Present limits on the neutrino oscillation parameters from analysing all available
neutrino data. Values from [67].

The anticorrelation (or "tension") observed in the allowed values of the mixing
angles when comparing the results from solar neutrino experiments and the Kam-
LAND experiment lead to a hint that the presently unknown mixing angle θ13 might
be non-minimal [67, 68, 71]. This is indeed a very interesting prospect as any chance
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of measuring the CP violating phase is dependent on the scale of the θ13 mixing pa-
rameter6. At present, attempts of measuring this parameter haven’t been able to set
strong constraints to it [67, 72, 73]. In order to validate the tension suggested from
this combined analysis, it is necessary to ensure that the details of each experiment
are correctly combined with the data from all other experiments. Furthermore, in
both cases the effect of θ13 is a second-order effect, strongly dependent on the mixing
angle θ12. Thus, a precision measurement of θ12 would allow to further constrain
the θ13 mixing angle, and to further test the statistical significance of the results
presented in Figure 1.14.

Besides this immediate benefit from a precise measurement of the solar neutrino
oscillation parameters there is another, more fundamental, motivation. SNO termi-
nated its data taking by the end of 2006, after six successful years of operation. The
current precision in the determination of the θ12 mixing angle is due mostly to SNO,
as shown in Figure 1.12, and there is only one experiment that has the potential to
further improve this precision: its successor experiment SNO+ [74]. However it is
not yet clear that SNO+, looking into solar neutrinos from the pep reaction, will be
able to improve significantly over the current precision7. It is thus very important
that the SNO data should be analysed to extract the most information for neutrino
physics.

Besides the most immediate motivations concerning the solar neutrino picture,
there is also a more general reason to reach the most precise measurements of the
solar neutrino mixing parameters.

The neutrino mixing angles are fundamental parameters in the SM, and their
precise determination can provide new light into fundamental new physics. One of
the peculiarities of the PMNS mixing matrix is how different it is from its analog
CKM matrix in the quark sector. The quark flavour number is only weakly broken,
resulting into an almost diagonal matrix. In the neutrino sector, however, the mixing
is maximal for one angle (θ23) and almost maximal for another (θ12), while the third is
known to be small, albeit not exactly how much (θ13); resulting in large non-diagonal

6In the expression for the survival probability all terms with δCP appear with a sin2 2θ13 factor.
7It should be noted that SNO+, by probing the neutrino energy region where the transition

between matter enhanced oscillations takes over the pure vacuum oscillations, opens the possiblility
for new physics searches.
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matrix terms.

This effect has been pointed out to be very close to the product of a π/4 rotation
matrix with a π/5 rotation matrix [75]. This mixing matrix is known as Tri-Bimaximal
Mixing (TBM) matrix and has the form

∣∣UTBM
∣∣ =




√
2
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√
1
2


 . (1.32)

These values are consistent at the 90% C.L. with the present values of the PMNS
mixing matrix.

While there is some scepticism concerning these symmetry models, their specific
form may provide some information about the underlying physics of neutrinos. The
TBM model has been found to have relations to group theory [76], explaining the
small mixing observed in quarks. Furthermore, working upon this model, it has been
shown that if the PMNS and the CKMmatrices are equal at theGrand Unified Theory
(GUT) scales, it is possible that these matrices diverge at low energy under the
assumption that neutrinos have Majorana masses and are quasi-degenerate [77, 78].
In this framework, the CKM matrix can be used to estimate the value of the mixing
angles. In particular, following the previous assumptions, it is estimated the neutrino
mixing angle θ13 to be in the range ≈ 3.5◦ to 10◦.

Besides this particular model, a plethora of variations have been developed, each
one providing predictions for the exact values of the mixing angles. Figure 1.15 shows
a list of the predicted θ12 and θ13, as well as the current limits from experimental
data [79].

It is clear that from the increasing amount of models, new experimental input is
necessary. In particular, it is interesting to note that these models predict very specific
values for the mixing parameters, which means that by improving the precision on
the current experimental data, it would be possible to directly test them.

This thesis was developed in the context of the very final analysis of the SNO
data. In this analysis, all neutrino data taken by the SNO experiment will be analysed
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as a single data set, which spans over six years of operation of the experiment and
accounts for more than three years of live-time. As it will be explained in Chapter 2,
combining the considerably different phases of the SNO experiment won’t be an easy
feat, and analysing the data in the context of neutrino oscillations together with the
input from all other solar neutrino experiments will pose a major challenge, as there
are a large amount of particularities that have to be correctly addressed in order to
deal with the correlations between all experiments and particularly between all the
systematic uncertainties of all the phases of SNO.



Chapter 2

The SNO Detector

The Sudbury Neutrino Observatory (SNO) experiment consisted of a one kiloton D2O

Čerenkov detector, located in Vale Canada Limited’s Creighton mine near Sudbury,
Ontario, Canada.

The detector was constructed after the initial idea of Herb Chen in 1985 [63], aim-
ing to solve the so called Solar Neutrino Problem. Its unique design allowed neutrinos
to be detected by three different types of interactions, of which one was insensitive
to the neutrino flavour, providing a measurement of the total 8B solar neutrino flux
independent of neutrino mixing. Conversely, since another reaction measured only
the νe component, a test of neutrino mixing could be performed independently of the
solar models by comparing both SNO measurements.

In this Chapter the structure and principles of operation of the SNO detector will
be detailed, providing the necessary background for the work of this thesis discussed
in later Chapters.

2.1 Structure of the Detector

The centre of the SNO detector is located at 2092 m underground, corresponding to a
rock overburden of 6010 m of water equivalent. With this much amount of shielding,

39
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the detector had less than 80 cosmic ray muons passing every day. A schema of the
detector is shown in Figure 2.1.

D  O
2

Figure 2.1: Schematic drawing of the SNO detector. Taken from [80].

The detector design consisted of two concentrical spheres: the acrylic vessel,
containing the heavy water (D2O) volume was the active medium for neutrino inter-
actions, and the geodesic structure to which the photomultiplier tubes (PMTs) are
attached to detect the neutrino interactions in the active medium.

The active medium consists of 1000 tonnes of 99.92% ultra-pure D2O, which is
contained by the acrylic vessel (AV), an acrylic sphere of 12 m in diameter and 5.5 cm
thick. The acrylic used was specifically designed for SNO, to reduce the ultraviolet
absorption [80]. The AV is supported by ten loops of rope made of synthetic fibres
that are attached to the deck structure on top of the detector. The ropes are attached
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to the detector at ten specifically carved acrylic tiles distributed equidistantly around
the detector equator.

The access to the D2O volume is provided by a chimney (also identified as neck)
of 1.46 m in diameter and 6.8 m height, which is made of the same acrylic as the rest
of the vessel. This chimney was needed to fill the AV, to deploy calibration sources
and the NCDs. The top of the chimney is attached to an airlock in the deck clean
room (DCR), from where the calibration sources are lowered into the D2O volume.
The DCR is the clean room on top of the detector where the instrumentation for the
calibration sources is located, such as the optical calibration laser, and is the cleanest
area in all the laboratory.

As mentioned before, surrounding the AV, there is a geodesic structure, the
PMT support structure (PSUP), where 9456 PMTs are supported, oriented towards
the D2O volume. The structure is composed by triangular panels of PMTs, which
surround smaller hexagonal panels at each node of the geodesic structure. In each
panel, the central PMT is pointed towards the detector centre.

The region outside the AV is filled with 7000 tonnes of ultra-pure H2O (1700
tonnes between the AV and PSUP, and an additional 5300 tonnes between the PSUP
and the cavity wall), providing a shield against the radioactivity from the instrumen-
tation (PSUP and PMTs) and the surrounding rock.

The PMTs are the active detectors for the Čerenkov light produced by the neu-
trino interactions in the D2O volume. These phototubes are Hamamatsu R1408,
designed to provide high photon detection efficiency, high timing resolution (RMS =

1.7ns) and to minimise the intrinsic radioactivity. Each PMT was mounted in the
PSUP with a light-concentrator of 26.9 cm in diameter to increase the photocathode
coverage from 31% to a total 54% solid angle coverage. A schema of a PMT from
SNO is shown in Figure 2.2.
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Figure 2.2: PMT schematic with dimensions (in cm). The light-concentrator housing is
also shown. Figure from [80].



2.2 Principles of operation 43

Besides the inward looking PMTs, an additional 91 outward looking PMTs are
mounted on nodes of the geodesic structure of the PSUP acting as background vetoes.
Another 23 inward-looking PMTs are arranged in a structure on top of the H2O vol-
ume to detect cosmic rays. In the walls of the detector pit 14 magnetic compensation
coils were mounted in order to cancel the vertical component of the Earth’s magnetic
field in order to increase the PMT detection efficiency by approximately 10% [80].

In the third and last phase of SNO, an array of 3He proportional counters, the
neutral current detectors (NCDs), was deployed in the AV to measure the total flux
of solar neutrinos from NC events in the D2O, independently of the PMTs. The
NCD array consists of 36 strings filled with 3He to detect neutrons and 4 additional
strings filled with 4He that, being insensitive to neutrons, were deployed to identify
backgrounds, coming primarily from α particles. More details about these counters
will be given in the following Sections. The technical details of the experiment are
given in [81].

2.2 Principles of operation

Unlike other water Čerenkov detectors, SNO was specifically designed to detect solar
neutrinos through different reactions, allowing an independent measurement of the
total neutrino flux.

By replacing the hydrogen in the water molecule with deuterium, three reactions
with solar neutrinos are possible:

CC : νe + d→ p+ p+ e− (Q = −1.44MeV ) (2.1)

NC : νx + d→ p+ n+ νx (Q = −2.2MeV ) (2.2)

ES : νx + e− → νx + e− (2.3)

The first two interactions are named to correspond with the current carried by
the charged W boson and the neutral Z boson, which mediate the processes.

The charged current (CC) interaction involves the exchange of a W boson. At
the energy range of solar neutrinos, this reaction is exclusive to neutrinos of electron
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flavour, since the neutrinos do not have enough energy to produce the other heavier
charged leptons. As a result of this interaction, the down quark of a neutron is
transformed into an up quark, resulting in the D2O to break into two protons, while
the neutrino is converted into an electron. This interaction has an energy threshold
of 1.44 MeV. Only the electron is detected, and its energy is highly correlated with
the energy of the incoming neutrino, such that it provides important information
concerning the shape of the solar neutrino spectrum. However, the electron does
carries some directional information [82] due to the V-A coupling of the W boson.
Due to the large amount of low energy backgrounds the SNO analyses have higher
energy thresholds, which means that SNO is only sensitive to the 8B neutrinos and
the much less intense hep neutrinos.

The neutral current (NC) interaction is the unique detection signature of SNO.
This interaction is mediated by a neutral Z boson, that equally couples with all
three neutrino flavours να with α = e, µ, τ . Through this interaction, the deuteron
is dissociated and the resulting free neutron is then detected. This reaction has an
energy threshold of 2.224 MeV but, as the neutron is detected upon termalisation,
no information about the incoming neutrino energy and direction is retained. Being
equally sensitive to all neutrino flavours, the events provide a direct measurement of
the total solar 8B neutrino flux. It was due to this that SNO was able to test and
confirm the predictions of the solar model, and infer that the Solar Neutrino Problem
is due to neutrino mixing and flavour transitions. Unlike the CC and ES reactions,
the NC interaction does not produce a relativistic charged particle and therefore it
does not directly generate Čerenkov light. However, the free neutron can be detected
in several ways. The experiment ran for a total live-time of 1054.29± 0.03 days, and
was operated in three different configurations, henceforward called phases, each one
employing a different neutron detection technique. The characteristics of each SNO
phase are detailed below.

The elastic scattering (ES) interaction involves the bound electrons in the water
molecule, and so is the only one of the three interactions in common with light water
Čerenkov detectors. This interaction has a smaller cross-section than the first two,
and is weakly sensitive to all neutrino flavours. Being dominated completely by
kinematics, the direction of the recoil electron is highly correlated to the direction of
the incoming neutrino, and therefore ES events are usually separated from the other
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events by verifying the direction of the recoil electron with respect to the direction
to the Sun. In SNO this interaction didn’t play a special role due to the low event
statistics.

The CC, NC and ES events are distinguished by having different distributions of
observables, such as event energy, direction, position and isotropy. However, these
differences are not enough to perform an event-by-event identification. Therefore, a
statistical separation is used to obtain the total number of events in each class. This
procedure will be described in more detail in Chapter 5.

2.2.1 Heavy Water Phase (Phase I)

The pure heavy water phase, also called the D2O phase, is defined as the period
of detector operation between November 1999 and May 2001, with a total of 300.4
live-time days. During this period the active volume consisted solely of D2O, and the
NC interactions were observed through the neutron capture on deuterium:

n+ d→ 3H + γ, (2.4)

with the event detection being made through the mono-energetic γ of 6.25 MeV,
generating Compton scattering electrons which were subsequently reconstructed
through their Čerenkov radiation. This reaction has a cross section of 0.5 mb. The
details and results of the data analysis in this phase are detailed in [14, 36].

2.2.2 Salt Phase (Phase II)

This phase of operation was from July 2001 to August 2003 for a total of 391.4 live-
time days. During this period, 2 tons of NaCl (≈ 0.2% by mass) were added to the
D2O volume in order to increase the neutron detection efficiency through neutron
capture on chlorine via the reaction

n+ 35Cl→ 36Cl
∗ → 36Cl + nγ. (2.5)
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where n represents a cascade of multiple γ’s with a total energy of 8.6 MeV. This
reaction has a neutron capture cross section of 44 b, which is much higher than the
neutron capture cross section on deuterium.

During this phase, approximately 80% of the NC neutrons were detected. Fur-
thermore, the Compton scattered electrons from the multiple γ rays are distributed
more isotropically in the detector, which makes it easier to separate NC from the
other neutrino interactions. Furthermore, the higher total energy released in the
reaction permitted to make a precise measurement of the NC signal, well above the
region of low energy backgrounds. The details of this phase are described in [64, 65].

2.2.3 Neutral Current Detector Phase (Phase III)

The neutral current detector (NCD) phase was the final operation phase of SNO as it
spanned from December 2004 to November 2006 with a total of 385.2 live-time days.
This phase was the most distinguishable from the other phases.

For this phase 36 3He proportional counters (NCDs) were installed inside the AV,
after the removal of the salt. Four additional counters were installed, filled with 4He,
to provide background control. The neutrons produced by the NC interaction were
captured through the reaction

3He + n→ 3H + p, (2.6)

producing a 3H-proton pair that originated an electrical pulse in the anode wire of
the NCD proportional chambers. This reaction has an even higher cross section
(5330 b), having a very high neutron capture efficiency. Furthermore, by detecting
the NC neutrons in the NCDs, the correlations with the other reactions are strongly
reduced, providing a virtually independent detection method of NC events. Besides
this obvious advantage, the NCDs also provided a neutron event count, something
that was not possible in previous phases. More details about the NCDs are provided
in Section 2.4.
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2.3 The PMT System

The PMT system in SNO was the primary method for event detection, being used
in all the three phases of the experiment. In this section a brief description of this
detection system will be provided, as well as the associated electronics.

As explained previously, except for the NCD phase, the signals detected by SNO
consisted of Čerenkov photons. The photons detected by the PMTs had a wavelength
ranging from 300 to 620 nm, which means that the wavelength ranged from the visible
to the ultraviolet. When a photon is produced in the D2O volume, it also has to cross
at least 5.5 cm of acrylic from the AV. Figure 2.3 shows the media transmissions,
PMT quantum efficiency1 and the emitted and observed Čerenkov spectra for a source
at the centre of the detector [83].

After leaving the vessel, the photons cross the inner light water (H2O) volume of
about 3 m, reaching the PSUP. This structure contains 9456 inward looking PMTs
with a radius of 20 cm, which would normally produce a photocathode coverage of
31%. However, the PMTs were mounted into a 27 cm reflective light concentrator,
designed in the shape of a Winston cone [84] to provide optimal collection efficiency
for light generated inside the D2O volume, increasing the coverage to 54% [80]. An
example of a SNO PMT/concentrator assembly is shown in Figure 2.2.

The PMTs are Hamamatsu R1408, which have a good charge amplification with a
gain > 107. In terms of charge resolution the PMTs are characterised by a reasonable
resolution with a peak-to-valley ratio of > 1.25. Besides the charge, the PMT pulse
timing is also one of the characteristics of interest having a short photo-electron (PE)
transit time of 30 ns with a resolution of 1.7 ns.

The electronics were responsible for the measurement and storage of the charge
and time information from the PMTs. In SNO electronics each PMT was connected
to a channel by a coaxial cable which was responsible simultaneously for transmitting
the signals and providing the high voltage supply. The channels are handled by front
end cards, which are responsible for signal processing and digitisation.

1In the context of SNO the term "quantum efficiency" is used to refer to the wavelength-
dependent probability of registering a hit in a PMT.
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Figure 2.3: Čerenkov spectrum convolved with PMT quantum efficiency and media extinc-
tions. Figure from [83].

Each time a signal was detected, individual discriminators determined if it crossed
a given threshold. In case the discriminator fired, multiple types of trigger signals
were generated. Based on these signals, the trigger system classified the event and
determined if it should be stored on disk.

Several types of triggers existed for a wide variety of purposes [85]. For example,
the ESumHi trigger recorded an analogue copy of the pulse from each PMT, summing
the pulses gave the total charge deposited in the detector and served as an important
diagnostic tool for non-physics backgrounds. For the physics analysis, the most
important trigger was the NHIT100 which identified events based on the number of
channels that gave signal within a set time window. When a discriminator fired, a
square pulse of 30 mV was generated, 93 ns wide and 2.5 ns rise time. These pulses
were continuously summed over all channels and when 16 hits were detected within
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the 93 ns window a global trigger was initiated. The pulsed global trigger was a fixed
interval trigger, firing at a rate of 5 Hz providing a good measurement of the ambient
noise in the detector. There were also external triggers which could be activated when
using calibration sources, providing a good way to discriminate particular events.

The trigger pulses were summed separately over each crate (and each card). The
summed signals were sent to a series of master trigger cards which performed a
detector wide sum of the signals and verified if the trigger was flagged to be stored,
initiating a global trigger. Once a global trigger was initiated, the integrated charge
and time information for each hit PMT was read out by the data acquisition system
(DAQ) system and stored on disk.

The time at which each PMT was fired was determined by a time-to-amplitude
converter. Basically, a capacitor started ramping when a discriminator fired and
stopped when the global trigger was received. If no global trigger was received after
a fixed time interval, the time-to-amplitude converter was reset. This information was
stored along with the integrated charge (digitised by the analog-to-digital converters),
a global trigger identification and was used to assemble the individual hits from PMTs
into events.

The trigger system had a very high efficiency. Using a threshold of 16 hits within
a 100 ns time window, the NHIT100 trigger was 100% efficient at total energies of 4
MeV [86].

In principle the SNO detector could operate almost continuously, storing all the
PMT data into a single data set. However, the events were grouped into time periods
classified as runs and were typically adjusted to the type of data being acquired
(calibration or neutrino data) and other constraints such as detector operation shifts.
During the NCD phase each physics run had a duration of about 7 hours. Calibration
runs, however, usually had shorter time periods. For example, an optical calibration
run had an average duration of 15 minutes as the high intensity laser source allowed
to collect enough statistics in a short time period.
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2.4 The Neutral Current Detectors (NCD)

The neutral current detectors (NCDs) consisted of thirty-six strings of 3He propor-
tional counters aimed at an independent measurement of the 8B solar neutrino flux.
In addition to the 3He counters, four additional strings were deployed, filled with 4He

to act as control counters. These were not sensitive to neutrons and were therefore
used to characterise the non-neutron backgrounds in the array.

The NCDs were cylindrical in shape, having a radius of Rncd = 2.579 cm and a
length ranging from 9 to 11 m, depending on their specific location making up a total
of 398 m of counter length. Figure 2.4 shows a diagram of a NCD string.

The NCD strings were composed of three or four individual gaseous proportional
counters made of ultra-pure nickel welded together. The gas in the counters was a
mixture of 85% 3He (or 4He for the control strings) and 15% of CF4, which generated
a pressure of 2.5 atm.

The proportional counters that made up the NCD array operated by measuring
the current pulse created on the anode wire by ionisation of the counter gas. A
charged particle passing through with sufficient energy would ionise the gas. The
anode wire was kept at a high voltage (1950 V) relative to the cathode wall forcing
the ionisation electrons to drift towards the wire.

The NCDs detect neutrons by its capture on 3He:

n+ 3He→ p+ 3H, (2.7)

which has a Q-value of 764 KeV, and the resulting proton and 3H have kinetic energies
of, respectively, 573 keV and 191 keV. Furthermore, both products have electrical
charge, which means that both cause ionisation of the counter gas producing an
identifiable signal.

Each particle has a characteristic energy deposition profile that gives the basic
shape of a neutron-capture NCD pulse. Figure 2.5 shows the energy spectrum of
the NCD events detected in the third phase [69], along with the spectrum obtained
from a 24Na calibration run. In Figure 2.5(a) the shape of alpha and instrumental
backgrounds have a shape almost flat in energy and are represented with the dashed
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Figure 2.4: Schematic of a NCD string with readout cable, active region, delay line, and
anchor system. Figure from [69].
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line. The background neutrons are also shown, having a shape identical to the signal
(dash-dotted line). The neutron signal has a series of distinctive features that can
be better observed in Figure 2.5(b) as a result of the detection of the produced
proton-triton pair. The neutron peak is clearly visible at 764 keV, and corresponds
to deposition of the full kinetic energy of the proton and triton in the active volume
of the NCD counter. The 573 keV shoulder is due to events where the triton energy
is fully absorbed by the wall of the counter and the 191 keV shoulder is caused by
total absorption of the proton energy in the wall.
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Figure 2.5: NCD energy spectrum obtained in the NCD phase and corresponding calibration
spectrum obtained with a uniformly-distributed 24Na calibration. Figures from [69, 87].

The strings were deployed in a grid, each string 1-m apart from its closest neigh-
bours. Figure 2.6 shows the NCD array configuration in the detector’s (x, y)-plane.
Although the total volume of the NCD array is small, this is sufficient as the neutron
capture cross section of 3He is very large (5330 b). For neutrons generated uniformly
over the detector volume, the NCD array had a neutron capture efficiency of 21%.
The main reason for making the grid so sparse was to avoid a drastic reduction of
the PMT signal due to shadow effects. In the configuration used the reduction due
to shadows was of about 9% [88]. More details on the NCD installation procedure
and operation can be found in [69, 81].
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Figure 2.6: The SNO geometry during the NCD phase, viewed from the top of the detector,
including the locations of the 40 parallel NCD counters deployed in the AV volume.

2.5 Backgrounds

As in any experiment, the control of backgrounds was a major concern in the design
of SNO. In particular a proper knowledge of the neutron backgrounds was necessary
as these events could not be distinguished from the NC signals.

In the initial data analyses, SNO dealt with most of the low energy backgrounds by
increasing the energy threshold. The background events appear mostly at low energy
and thus a substantial part of the problem just disappeared (with the exception of
the neutron backgrounds). When preparing the combined analysis of the first two
phases of SNO, since the past results were limited by statistics, an effort was made
in reducing the low energy backgrounds so that one could reach the lowest possible
energy threshold, thus dramatically increasing the available statistics [70].

Cosmic rays are an important background to low signal rate experiments, and one
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of the main reasons why underground locations are chosen to host them. These can
produce spallation neutrons and short-lived isotopes (muon followers). By having
6000 m.w.e. of rock shielding, SNO has only approximately 80 muons entering the
detector per day. The muon followers can be easily removed by cutting all the data
collected for 20 seconds after the initial muon, ensuring that no muon induced signal
contaminates the neutrino data set.

The dominant physics background in the SNO data arises from radioactive con-
tamination. In order to cope with this limitation, the materials used in the construc-
tion of the detector were specially selected for radiopurity, but naturally occurring
radioisotopes such as 238U and 232Th were still present in trace quantities in all com-
ponents of the detector. As these elements decay, particles can be released that are
energetic enough to mimic both electron and neutron-like neutrino signals.

• Decays releasing electrons from β-decays above the Čerenkov threshold generate
events that are almost indistinguishable from low energy CC events.

• Decay branches including gamma photons (γs) above an energy of 2.224 MeV
could cause photo-disintegration of a deuteron, producing a free neutron that
could be confused with those from NC neutrino interactions.

• α particles produced in the U and Th decay chain could interact with nuclei
present in the detector, such as 2H, 13C, 17O and 18O, producing further neutron
background events. However, the cross section for these reactions is very small.
Although they occurred in the water volumes, their major contribution come
from events occurring in the acrylic vessel itself.

The decay chain of 238U leads to the 214Bi which decays by β-emission with an
endpoint energy of 3.27 MeV. It also decays 2.8% of the time to an excited state
of 214Po that emits a γ-ray of 2.445 MeV. This energy can initiate the deuteron
photo-disintegration and produce at most one background neutron per decay chain.

The decay chain of 232Th produces the 208Tl daughter that decays to an excited
state of 208Pb through several β branches. The de-excitation of 208Pb always emits
2.614 MeV γ’s which can also photo-disintegrate the deuteron and produce a back-
ground neutron. Both 214Bi and 208Tl can at most generate one neutron each per
decay chain.
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It is important to distinguish two types of backgrounds in the SNO experiment:
the external and the internal backgrounds. The external backgrounds come from
radioactivity in the AV, light water, PSUP and the PMTs themselves. In this case the
orientation of the PMT reflectors cause low geometrical acceptance for events in the
light water, but many events are still detected between 3.5 and 4 MeV. The proportion
of these events dominate the total number of events at the analysis threshold of 3.5
MeV.

Internal backgrounds have their origin in residual radioactivity in the D2O and
cannot be differentiated from the neutrino events other than by measuring their
concentration and estimating the resulting rate of background events.

Due to the impossibility to tag several of the background event types, background
control had to be put into place. The strategies for managing these backgrounds
depended on the type of material in question. For example, in the case of the solid
instrumentation, the AV and the glass in the PMTs were the major concern, for which
specific manufacturing processes were employed to achieve low levels of radioactive
contamination.

The water volumes were also a source of backgrounds. In particular the D2O

volume was a critical component as the backgrounds described above could generate
events completely indistinguishable from NC events. Contaminants coming from
Radon present in the mine air and leaching of Uranium and Thorium from the solid
instrumentation were sources of background very hard to control. The background
control in this case was performed through re-circulation and purification of both
D2O and H2O.

Both light and heavy water water was circulated out of the detector, filtered,
de-ionised, de-gassed (to remove Radon), then re-gassed with pure nitrogen before
being reintroduced to the detector. In order to improve the radiopurity of the light
water region, a plastic barrier was installed on the back side of the PSUP, dividing
the light water into two volumes: 1.7 kilotons between the acrylic vessel and the
PMTs, and 5.7 kilotons between the PMTs and the walls of the cavity. The water
inside the PSUP could be made much cleaner, which helped reduce backgrounds
in the region where they could cause the most problems. During the light water
purification process, the water was reintroduced into the inner volume, in order to
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avoid the water from the outer volume to move in. A barrier of pure nitrogen gas
was also maintained in the neck between the D2O and the air of the laboratory to
reduce radon contamination.

Along with the purification process, the water was also assayed to determine the
amount of uranium and thorium still present in the water. There were two different
processes to do this: the HTiO [89, 90], and the MnOx [91] assays.

The HTiO is deposited in the filtration instrumentation and is used as an ion
exchanger to collect the radioactive components present in the water. These compo-
nents are then stripped from the filter with acid, concentrated and then mixed with a
scintillator and observed for β and α decays, typical of the decay chains from U and
Th. Essentially, the activity from the Thorium chain is obtained from the activity
levels of 228Th, 224Ra, 212Pb and 212Bi. Analogously, the activity of the Uranium
chain is obtained from the activity levels of 226Th, 222Ra, 214Pb and 214Bi.

The MnOx process uses columns of acrylic beads covered with MnOx, where x
stands for different amounts of oxygen atoms in the molecule. The water flows along
the column, depositing the contaminants, predominantly Radon, in the process. The
Radon is then removed and placed in a decay chamber, where the Po daughter is
detected using an α counter.

The results from both techniques were then compared and combined to produce
an estimate of the radioactivity in the water in terms of 238U- and 232Th-equivalent
grams per gram of D2O (or H2O). Table 2.1 contains a summary of the concentration
measurements of U and Th performed in all phases of SNO that were used in the
analysis.

Besides the measurements described in this section, in the latest analyses the
background levels are also fitted alongside the neutrino signals, using the background
estimates as constrains in the fit.

2.6 Detector Calibrations

In order to understand the data taken by the SNO detector, it is necessary to have an
accurate knowledge of the detector response. Thus, a intensive calibration program
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Phase Type Medium Measurement (g per g of medium )

D2O

238U
D2O

(
1.01+0.34

−0.20

)
× 10−14

232Th
[
2.09± 0.21(stat.)+0.96

−0.91(syst.)
]
× 10−14

238U
H2O

(29.5± 5.1)× 10−14

232Th
(
8.1+2.7
−2.3

)
× 10−14

Salt

238U
D2O

Upper Limit: 2.0× 10−14

Lower Limit: (1.41± 0.46)× 0−16

232Th
[
1.76± 0.44(stat.)+0.70

−0.94(syst.)
]
× 10−15

238U
H2O

20.6± 5.0)× 10−14

232Th 5.2± 1.6)× 10−14

NCD

238U
D2O

(6.14± 1.01)× 10−15

232Th (7.7± 2.1)× 10−16

238U
H2O

(
35.5+9.9

−5.4

)
× 10−14

232Th (2.77± 1.04)× 10−14

Table 2.1: Summary of 238U and 232Th concentrations at SNO measured through radio-
assays in both the heavy and light water volumes.

was put in place. Of the total running period of the experiment, approximately 30%
of the operational live-time was spent in calibrations.

The calibration programme in SNO can be separated into two different groups:
the electronics calibrations and the source calibrations. Details about each of these
types will be given below.

2.6.1 Electronics calibration

The electronics calibrations were used to determine the parameters determining the
charge and time response of each PMT and the front-end electronics.

Two sets of calibrations were performed on a regular basis, in order to measure
the stability of the detector instrumentation:

Electronic Calibration (ECA)

The Electronic Calibration (ECA) was performed every two weeks in order to measure
the variation of channel properties over time. Two measurements were performed:
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the pedestal value of the charge analog-to-digital conversion and the time slope of
the time-to-amplitude conversion. The pedestal value was calibrated by firing the
individual discriminators with no incoming pulse, by having the DAQ sending a
pulse to the discriminators, and the charge was recorded and digitised, providing a
definition of the zero charge in each channel. In order to calibrate the time slope, the
DAQ sent a pulse to fire the individual discriminators and then a global trigger was
forced at a fixed time delay. The time slope was then measured by varying the delay
between the input pulse sent by the DAQ and the global trigger.

PMT Calibration (PCA)

The PMT Calibration (PCA) was performed monthly to measure the time response
of each PMT2. This calibration mimicked the data taking sequence in order to ensure
a proper measurement of the timing of the PMT system. Individual discriminators
fired when the leading edge of a pulse crossed a fixed voltage threshold. The time
recorded thus depended on the pulse amplitude, with a larger amplitude to cause
the discriminator to fire earlier. This was affected by variations in the pulse height
recorded by a single PMT, causing variations in the PMT firing time as large as 2 ns.
Therefore, to correct for PMT-to-PMT timing differences caused by this effect, an
approximately isotropic laser source, the laserball (LB), was deployed in the centre
of the detector to measure the relation between the deposited charge and firing time,
producing a charge dependent channel-by-channel correction.

2.6.2 Detector Calibrations

During operation, a variety of calibration sources were deployed in SNO in order to
measure the detector response to signal and background events. Several properties of
the detector had to be measured, including the PMT collection efficiency, the angular
response of the PMTs, the optical attenuation lengths, the position dependent energy
response to both electrons and neutrons, and also the acceptance of background

2A calibration of fundamental channel properties such as the discriminator thresholds was also
performed whenever an electronics component, such as the Front End Card (FEC), was replaced.
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events. In order to perform all these measurements, a wide range of calibration
sources were used.

Source deployment

The sources could be deployed both in the D2O volume, through the neck, or outside
the AV, in the H2O volume between the AV and the PMTs, through guiding tubes
that ran parallel to the z−axis in six different positions. The sources were deployed
in the D2O volume using a manipulator system where sources of different types and
geometries could be attached. Inside the D2O volume, the calibration system could
be ran on two modes: single-axis and dual-axis mode. Figure 2.7 shows a schematic
of the calibration system responsible for deploying the sources in the detector.

In the single axis mode, the source could be deployed along the z−axis (the
vertical axis), using ropes fixed at a well known position (−16.03, 23.5) cm in the
(x, y) plane. The single-axis mode provided a very accurate mode of deployment,
allowing the source position to be known to 2 cm.

In order to deploy sources off the central axis of the detector, the dual-axis mode
was used. This mode uses two ropes in opposite sides to move the sources in the
(x, z) or the (y, z) plane. A total of four side ropes exist, one in each quadrant of the
(x, y) plane, which were commonly identified according to the cardinal orientations
(N,S,E,W). The ropes run down the AV neck, through pulleys on the manipulator
and then terminated at fixed locations on the AV, as shown in Figure 2.7. By
controlling the length and the tension at each rope, it is possible to place the source
in approximately 65% of the possible positions in each plane. In this mode, the
position accuracy is of the order of 5 cm for central positions, and of the order of 10
cm for positions close to the AV, where most strain was put on the ropes and pulleys
of the deployment system [92].

In the following subsections the most relevant calibration sources are described,
with particular emphasis on the optical calibration source called the laserball (LB).
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Figure 2.7: Schematics of the SNO source manipulator system. Figure from [92].

Laserball

The laserball (LB) is a triggered, multi-wavelength and virtually isotropic laser
source, used in both the PCA and the optical calibration (OCA). It was used to
measure the detector optical properties such as the media attenuation lengths, and
the PMT angular response, but also the PMT relative efficiencies and timing. A
schematic of the LB is shown in Figure 2.8.
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The LB consists in a quartz spherical container filled with a mix of silicone gel
and small hollow glass bubbles [92]. The scattering length of light inside the source
is of order of 1 cm, which is a good compromise between having a good isotropy
(which requires a short scattering length) and reducing the intensity losses due to
dispersion and absorption (for which we want a larger scattering length). An optical
fibre, carrying the laser pulses, terminates at the centre of the ball.

The body of the LB is encased in a stainless steel light shield to prevent refracted
light going upwards from reaching the PMTs. However, this considerably reduced
the intensity of the source upward, where the whole support structure is located.

The LB itself is just a diffuser. The light pulses are generated by an external
short pulse-length N2 laser (λ = 337.1 nm) which could be coupled to a series of
laser dyes to produce pulses with longer wavelengths [93]. The layout of the laser,
with its dye system is shown in Figure 2.9. From the laser system, the light is injected
into a fibre-optic that is part of a specially designed cable used for SNO calibrations,
the umbilical, which connected the laser source to the LB diffuser. The umbilical is
shown in Figures 2.7 and 2.9.

In order to cover most of the Čerenkov spectrum of interest for SNO, the laser has
five dyes being able to produce pulses in a total of six wavelengths. The properties
of the laser system are described in Table 2.2 and the spectra of the dyes are shown
in Figure 2.10. The laser system allows the selection of filters of different neutral
densities from two wheels, shown in Figure 2.9 as "Attenuator Wheels", to reduce
the intensity of the laser light. This is particularly important for optical calibrations,
where the intensity of the light is adjusted to very low values so that each hit PMT
has seen essentially a single photo-electron (PE), which will correspond to 300− 400

hit PMTs per event [92].

The 16N Source

The 16N triggered source [94] was a high rate, mono energetic γ source. The β decay
of 16N produced an excited state of 16O which produced a single γ of 6.13 MeV upon
de-excitation. The 6.13 MeV γ then Compton scattered an electron that consequently
generated Čerenkov light. The source was encased in a steel container to absorb the
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Figure 2.8: Laserball schema. Figure from [80].

emitted beta. Furthermore, this source had a small PMT in its interior that triggered
on the β, which permitted the tagging of events from the source. Thus, this source
produced a very clean data sample.

This was the main calibration source used for energy calibration (scale and res-
olution) within the detector, as the γ produced tended to scatter an electron with
an energy close to the peak of the CC spectrum. It was thus deployed in several
locations in the detector, being used to determine energy systematic uncertainties
such as position-to-position uncertainties, time variations in energy and accuracy of
vertex fitter.
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Figure 2.9: Schematics of the optical calibration laser. Figure from [80].
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Pulse width tN2
∼ 0.6 ns

tdyes ∼ 0.3 to 0.5 ns
Pulse energy EN2

∼ 100µJ/pulse

Edyes ∼ 10 to 30µJ/pulse

Pulse rate 1 to 45 Hz
Available wavelengths

Central value (nm) σλ (nm)
337.1 0.1
369 10
385 8
420 8
505 14
619 10

Table 2.2: Properties of the laser system, as well as available wavelengths. λ = 337.1 nm
corresponds to the laser fundamental wavelength. Data from [80].
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Figure 2.10: Wavelength spectra of the N2 laser, as well as the dyes.

The 8Li Source

The 8Li source [95] was also a triggered source that produced a β spectrum with an
endpoint of ∼ 14MeV . Using a deuterium-tritium (D-T) generator with a 11B target,
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8Li was produced, which was transported through the umbilical into a spherical decay
chamber that had been lowered into the detector. The chamber has very thin walls
(0.6 mm) so that the β can escape. This source produced a spectrum very similar to
the one from the 8B CC reaction, both in shape and in endpoint, as both isotopes
decay to the same excited state of 8Be. The events were tagged by scintillation of
the Helium gas that was used to transport the 8Li and filled the chamber. The
scintillation was produced by α’s resulting from the prompt decay of the daughter
making a coincidence with the β. The scintillation light was then detected by a PMT
located in the container.

The proton-3H Source

The proton-3H (pT) source [96] consisted in a small accelerator that collided protons
with 3H to produce 4He and 19.8 MeV γ’s. It was mostly used to measure the response
of the detector at high energies. This source was not deployed during the Salt phase
as it also generates large amounts of neutrons as a by-product, which would activate
the sodium into a 24Na radioactive source.

The 252Cf Neutron Source

The 252Cf decays by spontaneous fission, producing one or more neutrons. It was
used primarily to measure the neutron capture efficiency. This source was enclosed in
a plastic container to absorb the β’s that were generated by fission fragments. How-
ever, this source also produces fission γ’s, which could be reconstructed as neutron
captures. Therefore, large efforts were take to properly analyse its calibration data,
in order to properly account for the γ contamination.

Acrylic Radioactive Sources

These sources were also called canned sources [97], as they consisted of radioactive
isotopes encased in acrylic to produce daughters belonging to either the 238U or 232Th

chain. As stated in Section 2.5, these radioactive chains were the origin of most of
the dominant physics backgrounds in the detector. Due to the large half-lives of 238U
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and 232Th, short-lived isotopes from each of the chains (226Rn and 232U) were used,
producing, respectively, 214Bi and 208Tl events, the major low energy background in
SNO. These sources were not tagged, i.e., did not provide a simultaneous trigger
signal to the DAQ.

The 241Am-Be (AmBe) Neutron Source

The 241Am emits an α, which interacted with Beryllium ejecting a free neutron and
a 4.14 MeV γ in coincidence. This source was not tagged, but one could impose
a requirement for the coincidence, which resulted in considerably lower levels of
contamination. This source was only used in the last two phases of SNO (Salt and
NCD), and was particularly relevant to verify the measurements of neutron capture
efficiency in the Salt phase.

Radon Spike

This source consisted of a controlled injection of Radon into the water volumes. This
allowed to obtain a measurement of the detector’s response to uniform, isotropic low
energy backgrounds events. This source generated a high rate of events which made
the contamination from any other source of events negligible.

The 24Na Source

This source was only employed in the NCD phase [98]. Its principle is similar to the
Radon Spike. A sample of neutron activated salt was dissolved in the D2O volume.
The activated 24Na produces a 2.6 MeV γ, which is strong enough to induce the
deuterium photo-disintegration, producing a free neutron, indistinguishable from the
NC events. By being a distributed source, it was possible to calibrate the whole
detector volume, which was not possible with the other calibration sources.

This source was used in SNO mostly to calibrate the NCD system, where the
other neutron sources couldn’t be positioned close to some of the NCDs due to the
limitations of the source deployment system. However, this calibration required a
long time as the 24Na , with a half-life of T1/2 = 14.959 hours, required at least
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two weeks before its activity was negligible compared to the typical backgrounds.
However, it was a key element in the calibration of the NCD array. Usually, after
a 24Na calibration, an optical calibration followed, as the background from the 24Na

was completely suppressed by the much more intense laser source.

2.7 Detector Simulation

The processing of PMT and NCD information from the SNO electronics and the
Monte Carlo (MC) simulation are handled by the SNO Monte Carlo and ANalysis
software (SNOMAN) [99], a FORTRAN package developed by the SNO collaboration
to simulate the response of the detector to various kinds of events, but also for the
first stage of data processing and reconstruction.

The Monte Carlo component is a full photon-tracking simulation which starts
with seed particles, such as electrons, gammas, neutrons and muons, and propagates
them through the detector. Electron and gamma physics are calculated using code
from EGS4 [100] which has been embedded into the simulation framework. EGS4
computes energy loss due to ionisation, Compton scattering of electrons by gammas,
pair production, electron multiple scattering and photo-electric effect.

The production of Cherenkov light has been added to the simulation by seeding
photon vertices along each segment of the electron track. Neutron propagation and
capture are calculated with MCNP [101]. Higher energy particles like muons and
electrons above 2 GeV are simulated with LEPTO [102], and hadrons with FLUKA
[103] and GCALOR [104], all from the CERNLIB software library.

Particle tracking through the detector geometry is handled by custom SNOMAN
code that reads the dimensions, materials and optical properties of each element of the
SNO detector from a database on startup. Calibration source geometries were also
included when simulating runs in which they were deployed. The particle tracking
code was also used when propagating optical photons through the detector, with
reflection and refraction happening at media boundaries, and Rayleigh scattering
and absorption in the bulk. Once photons cross into the PMT concentrator region,
one of two simulations could be used. There was a phenomenological simulation of
PMT response derived from laserball calibrations (called “greydisk”), and there was
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also a full 3D photon tracking model that traced the photon through all parts of the
PMT/Concentrator unit.

If the photon produced a photoelectron in the PMT, a full simulation of the
data acquisition hardware integrated the pulse, and simulated the operation of the
trigger system. At the end, a data structure very similar to that produced by the
real detector was generated for the event. The Monte Carlo event differed only from
real data in that the quantisation error of the ADCs and the charge pedestals were
not simulated. As a result, the simulation and the real data were only comparable
after the electronics calibration had been applied to the real data, converting charges
back into hit times in nanoseconds. After this point, processing for data or Monte
Carlo was identical. A user supplied command file pipelined the events through a
series of analysis tasks which could include position reconstruction, energy estimation,
application of cuts, and finally generation of output files in either HBOOK or ROOT
format.

Most of the detector configuration in SNOMAN was set a priori. That is, param-
eters like dimensions, materials, and locations of detector elements were input based
on design documents. Measurements of PMT charge and timing distributions, and
photocathode efficiencies were also included. Other parameters were measured us-
ing the calibration sources and inputed to the simulation to provide realistic looking
Monte Carlo events.

A run in SNO ranged from 30 minutes to 4 days, with most runs lasting 7 hours.
At the start of each run, the detector state was recorded. After the run ended,
additional information was computed and loaded into the SNOMAN database. These
data included

• Start and stop time of the run

• Trigger thresholds and list of enabled triggers

• Channel discriminator thresholds

• Channel status (online, offline)

• Average PMT noise rate

• Source type and location (if deployed)
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All of these values were used by SNOMAN when deciding whether PMTs could
register hits, how many noise hits to add to the event, and whether to enable a
particular source geometry.





Chapter 3

Optical Calibration

3.1 Introduction

In a Čerenkov detector such as SNO, the accurate knowledge of its optical properties
was a key component to effectively understand the signals detected and correctly as-
sociate them to the underlying physical processes. The SNO detector was essentially
a large transparent volume surrounded by PMTs, with the physics events of interest
to occur inside the PSUP and producing Čerenkov light. Therefore, in order to make
a precise measurement of the energy and direction of each event, it was necessary to
keep a tight control over the conditions of light propagation. This was accomplished
by ensuring that the detector media were as clean as possible and by measuring the
optical properties of the PMTs, acrylic and water.

The first question that should be answered when discussing the optical calibration
is: "Why?". In principle, without the optical calibration the whole experiment could
run. The detector was calibrated in energy using a different source, and with that
the analysis could in principle be carried out. However, there were a few reasons
why a good optical calibration of the detector was essential for the accuracy of the
physics measurements.

In order to perform an accurate measurement of the neutrino interactions, a
good energy resolution was a mandatory requirement. For instance, the distortions
imposed in the solar neutrino energy spectrum are very small in the energy region

71
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where SNO was sensitive. In order to detect these variations, the energy scale of
the detector must be known to better than ±1% [105]. SNO employed a series of
techniques, by using several calibration sources covering different energy ranges, in
order to better understand the energy response of the detector. The energy of the
events were determined by the spacial and temporal distribution of the PMT hits,
as well as the total number of hits. For an electron produced in the detector, its
track length would be proportional to its energy. So, as the energy of the electron
increased, more Čerenkov light would be produced, yielding a larger number of hits
in the PMTs. The number of PMT hits, on the other hand, would be affected by the
optical properties of the media, such as the media attenuations. Therefore, by having
an accurate estimation of the detector optical properties a more accurate conversion
from the number of hit PMTs into event energy was achieved. Furthermore, the
analysis threshold was determined by the contributions of radioactive backgrounds
at the low energy end of the energy spectrum. The isolation of the background relied
also on a good calibration of the detector volume.

The present chapter will describe the optical calibration (OCA) process carried out
in SNO, explaining the optical model and its parameters, and detailing the analysis
of the optical data, including a description of the improvements implemented and the
results obtained. The optical calibration data taken in SNO passes through a series
of steps until the optical parameters can be extracted.

In Figure 3.1 a diagram of the data processing and analysis chain is shown. In
the following sections each step of this chain will be addressed with results obtained
and the relevant improvements added by the author of this thesis.

This work follows up the studies previously done for the initial SNO analyses
[83, 106–108]. The work described here was applied in the analysis of the SNO NCD
phase and the analysis of the combination of the D2O and Salt phases (LETA). For
the combined 3-phase analysis no reprocessing was carried out, meaning that some of
the improvements described were not applied in the final analysis of SNO. Despite the
neutrino data not being reprocessed for the three phase combined analysis (3-phase),
these improvements were nonetheless important to demonstrate that the previous
reprocessing was valid and no major differences arose from the tests performed.

As the SNO experiment progressed with the data taking, so the optical calibration
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Raw data

Basic Geometrical cuts

Laserball Position Fits

NCD Position Fits

NCD Shadow removal

NCD Reflections Correction

Optical Fit

OUTPUTS

Optics Constants Optics Systematics

CROSSCHECK ANALYSES

Diagonal Analysis

LB asymmetry Analysis

PMT Efficiency Extraction

Interim D2O PMT Efficiencies

Channel Efficiencies

Extrapolated PMT Efficiencies

Figure 3.1: Optical Calibration analysis chain.

evolved, getting continuously improved in order to better accurately describe the
optical properties of the detector. The work described in this thesis relates mostly to
the third and last phase of the experiment (NCD phase), and the combined analyses
that followed (LETA and 3-phase).

By the end of the SNO Salt phase, a NCD commissioning phase took place,
consisting in the installation of the NCDs into the SNO detector after desalination
of the D2O. This period started in October of 2003 and ended in August 2004.
During this period two OCA scans were performed by positioning the laserball (LB)
in several positions in the detector and taking data at six different wavelengths, which
are detailed in Table 2.2. An OCA scan consists of a series of data taking runs, which
are characterised by a LB position and orientation and a laser wavelength (see Section
4.1).

In the October 2003 scan (before the NCDs deployment) the main goal was to
verify that the optical properties of the detector remained consistent with salt phase
properties, and more similar to the first (D2O) phase properties, where in principle



74 Optical Calibration

only ageing effects would change the detector optical properties. As this was con-
firmed, this scan became the benchmark calibration data set for comparisons in the
following scans. A second OCA scan was performed in July 2004 with the NCDs
already in place, but due to a poor isotropy of the LB source its data was not used
in any OCA analysis to extract the detector optical properties.

As described in Section 2.6.2, the optical calibration was performed with a laser-
ball source that can be tuned to six wavelengths. However, the Čerenkov radiation
spectrum is continuous (see Figure 2.3). The data from the optical calibration simply
aimed to obtain a measurement at six sampled wavelengths. The extracted optical
properties of the detector were later extrapolated to other wavelengths in the simu-
lation and reconstruction algorithms.

A note about the spacial coordinates should also be made. In most cases, the
cartesian coordinate system is used to describe most of the positions and directions.
In the case of SNO, the top of the detector was oriented along the z axis, while the
x-axis pointed from the centre of the AV towards north and y-axis pointed towards
west. However, due to the symmetry of the detector, the specific choice of the latter
two were not particularly important. Although this coordinate description can easily
be used to characterise any position or direction in the detector, in some cases, due to
the spherical symmetry of the detector, it is convenient to use spherical coordinates.

3.2 Optical Calibration Analysis

The optical model of the SNO detector describes the light propagation through the
optical elements of the detector until it is detected by the PMTs. This model relies
on the assumption that the detector can be well characterised by average properties,
implying that the water is homogeneous and the PMTs have similar angular response
[83, 92].

The major effects that are considered in the optical model are:

• Attenuation in the media crossed by the signals: D2O, H2O and acrylic.

• Bulk scattering in the water media.
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• Reflections from the detector elements (AV, PSUP and PMTs).

• PMT efficiencies.

Here one has to consider that the PMT efficiencies have several components that
should be understood, such as its dependence with the direction of the incident
light, wavelength and location in the detector. It was verified that from the effects
cited previously the dominant ones are the media attenuations and the PMT angular
response [83, 108].

Reflections on detector elements need to be considered in the optical calibration.
For instance, the selection of the prompt peak needs to take under consideration the
position of the source, in order to minimise the inclusion of the reflected photons.
Figure 3.2(a) shows a diagram of different contributions from reflections on detector
elements in the particular, and simple, case of a source positioned in the centre of the
detector. Prompt light reach the PMTs directly from the source, while reflections
cause extra PMT signals at delayed times. Figure 3.2(b) shows the corresponding
timing histogram, integrating the light collected over all PMTs. The reflection peaks
are indicated in the figure, together with the prompt peak and the peaks due to
pre- and late-pulsing. These signals occur at well defined time offsets relative to the
prompt peak signals. When an incident photon strikes directly a dynode, there is
no production of a photo-electron at the cathode. A pre-pulsing signal then occurs
at approximately 15 ns before the prompt peak, which corresponds to the transit
time of the photo-electron between the cathode and the first dynode. On the other
hand, photons escaping the dynode stack are a likely cause for the late-pulsing. In
this case the photons go back to the photocathode and start another photo-electron
down the dynode chain . The two peaks shown in the figure are likely to be caused
by photons escaping from different regions in the dynode stack. While the first peak
would probably be generated by a photon coming from the top of the dynode stack,
the second pulse would probably correspond to photons coming from dynodes further
down the stack [83].

In the NCD phase, it was also necessary to account for additional optical effects
caused by the introduction of the NCDs. In the previous phases of the experiment,
the detector maintained a geometrical symmetry that allowed the average properties
of the detector to be obtained in a straightforward manner. With the introduction of
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Figure 3.2: Examples of light paths from the centre of the detector and corresponding inte-
grated time spectrum. The time spectrum was obtained from a central laserball run at 500
nm taken in October 2003.

the NCDs it was still valid to consider that the optical properties were well described
by average quantities, but it was now necessary to account for the variations induced
by the NCDs. Here, two major optical effects had to be considered: the reflections
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on the NCDs, which affected the totality of the PMTs, but not exactly all in the
same manner; and the NCD shadows cast, which caused a reduction of the detected
signal in some of the PMTs.

The optical calibration was performed by using the LB source discussed in Section
2.6.2. The relevant properties of this source have already been introduced there. The
optical calibration model also includes a series of properties that describe the LB:

• Intensity distribution as function of angle.

• Total intensity over a run.

• LB position.

• LB orientation.

The reason for including these parameters in the optical calibration model is because
the LB itself is not totally isotropic, and the source manipulator system has an
associated uncertainty in the position that is dependent in the tension in the holding
ropes, which varies with the specific absolute position in the detector.

3.2.1 Optical Model

Considering the source deployment instrumentation, the optical calibration was per-
formed by placing the LB in several different positions of the detector and taking
data with different wavelengths. Therefore, each source position and wavelength of
the laser define a run. The set of calibration runs taken at a certain period defined
a scan. These two concepts will be widely referred in the following sections.

In the optical model of SNO, we identified the prompt intensity with the measured
occupancy Oij, observed for a run i and a PMT j as the number of hits detected by
the PMT in the prompt time window of ±4 ns:

Oij = NiΩijRijTijLijεje
−(ddijαd+daijαa+dhijαh), (3.1)

where the terms are described as follows:
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Ni Number of photons emitted per pulse by the laserball in run i, and detected within
a prompt timing window of ±4 ns at each PMT. This term is the intensity
normalisation for each run and cannot be precisely measured1.

Ωij Solid angle from LB in run i for PMT j. This term is calculated analytically
based on the detector geometry.

Rij Phototube and reflector assembly angular response beyond the solid angle Ωij.
This factor is parameterised as a function of the photon incident angle on the
PMT surface and is extracted from the data, as 45 independent bins (1◦ wide).

Lij LB light distribution expressed as a function of the angles relative to LB position
Lij (θLB, φLB). It is extracted from the data and described as a combination of
polynomial functions of the angles and discrete binned distributions.

Tij Fresnel transmission coefficients for the media interfaces (D2O/Acrylic and
Acrylic/H2O). Calculated analytically, based on the LB and PMT positions.

εj Absolute quantum efficiency of PMT j combining the overall PMT efficiency and
electronic threshold. Also referred to as quantum efficiency (QE), which refers
to the wavelength-dependent probability of registering a hit. This term is in-
dependently extracted from the data.

dd,a,h
ij Light path lengths through the media (D2O, Acrylic and H2O, respectively).

Calculated analytically based on the detector geometry.

αd,a,h Attenuation coefficients for the optical media (D2O, Acrylic and H2O, respec-
tively). αs and αh can be extracted from the data2.

Several of these terms can be calculated precisely, such as the solid angle (Ωij) and
the Fresnel transmission coefficient (Tij), which are calculated by the model along
with the direct optical path from the LB to each PMT (dd,a,hij ).

The remaining terms can be extracted from the LB data through an optical
calibration fit. Although Equation 3.1 shows only a few multiplicative factors, in

1That is not needed since the other parameters are overconstrained.
2Due to the high correlation between daij and dhij the calibration method usually obtains a com-

bination of αa and αh. For that reason αa is usually fixed to ex-situ measurements reported in
[83].
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fact the number of parameters is much larger, as some of the terms hide dependence
on geometric variables, such as angles of incidence in the case of the phototube and
reflector angular response (also called PMT angular response (PMTR)).

In the occupancy described in Equation 3.1 no corrections are included. In fact
several corrections have to be applied in order to make the occupancy a better light
intensity estimator. Amongst others, the main correction consists in the multi photo-
electron correction (MPE), which corrects for the PMT signals from multiple photo-
electrons that were fired as a single event.

Other optical effects such as diffusion, reflection and absorption are not considered
in the optical model. Thus, PMTs whose optical path crosses detector components
such as ropes, tubes and NCD attachment anchors, are labeled as bad and are rejected
from the OCA fit. Only a PMT that is labeled as good in multiple runs (the number
can be customised) is used in the fit. In Section 3.3 an explanation of the different
cuts is presented.

The media attenuations (αd,a,h), and the PMTR are the main detector parameters
of the optical model and are extracted for each wavelength.

The PMT efficiencies are not extracted in the optical fit as it would introduce
approximately 9000 new independent parameters to the fit. The efficiencies are thus
extracted separately after the remaining optical parameters are fitted. This procedure
is explained in more detail in Section 3.4.2.

3.2.2 Laserball Position Fits

The precise determination of the laserball positions is a key aspect of the optical
calibration analysis. Variations of occupancy due to solid angle are larger than those
due to the optical parameters and thus a special effort had to be made in order to
ensure a high level of accuracy for the determination of the LB position. Although the
source positioning system can provide an estimate of the LB position, its positioning
algorithm was based in the tension and length of the ropes that supported the source,
which were not precise enough. Typically the precision of the source positioning
system could vary from ∼ 2 cm for a central position up to ∼ 5 cm at high radius
positions.
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The position of the LB was even more important in the NCD phase, where the
shadow patterns caused by the NCDs were strongly dependent on the source position.
The LB and NCD position extraction is thoroughly documented in [108]. The method
used to determine the LB position was not changed since the D2O phase and is
described in more detail in [83].

After the standard correction of the measured data with the PMT Calibration
constants, the calibration data was analysed in the form of a summary histogram
with individual PMT counts as a function of time.

For each channel j, a constant time offset (t0) was subtracted to the raw PMT
time, as well as an estimate of the time of flight (tMANIP

tof ) between the source and the
PMT, considering the position given by the source manipulator system. The time
stored in the histogram for a channel was then:

tj = tj,RAW − t0 − tMANIP
j,tof (3.2)

Figure 3.3, presents an example of a time distribution with the identification of
the prompt time window and respective mean time.
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This mean and width were determined from a timing histogram with 0.25 ns bin
width, and sliding a time window 8 ns wide, so that the counts were maximised. The
Gaussian mean µj was thus identified as the PMT mean time and its uncertainty
was the uncertainty in the mean σj,µ = σt/

√
Nbins.

After applying the PCA corrections and determining each channel time the LB
position was determined by minimising the time residuals of all PMTs that passed
the cuts for a given run:

χ2 =

NPMT∑

j

(
µj + tMANIP

j,tof − ttof
)2

σ2
j,µ

, (3.3)

where µj and σj,µ were the channel time and uncertainty discussed earlier, and
ttof was the model calculated time-of-flight from the source at each fit trial position.

In order to ensure the quality of the fit, a run averaged mean time µrun and spread
σrun were also calculated and all channels whose time uncertainty was σj,µ > 3σrun

were removed from the fit. Additionally, all PMTs whose occupancies were below
a chosen threshold were also removed. These cuts affected the statistics differently
depending on the position of the source, but an average of 5% of the tubes were
removed.

This fit resulted in a source position resolution well below 1 cm. An additional
systematic uncertainty of 2 cm was also associated with this fit, due to the tipical
differences observed between the fit positions and the manipulator position recorded.

Therefore a final LB position uncertainty of ∆rLB = 2cm was assigned from the
average of all fits.

3.3 Data selection

Before the optical data were fit, a quality check on the data from the PMTs was
performed. As the optical model assumes averaged properties, it was essential that
the conditions of data taking were as similar as possible for all runs and therefore a
series of data quality cuts were applied in order to remove data points that sampled
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the detector in special situations, like PMTs that were affected by shadows or lensing
effects. Although in the NCD phase, these cuts affected a large portion of the available
PMT for each run (reducing the amount of PMT not affected by cuts in a run by
approximately 65% with respect to the previous phases), the overall quantity and
quality of the optical data in the NCD phase improved due to the optimised scan
scheme. For each run i and PMT j, a series of checks were performed to decide
whether the PMT should be considered for the optical fit of that particular run.

A series of geometrical cuts were implemented to discard PMT data whose esti-
mated optical paths crossed detector components were not considered in the optical
fit model. The cuts identified in both D2O and Salt phases are [83]:

Belly plate There are 10 acrylic plates, equally distributed around the equator of
the AV, where the support ropes are attached. These plates have a larger
thickness than the remaining of the AV and a series of grooves, which makes
the optical paths difficult to model. Furthermore, these plates are bevelled
at the edges, which causes the light to refract and concentrate in a projected
square of PMTs behind the plates, causing an increase of its occupancy. This
cut removed 8.3% of the data points. Figure 3.4(a) shows a diagram explaining
how this cut is applied.

AV rope There are 10 loops of ropes supporting the AV, which means that a total
of 20 rope cuts are applied. Any PMT whose light path crosses at a distance
of dmin < 15 cm of a rope is removed from the fit. This cut affect 4.8% of the
PMTs in a run.

Recirculation pipes A series of pipes used to recirculate the heavy water were
attached along the AV down to the bottom. These pipes, close to the φ = 90◦

meridian, can cause light to be both refracted and absorbed. A wide cut is
applied for any light ray crossing the AV in that vicinity.

AV neck and connection ring The AV neck and the ring attaching it to the AV
sphere affect the occupancy of the PMTs located behind it in the optical path.
Thus an optical cut was implemented so that the PMTs whose light rays pass
at less than 30 cm of the neck ring or go through the AV neck are flagged as
bad and are not included in the optical fit. This cut affects 1.2% of the data
points.
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Prompt AV reflection This cut was implemented to account for PMT hits from
reflected photons that are not removed by the prompt time window cut alone.
For runs where the LB is in the most external positions, the PMTs on the
opposite side of the detector are contaminated by light that reflects on the AV
and arrives at the PMT inside the prompt window. This effect varies with
the position of the LB, and thus a more dynamic cut was implemented. For
runs with source radii R > 450 cm, only the PMTs satisfying the condition
p̂ · ŝ ≥ 0.1 pass this cut, where p̂ is the PMT position unit vector and ŝ is
the source position unit vector. The effect of this cut depends on the source
position. An average of 3.5% of the statistics reduction is caused by this cut.
Figure 3.4(b) shows a diagram of this effect.

NCD attachment anchors During the construction of the detector 96 acrylic
cylinders were placed in a grid pattern in the bottom of the AV, to be used
in the third phase as anchors for the NCDs. For each run, PMTs whose light
paths pass at less than 10 cm of any anchor are removed from the fit. This cut
affects 1% of the points and is described in more detail in Chapter 4.

Most of these cuts are due to light propagation in the detector, which correspond
to an approximate 27% reduction in statistics in D2O and Salt phases, and an ap-
proximate 55% reduction in the NCD phase. An additional 3% reduction in statistics
is caused by PMTs which have a large contribution to the χ2 and that removed from
the fit after a first pass.

In the NCD phase an additional geometrical cut had to be implemented, to deal
with the NCD shadows. Although this effect could be dealt with in a form of an
occupancy correction for a point like source [109], the LB has a non-negligible radius
and thus it would be necessary to account for the uncertainties in the positions of
both the source and the NCDs. Thus an optical cut was implemented, removing the
PMTs affected by the NCD shadows from the fit. To deal with the uncertainty on
the positions a tolerance parameter ∆L was introduced, which adds a radial distance
to the effective radius of the NCDs. For each run and PMT, the minimum distance
of the corresponding light ray to all NCDs was calculated. Any PMT for which the
distance of the light ray to one of the NCDs was smaller than the tolerance parameter
was removed from the fit. In Figure 3.5 a diagram of the NCD shadow cut is shown.
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(a) Diagram of optical cut due to AV belly plates.
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(b) Diagram of prompt AV reflection cut.

Figure 3.4: Diagrams of some optical cuts.
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Figure 3.5: Diagrams of the NCD shadow cut. The blue zone depicts the tolerance around
the NCD.

The statistical effect of this cut depended on the source position and the tolerance
assumed. For example, for a central run, this cut can affect between 55% and 71%

of the data points.

After applying the geometrical cuts, additional quality checks were performed
while running the fit procedure. The fit was implemented to be ran through 5 iter-
ations, after which a series of data quality cuts are applied based on the statistical
contribution of the channel to χ2. These cuts depended on the particular method of
analysis that are described in Sections 3.4.1 and 3.4.3.
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3.4 Optical Calibration Fit

Along with the different phases of SNO, different fit methods were developed to
better adjust to the characteristics of each phase. Two methods were implemented
to perform the extraction of the optical model parameters. Section 3.4.1 describes the
Occupancy-Ratio method which was used to analyse the optical calibration data in
the first two phases of SNO, using central runs to normalise the measured occupancies
and cancel the εj efficiencies from the occupancy ratio model prediction. Section 3.4.3
describes a new method implemented to extract the optical parameters in the NCD
phase (Occupancy-Efficiency) by using a set of measured PMT efficiencies to obtain
the same parameters.

The main figure of merit of the optical fit consisted in χ2 obtained by minimisation
using a custom implementation of the Levenberg-Marquadt minimiser [110]. Due to
the typically large number of parameters in the fit, the fit algorithm was modified to
speed up the process of building the covariance matrix, which otherwise scaled with
the product of the fit statistics (on the order of 5× 105 data points, after cuts) and
the square of model parameters (∼ 500). Further details about the fit procedure are
described in [83].

3.4.1 Prompt Occupancy-Ratio Method

The Occupancy-Ratio (OccRatio) method uses the ratio between the intensities in
two runs to eliminate the unknown PMT efficiencies εj. In this method, a central
run with high statistics (∼ 104 hit PMTs) was used as denominator in the intensity
ratio, so that the optical parameters can be obtained relative to the centre of the
detector. In the equations presented in this section the central run is defined with
the index i = 0.

Thus, in order to cope with this method some optical model properties had to
be rearranged. The terms that can be precisely calculated from the source-PMT
geometry, solid angle Ωij and Fresnel transmission coefficients (Tij) were directly
calculated for both runs. The ratio of these properties account for the geometrical
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effects in the occupancy for both runs and are applied to the occupancy ratio as a
geometrical correction:

ORdata
ij =

Nij

N0j

(
Ω0jT0j

ΩijTij

)
. (3.4)

The model occupancy ratio is then:

ORmodel
ij =

Ni

N0

(
RijLij
R0jL0j

)
e−(δddijαd+δdaijαa+δdhijαh), (3.5)

where δdd, δda and δdh are the path differences in the light propagation in each
media. From Equations 3.4 and 3.5 one can now extract all the optical model pa-
rameters by minimising the χ2 goodness-of-fit estimator:

χ2 =
Nruns∑

i

NPMT∑

j

(
ORdata

ij −ORmodel
ij

)2

σ2
ij + σ2

PMT (θij,PMT)
, (3.6)

where σij = ∆ ORij is the statistical uncertainty in the occupancy ratio due to
counting statistics in Nij. The term σPMT (θij,PMT) is an additional systematic
uncertainty that is included to account for the variability in the PMT response with
incident angle θPMT

3.

In the third phase of SNO (NCD phase), the introduction of the NCDs brought
additional optical effects that had to be considered, such as NCD induced shadows
and light reflections. The former was dealt with by creating an additional data
selection cut, described in Section 3.3, while the latter was addressed by implementing
an occupancy correction, described in Section 4.3.4.

The implementation of the optical cut to account for the NCD shadows led to
a 70% decrease in the statistics of the optical fit. This cut affected the central
runs even more than any other runs, which led to not only to the removal of a

3The PMT variability has an effect of the order of 10% in the χ2 and allows to properly take
into account the spread of the PMT efficiency that is larger for higher incidence angles. That is not
simply due to counting statistics, but also due to systematic differences in response as a function of
incidence angle.
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significant amount of PMTs from both pairs of runs, but also to the problem that
the occupancy ratio depended on the convolution of two different shadow patterns,
since the NCD shadows depend on the position of the source. For this reason the
precision in the extraction of the optical parameters became compromised, such as
the water attenuations (αd,h) and the PMTR [111].

In order to minimise the statistics loss an optical fit was developed that uses the
PMT occupancies directly, as opposed to the occupancy ratios. This required that
the PMT efficiencies (εj) were used as input to the optical fit.

3.4.2 Extraction of the PMT Efficiencies

The extraction of the PMT efficiencies were originally a separate step of the optical
calibration, due to the large number of parameters (≈ 9000) that it would introduce
in the fit. It’s extraction method was originally implemented in [106] and became a
critical parameter in the optical analysis of the NCD phase.

After extracting the other optical parameters using the OccRatio method, one
could use them in Equation 3.1, along with the run information, to estimate the
model occupancy of a PMT. The ratio of the data/model occupancies

εij =
Oij

Nij

(3.7)

could then be used as the efficiency estimator of a PMT. Assuming that the PMT
efficiencies remain approximately unchanged in an OCA scan, these efficiencies were
then averaged for each PMT over all runs, extracting then an average PMT efficiency
(εj) that is quoted in Equation 3.1.

Thus, for a run i and PMT j, a raw efficiency (εij) is calculated using Equation 3.7.
However, this efficiency incorporates a residual dependency on the source position.
In order to obtain a normalised PMT efficiency let’s consider a run-averaged PMT
efficiency (εruni ):

εruni =
1

N i
PMT

N i
PMT∑

j

εij, (3.8)
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where N i
PMT is the number of PMTs that contributed to the optical fit in run i. Then,

for each PMT j, we could average its raw efficiency over all runs where it contributed
to the optical fit N j

run, by dividing each run efficiency by the run average,

〈εj〉 =
1

N j
run

Nj
run∑

i

εij
εruni

. (3.9)

Finally, since the model is sensitive only to relative, and not absolute efficien-
cies (Ni is an arbitrary normalisation), the efficiency obtained in Equation 3.9 is
normalised to unity by dividing the average efficiency of the individual PMTs that
contributed for the optical fit (NPMT ), for the overall average efficiency. Figure 3.6
shows the distribution of the PMT efficiencies obtained using this method for one of
the first OCA scans (September 2000) and for the interim D2O scan (October 2003).
The last one was used as MC input and in the Occupancy-Efficiency (Occupancy) op-
tical calibration method. It should also be noted that this procedure was performed
independently for each wavelength, resulting in six separate efficiency distributions.
Although the PMT efficiencies were propagated into the MC simulation as a PMT by
PMT correction, the Occupancy method also used the spread of this distribution as
the PMT variability, in the σ2

PMT (θij,PMT) term of Equation 3.10. The statistical
uncertainties of the PMT efficiencies vary with the amount of runs in which a PMT
was considered good. The mean statistical uncertainty in the extraction was of the
order of 5%.

This extraction was performed in all D2O and Salt phase scans, in order to verify
the stability of the PMT efficiencies over time. This was essential to validate the use of
the Occupancy method in the NCD phase. In Figure 3.7 one can see the distributions
of the PMT efficiencies for two D2O scans (September 2000 and October 2003). A
strong correlation is observed, as well as a very small change, which means that the
PMT efficiencies have not changed significantly over the SNO data taking period
until the NCD phase.
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Figure 3.6: PMT normalised efficiencies for a first phase scan and for the interim heavy
water scan at 500 nm.
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3.4.3 Occupancy-Efficiency Method

The Occupancy method uses PMT occupancies directly as observables in the optical
model. The problem of statistics loss caused by the optical cuts is thus reduced by
using the PMT efficiencies (εij) as an input in Equation 3.1.

Assuming that the PMT efficiencies for a PMT j remain unchanged for all runs
in a scan, one can directly compare the measured occupancy Oij with the efficiency-
weighted model occupancy Nij and the fit becomes the minimisation of the χ2

goodness-of-fit:

χ2 =
Nrun∑

i

NPMT∑

j

(Oij −Nij)
2

σ2
ij + σ2

PMT (θij,PMT)
, (3.10)

where the term σ2
PMT (θij,PMT) represents the error associated with the efficiency

measurements as a function of θPMT .

3.5 Summary

In this chapter the optical calibration concepts were introduced, providing a basis to
understand the optical calibration model in SNO.

The OCA methods were significantly changed with the introduction of the NCDs
into the detector, mostly due to its effect in the detector geometry and response. In
Chapter 4 we will continue to describe the optical calibration with more emphasis on
the work developed by the author of this thesis and the results obtained.





Chapter 4

Optical Calibration Results

In Chapter 3 a description of the optical calibration (OCA) model and principles of
the analysis were presented. This chapter will have a particular emphasis on the
work carried out this thesis and the results obtained in the optical calibration of the
NCD phase.

The work described in this chapter covers mostly the effort of the optical calibra-
tion in the NCD phase, where the introduction of the NCDs led to a different detector
geometry and response and posed many challenges to extract the optical parameters
of the detector. In the NCD phase a new optical calibration fit was developed to use
the PMT efficiencies as a base to predict the PMT occupancies. For all the analyses
of the OCA data in the NCD phase, the PMT efficiencies extracted in the interim
D2O scan (October 2003) were used as a baseline. A description of the improvements
implemented will be performed. Some studies, related to the detector response asym-
metry, while not conclusive enough to lead to a change in the response model, have
identified sources of inconsistency in the detector response explaining an identified
energy response bias correction that was applied to the LETA data processing.

A more detailed description of the analysis method will be presented, as well as a
description of the systematic uncertainties associated with the OCA analysis. Finally,
a description of the importance of the optical calibration in the neutrino analysis of
SNO will be presented, with a description of the effect of the OCA parameters in the
position and energy estimation.

93
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4.1 Optical Calibration Data

An OCA scan consists in a series of runs of data taking with the LB deployed in
different positions, and the laser tuned for different wavelengths. Each run is defined
by the position of the LB and the source wavelength. The data taking plan was
the same for the first two phases of SNO. However in the third phase the different
detector geometry lead to a re-planning of the scan scheme.

OCA method in D2O and Salt phases

In the first and second phases of SNO, the optical calibration consisted in a series of
runs with the LB placed in different locations in order to sample most of the detector.
In Figure 4.1, is shown the LB positions sampled in the first of the D2O phase OCA
scans (February 2000), in the y − z plane1.

The LB positions are represented by black circles and the shaded area in the
outer part of the acrylic vessel represents the areas not accessible by the LB due to
limitations in its support mechanism. In the figure the ropes (two side ropes and one
vertical rope) responsible for the source positioning are also shown. A typical scan
in these phases consisted in a series of runs taken along both the y − z and x − z
planes, with all 6 wavelengths.

A series of special runs taken in the centre of the detector, the central runs,
usually had more statistics, to avoid increasing the statistical errors of the relative
occupancy with respect to the simple occupancy. Additional central runs were usually
taken with the LB facing each of the four orthogonal orientations in order to sample
the source anisotropy independently of the detector optical parameters.

During this period the OCA scans started with a high statistics PCA calibra-
tion run. This is a central run taken with very high statistics to perform the time
calibration of the PMTs, as described in Section 2.6.2 [112].

1As mentioned in Section 2.6.2, the source manipulator system contains four side ropes attached
to the interior of the detector, allowing the calibration sources to be positioned in a wide range of
positions along the y − z and x− z planes.
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Figure 4.1: Laserball positions in optical calibration scan of February 2000. Figure taken
from [83].

In Table 4.1 is a list of the most relevant OCA scans taken during the running
time of SNO. The October 2003 scan was taken during the NCD commissioning
phase, when the heavy water was desalinated and thus worked as an assessment of
the detector changes since the D2O phase. This scan was also used later as a basis
for the OCA analysis of the NCD phase scans.

OCA method in NCD phase

In the NCD phase, due to the additional optical effects introduced by the NCDs, the
scheme of the OCA scans was changed. A series of horizontal runs were added to
the scan plan, where the LB was placed in the equator region (zLB = 0) and outside
the NCD array, in order to take data without NCD shadowing effects. Additionally,
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Scan Characteristics Re-analysed in this thesis
February 2000 First D2O scan. No.

Only sampled 365nm and 500nm
September 2000 Full D2O scan (all wavelengths sampled) Yes.
January 2001 Last D2O scan. No.
September 2001 First Salt scan. Yes.
November 2001 Stability check. No.
February 2002 Stability check. No.
May 2002 LB positions optimised. No.
October 2002 Diagonal scan. Yes.
January 2003 Stability check. Yes.
April 2003 Stability check. Yes.
August 2003 Last Salt scan. Yes.
October 2003 Interim D2O scan. Yes.
July 2004 First NCD scan. Evaluate changes. No.
October 2004 New laserball. Yes.
February 2005 Optimised LB positions. Yes.
May 2005 Stability check. Yes.
October 2005 Stability check. H2O data taken. No.
February 2006 Improve NCD position fits. Yes.
August 2006 Last OCA scan. Yes.

Table 4.1: OCA scans performed during the whole duration of SNO.

the duration of both these and the central runs was longer, in order to increase the
statistics. Another change implemented was a re-planning of the LB positions, in
order to minimise the number of shadowed PMTs.

Besides these changes, that were applied for all NCD phase scans, some scans also
suffered some modifications to their run plan in order to address specific purposes.
An example of such changes is the February 2006 scan where the calibration plan
included more LB positions in order to be able to fit the NCD positions from the
OCA data. In the lower section of Table 4.1 a list of the NCD phase OCA scans is
given.

Additionally, the higher statistics of the OCA runs in the NCD phase led to a
similar statistics, after cuts, with respect with the previous phases, despite the new
detector geometry and acceptance.
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4.2 Validation of the Occupancy-Efficiency Method

After the optical cuts and corrections are applied and both the LB and NCD positions
are extracted, all conditions necessary to extract the optical parameters are met. In
this section, the main goal is to show the typical values for these parameters using
as reference the optical data taken in a D2O scan. Additionally, a comparison that
both methods of fit (OccRatio and Occupancy) will be shown to yield similar results,
which demonstrates that the application of the Occupancy fitting method is a valid
choice to overcome the difficulties imposed by the NCD phase.

As previously stated the primary results of the optical fitting procedure are the
determination of:

• heavy water attenuation,

• light water attenuation,

• PMT/reflector assembly angular response.

Additionally the fit also produces a set of parameters describing the laserball
light distribution. Although the fit model also accounts for the acrylic attenuation
αa, there are very strong correlations with the light water attenuations, and thus this
parameter is fixed to values from prior measurements of light transmission through
the acrylic panels that make up the AV [83].

Figure 4.2 shows the extracted PMTR from the October 2003 scan with both
fitting methods (OccRatio and Occupancy) at 500 nm, showing also the results ob-
tained with the OccRatio method in the September 2000 scan. For the Occupancy
method, the fit used the PMT efficiencies extracted in the first optical scan in the
D2O phase (September 2000). The results are shown with total uncertainties, which
include a set of systematic uncertainties. The results for all other wavelengths were
consistent with the ones presented.

Figure 4.3 shows the extracted water attenuations (D2O and H2O) at all six
wavelengths. Again, the results are consistent in both methods. The error bars in
the October 2003 scan fitted with the OccRatio method are total uncertainties. All
other results shown display only statistical uncertainties.
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Figure 4.2: Relative PMT angular response at 386 and 500 nm in October 2003 optical scan
extracted with different optical fitting methods. For comparison, the results obtained with
the Occupancy-Ratio method in the September 2000 scan are also shown.
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Figure 4.3: Media attenuation coefficients extracted in the October 2003 scan for both
OccRatio and Occupancy methods for all six sampled wavelengths. The results extracted
in the September 2000 scan are also shown.

A detailed list of systematic uncertainties is explained in Section B.1. The effect
of the systematic uncertainties was observed to affect mostly the media attenuations,
while the PMTR seemed to be very robust to the systematic effects.

The overall conclusion on the comparison between the OccRatio and Occupancy
methods is that the results agree within the total uncertainties. Furthermore, by
comparing the results obtained between two heavy water scans with data taken two
years apart it is noticeable a steady decrease in the PMT angular response, which
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most likely account for differences in ageing effects of the detector2.

4.3 NCD Optical Effects

The new effects brought by the NCDs in the PMT occupancy data had to be prop-
erly considered in the optical calibration. These effects were the shadow patterns
caused by the NCDs, which decreased the occupancy of the affected PMTs, and the
reflections of the PMTs, which increased the occupancy of all PMTs. This section
will cover both effects and how they were dealt with.

4.3.1 NCD shadows

The NCD shadows were particularly relevant in the OCA analysis in the sense that
it decreased the occupancies of the affected PMTs. Furthermore, by having 40 NCDs
in the D2O volume, a large number of PMTs were affected, which led to the imple-
mentation of a different fitting method for the optical calibration.

If we considered a point source of light, it would be possible to correct the PMT
occupancies with the ratio of NCD-shadowed solid angle [109]. However, the LB
diameter is twice the size of an NCD, so the accuracy of the correction would vary
with the source light distribution. Since the available data statistics were still enough,
it was simpler to deal with the NCD shadows by means of a simple cut, thus removing
the affected PMTs from the optical fit.

The NCD shadow cut is a purely geometrical cut, depending on the positions
and sizes of the LB, NCD and PMT. Additionally, a tolerance parameter was also
added to control the acceptance of the cut. The tolerance parameter, ∆L, consists
in the physical radius of the NCDs plus an additional radial distance to account for
the position uncertainties. Therefore it cannot be lower than 2.579 cm, which is the
physical radius of the NCDs.

2The apparent difference in the D2O attenuation at the 337 nm between Sep00 and Oct03 scans
is not real and is caused by a problem in the optics fibres in Sep00.



100 Optical Calibration Results

For each NCD phase scan, the NCD positions were fitted from the OCA data.
From the extracted uncertainties in the positions, a NCD radial uncertainty was
defined as ∆r =

√
∆µ2

x + ∆µ2
y, where ∆µx,y are the NCD coordinate uncertainties.

The tolerance parameter ∆L was then defined as

∆L = ∆r + 3σ∆r + ∆rLB, (4.1)

where ∆r was the average NCD radial position uncertainty (∆r = 2.2cm), σ∆r was
the spread of the radial uncertainty for all 40 NCDs (σ∆r = 0.3cm), in order to
account the fact that not all NCD positions had the same accuracy, and ∆rLB was
the uncertainty in the LB source position (∆rLB = 2cm) [113]. Applying these
values in Equation 4.1 yielded a tolerance parameter of ∆L = 5.1cm, which could
be used for all NCD scans [108]. Nonetheless, in order to ensure the most accurate
information, the tolerance parameter was calculated for each individual NCD scan.

4.3.2 Geometrical cut

Using the shadow cut described in the previous subsection, a geometrical cut was
implemented into the analysis algorithms. The cut removed the photons entering
regions in a radius ∆L around the central axis of any NCD. For each set consisting
of a LB position and a PMT, determination of the full optical path was performed
(D2O, acrylic, H2O) and the minimum distance of the photon path to the surface of
each of the 40 NCDs was calculated (δL). If the minimum distance was smaller than
the tolerance parameter (δL < ∆L), the corresponding PMT was flagged as being
shadowed and was consequently removed from the optical fit for that run.

Figure 4.4 shows the effect of the NCD shadow cut for a central (source located
in the centre of the detector) run and for a high radius run (source outside the NCD
array). The different colours show the effect of using different tolerance values. Both
red and green marks represent tubes that pass a geometrical cut of ∆L = 0 cm
(only the NCD radius is considered in the geometrical cut), while the green markers
represent the tubes that pass the cut when using a tolerance parameter of ∆L = 5.1

cm. This cut affected mostly the runs inside the NCD array, due to overlapping
shadow patterns. In a typical central run with a tolerance parameter of ∆L = 5
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cm, approximately 71% of the PMTs were removed, while in a run outside the NCD
array the cut typically removed 41% of the PMTs, for the same tolerance parameter.

(a) Source at centre (0,0,0)

(b) Source inside the NCD array (0,200,0)

Figure 4.4: NCD shadow cut considering sources a different positions. The different colours
represent the difference in affected PMTs by using different tolerance parameters. The figure
shows the location of the PMTs on a plane of the two spherical coordinate angles, where the
X axis represents the azimuth angle φ and the Y axis represents the inclination angle θ. The
radius is fixed to the PSUPs distance to the centre of the detector.
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4.3.3 Effects on the Optical Parameters

Due to the large amount of PMTs removed by this cut, concerns were raised due
to possible biases in the analysis caused by such a drastic reduction of statistics. A
good way to verify the effects of this cut in the extraction of the optical parameters
was to analyse a pre-NCD phase scan. As shown in Section 4.2, the Occupancy
fitting method yielded consistent results when compared with the OccRatio method.
Therefore, in order to effectively compare if this cut would affect significantly the
results in the NCD phase scans, two analyses were performed over the interim D2O

scan (October 2003): one with and other without the NCD shadow cut.

The results obtained for the PMTR are shown in Figure 4.5 for two selected
wavelengths (420 and 500 nm). The error bars shown in the figures only contain the
statistical uncertainties. Nonetheless a very good agreement is clearly visible, with
the results being consistent within their statistical uncertainties. Similar results were
obtained for the water attenuations.
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(b) PMTR at 500 nm.

Figure 4.5: PMT angular response extracted at 420 and 500 nm on the October 2003 scan
with and without applying the NCD shadow cut. Both analysis were performed with the
Occupancy-Efficiency method.

The results show that by using the Occupancy method with the NCD shadow cut,
the statistics reduction does not impose any bias in the optical parameters, despite an
effect in their uncertainties. This is expected as the statistics reduction is significant.
However, it is important to remark that in the NCD phase, by using the Occupancy
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method it is possible to minimise the statistics loss by avoiding the convolution of
shadow effects from two scans.

4.3.4 NCD Reflections

After accounting for the NCD shadows, the NCD reflections are the major component
affecting the PMT occupancies that is caused by the NCDs. The main reason to
implement a NCD reflection correction was to ensure an unbiased measurement of
the media attenuations.

There are other sources of reflections in the detector, however most of them were
dealt with by setting the prompt time window to a full width of ±4 ns. The effect of
the NCD reflections can be clearly seen from the timing histogram from two identical
central runs in which one has the NCDs and the other does not. Figure 4.6 shows
this effect, where an increase in the number of hits due to reflections in the NCD
phase run is clearly visible. It is interesting to note, however, that the NCD phase
run shows a a decrease in the number of hits in the PSUP reflection peak (≈ 75ns).
This is caused by the fact that the NCDs, despite being reflective, cast a large shadow
pattern that blocks the reflections coming from the PSUP.

Although the prompt time window cut would remove most of the reflections, in
the case of the NCD reflections this is not enough, as the NCDs are inside the D2O

volume and a non-negligible fraction of the reflected photons hit the PMT inside the
prompt time window. Furthermore, the diffuse nature of the NCD reflections makes
it impossible to correct by means of an optical cut, as all the PMTs are affected. It
is also very difficult to model all the reflection paths from the LB to the NCDs and
then to the PMTs, as each position has an associated uncertainty.

Therefore, a more sophisticated method to deal with the NCD reflections was
implemented, by performing an occupancy correction. Two methods were followed,
one purely analytical and a second one based on Monte Carlo simulation. These will
be addressed in the following sections.
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Figure 4.6: Time spectra of two central runs, integrated over all PMTs. Run 34762 was
taken in the interim D2O phase and does not contain NCDs. Run 52940 was taken during
the NCD phase and contains NCDs. Both distributions are normalised at the prompt peak.

Analytical PMT occupancy correction

This method assumed that the PMT hits from NCD reflections were mixed with the
direct light prompt signal and thus could not be separated from it. This method
consists in evaluating the acceptance probability, wij, of a photon leaving the source
i, reflecting on an NCD, and hitting a PMT j within the prompt time window. This
probability is based on solid angle acceptances weighted by the NCD reflectivity, to
account for the dependence in the photon wavelength [108]. As there is no information
about the direction of the incident photon, the reflections are assumed to be diffuse,
and thus, untraceable.

Figure 4.7 show the acceptance probability evaluated for a series of NCD phase
scans. As it can be observed, the reflection probabilities range from 0.5% to 1.5%,
mostly due to the narrow prompt time window.

The probability wij was then used to correct the observed occupancy Oij, being
combined with the MPE correction, which corrects for the effect of registering a single
PMT hit caused by multiple photoelectrons, by effectively increasing the occupancy.
In fact, the NCD reflection correction worked in a way similar to the MPE correction,
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Figure 4.5: Quantities involved in the PMT occupancy correction due to NCD reflections.

a good level of statistics in the fit.

The technique consists in evaluating the acceptance probability, wij, of photons

leaving the source i, reflecting on all NCDs, and hitting a PMT j within the analysis

time window. The details of the calculation of wij can be found in Subsection A.1.2

of Appendix A.

NCD Reflectivity

The probability wij depends on the NCD reflectivity [70],

R(λ) = −0.01387 + 4.5357 × 10−4 λ − 2.3154 × 10−7 λ2 , (4.5)

where λ is the wavelength in nm, plotted in Figure 4.5a. Note that the parameters in

the reflectivity function have unknown errors. However independent measurements

have shown that the spread in the reflectivity data is about 1.5% [104]. Figure 4.5b

shows the distribution of wij for the central runs of many scans. The distributions

look alike because wij depends strongly on the geometry. The resulting reflection

Figure 4.7: Acceptance probability of a NCD reflected photon hitting a PMT in the prompt
time window. Figure from [108].

but instead it decreased the observed occupancy Oij.

The resulting corrected occupancy µij was then obtained from [108]:

Oij = 1 + (wijµij) e
−µij (4.2)

These combined corrections in general resulted in an approximated increase of
the order of 1 − 2% in the occupancies, depending on the location of the source
and the PMT. This total increase resulted from the fact that while the reflection
correction caused a decrease in the occupancy to compensate the amount of reflected
light within the prompt time window, the MPE correction increased the occupancy
to compensate the multiple PMT hits counted as single hits. As the latter correction
dominated over the whole prompt time window, the total net change in the occupancy
was an increase, albeit smaller than in the previous phases (≈ 5%) [83].

PMT Occupancy Correction using Monte Carlo

An alternative method, relying in the generation of Monte Carlo simulations of the
NCD scans was also developed to correct the NCD reflections. As the previous
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method, the aim was to build a correction to the occupancy to remove the portion
of signal due to NCD reflections that affected the prompt peak. As it was shown
in Section 4.3.4, this effect accounted for a relatively small amount of signal in the
prompt peak, due to its narrow time window (±4 ns).

In order to obtain a correction two sets of Monte Carlo (MC) simulation runs
were produced with fixed conditions. The only difference between the sets was that
one included the NCD array geometry, while the other did not include the NCDs.
The goal was to compare the PMT occupancies between the runs generated in the
same position with and without the NCDs in the geometry. Each pair of runs used
the same seeds and random numbers, to ensure that the only effect in the observed
occupancies was caused by the NCD reflections. Figure 4.8 show the time distribution
of the signal obtained for a central run generated by MC. Figure 4.8(b) shows a detail
in the region around the prompt peak. Due to the different statistics caused mostly by
the NCD shadows, both spectra are normalised at the peak. The difference between
the curves in the prompt peak is very small and only noticeable towards its upper
edge.

In order to isolate the effects from the NCD reflections, the simulations were
configured to discard other effects that would compete with the correction, such as
Rayleigh scattering and the MPE correction. Additionally a very large amount of
positions were simulated in order to avoid effects from statistical fluctuations in the
correction. A total of 875 positions were simulated in the detector distributed along
the planes where the calibration sources could be deployed. Although several of
these positions were never or seldom used in an optical calibration scan, by sampling
a larger amount of positions it was possible to account for the uncertainty in the
source position. Furthermore, the two data sets were generated in the most similar
fashion as possible, using the same source positions, random seeds and PMT and
laser properties. The data was later analysed where patterns were searched, such
that could be used to create an occupancy correction that could be robust for the
uncertainties in the optical fit.

The NCD reflections cause an increase in the PMT occupancy, which in the
optical fit will translate into a shift in the fitted optical parameters, with particular
incidence in the D2O attenuation length, which is decreased as a result of the NCD
reflections. This effect is clearly illustrated in Figure 4.9(b) where the ratio of the



4.3 NCD Optical Effects 107

Time (ns)
­20 0 20 40 60 80 100

N
u
m

b
er

 o
f 

P
M

T
 h

it
s 

(r
el

at
iv

e 
to

 m
ax

im
u
m

)

­5
10

­410

­3
10

­210

­110

1

NCDs off

NCDs on

Integrated Time Spectra

(a) Integrated Time Spectrum

Time (ns)
­10 ­5 0 5 10 15 20 25 30

N
u

m
b

er
 o

f 
P

M
T

 h
it

s 
(r

el
at

iv
e 

to
 m

ax
im

u
m

)

­310

­210

­110

1

NCDs off

NCDs on

Integrated Time Spectra

(b) Integrated Time Spectrum

Figure 4.8: PMT hit time distribution for a central run generated with Monte Carlo events
with and without the NCDs. Both distributions are normalised at the prompt peak.

PMT occupancies are shown for all simulated scans as a function of the light rays
path length in D2O. The ratio was obtained according to:

wij =
ONCD
ij

Ono−NCD
ij

, (4.3)

where ONCD
ij is the occupancy obtained from the MC run i in PMT j with the NCD

reflections turned on and Ono−NCD
ij is the corresponding pair NCD-PMT with NCD

reflections turned off.

Figure 4.9(a) shows the distribution obtained when considering a dependence in
the D2O path length (dD2O), while Figure 4.9(b) shows the corresponding profile
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of the distribution. The points in the profile correspond to the mean ratio in the
occupancies - the occupancy correction - for a given distance traveled in the D2O

and the error bars represent the uncertainty in the correction defined as the root
mean square (RMS) in the occupancy ratio. From Figure 4.9(a) it is possible to
notice that there is a significant spread on the occupancy ratio. It is also clear an
increase of the ratio in the occupancies with the D2O path length. Obviously, as the
distance traveled by the light rays in heavy water increases, the amount of reflected
photons reaching the prompt time window increases as well, mimicking the effect of a
smaller attenuation length. There is also a regular pattern observable in the average
ratio, especially for distances above 600 cm. This pattern is caused by the regular
positioning of the NCDs between the source and the detector, combined with the fact
that as the distance increases, so do the amount of PMTs that are discarded due to
shadows, resulting in a larger contribution from secondary reflections.

The results shown in Figure 4.9(b) could be used as a correction by themselves.
However, as the large error bars indicate, this correction would have a large un-
certainty as it would apply the same correction to PMTs with different occupancy
ratios but with the same D2O path lengths. This spread (error bars in Figure 4.9(b))
reflects particular cases that are not taken into account by using an unidimensional
correction. To illustrate this, let’s consider the following two situations: let’s consider
a run whose source is located close to the AV along the X or Y axes and a PMT on
the opposite side of the detector; and a second run whose source is located close to
the detector neck (along the Z axis) and a PMT at the bottom of the detector. In
both cases, the D2O path length is roughly the same, but due to the alignment of
the NCDs along the Z axis, the amount of reflected photons arriving at the PMTs
inside the prompt time window is different.

Several other observables were tested to build an unidimensional correction. Some
of the most relevant examples are shown in Figure 4.10. However, similar spreads
were observed, indicating that a correction based on a single measurable quantity
would not be as accurate as necessary.

It is hard to define what would be the accuracy of this correction, as one of
objectives is to test the analytical correction itself and it is not trivial to estimate the
effect of the convolution of the reflections with the different elements and physical
processes in the detector. Therefore, it was set as a goal that the correction should
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Figure 4.9: Distribution of the ratio of occupancies (with and without NCD reflections) as a
function of the photon path length in D2O. The profile of the distribution is also shown. The
colour code represents the number of PMT hits for each pair (occupancy;D2O path length).

not have a spread larger than 1% of the occupancy ratio. This uncertainty in the
correction would mean that the correction itself would be more accurate than the
typical statistical uncertainty in the occupancy.

In order to achieve this precision in the correction, an alternative approach was
followed by combining the observations discussed previously into the production of a
single 2D correction. The aim was to obtain a distribution of occupancy ratios that
could be accurately defined by a combination of two measured quantities. However,
although the uncertainty was successfully reduced through this method, it still didn’t
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produce a correction accurate enough. In Figure 4.11 the relative spread obtained
for the two best results. In both cases the path length in D2O was used, as this was
found to be the property where the uncertainty in the correction was smaller. In
both cases significant improvement was found in the uncertainty of the correction.
In Figure 4.11(a) it is clear that by using both the PMT incident angle (θPMT ) and
the path length in D2O the correction becomes very accurate for the large majority
of the situations. However it loses precision for large D2O path lengths, as most of
the hits on the PMTs have a low incident angle and therefore this observable does
not contribute to the correction. In this case, the example illustrated previously
is still applicable in this case and the correction cannot distinguish between both
situations. In order to account for this, a different observable was tested which took
under consideration the alignment of the NCDs with respect to the optical path
between a source and a PMT, which consisted into considering the angle between the
light ray and the alignment of the NCD (~pNCD = (0, 0, 1)) through a factor cos θNCD.
The uncertainty in the correction obtained using this observable and the path in
heavy water is shown in Figure 4.11(b). In this case the correction satisfies the
required precision in all cases but for the situation where the optical path connecting
the source to a PMT is parallel to the NCDs.

Therefore, a third dimension was introduced into this correction which consisted
in the incident angle of the optical path in the PMT (θPMT ). Due to the spherical
distribution of the PMTs around the AV, optical paths parallel to the NCDs would
have different incident angles in the PMTs. This correction was found to have an
uncertainty smaller than 0.1%, which was well below the required accuracy.

This correction was implemented into the optical fit as a 3D lookup table of
occupancy ratios. The correction was applied in the initial stages of the fit. For
each pair consisting of a LB position i and a PMT j, the full photon optical path
was calculated dij, which was decomposed into three components: each being the
distance traveled in each media (dD2O, da and dH2O).

At the same time, the pair was tested for the optical cuts previously described,
removing the ones that were flagged as bad. For the remaining PMTs, the PMT
incidence angle and the angle of the optical trace against the z axis was then calcu-
lated. Using the 3D map previously produced and the calculated quantities the ratio
of occupancies was then obtained wij, which represents the increased occupancy due
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Figure 4.11: Uncertainties in the occupancy reflection correction as a function of two selected
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to NCD reflections.

This value was then used to rescale the measured occupancy Oij into a corrected
occupancy Ocorr

ij :

Ocorr
ij =

Oraw
ij

wij (θPMT , cos θNCD, dD2O)
. (4.4)
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Unlike the analytical method explained in Section 4.3.4, the MPE correction is
applied separately to this correction, after the reflection correction was applied. The
reason for this is to reduce the amount of parameters in the Monte Carlo simulation
prone to cause random variations in the PMT occupancies.

For a typical value of observed occupancy Oraw
ij , the MPE correction alone in-

creased the occupancy by 1.53% [83], while the NCD reflection correction causes a
decrease in the occupancy of approximately 0.5%. These results are in very good
agreement with the analytical correction.

By simulating a large amount of source positions (within the possibilities of the
manipulator system) and high source intensity (leading to high statistics), it was
possible to build a map that could be used for all NCD phase scans. This decision
was further validated by the verification that the geometry of the detector was very
stable through the whole NCD phase [108]. Thus, considering the large amount of
MC runs generated, the map accounted for almost all run positions in the NCD phase
scans, even though not all scans had the same run plan.

One advantage of using this method is that its systematic uncertainty is already
included when calculating the other systematics. For instance, the propagation of the
uncertainty in the LB and NCD positions is performed by means of a shift, which
results into potentially different values of dD2O and θPMT , leading to a different
reflection correction. For this reason, the grid size of the correction map was set to
be of the same order as the uncertainties in each of the parameters.

Associated with this method an additional systematic uncertainty was also cal-
culated, which accounted for the error in the correction. However, as the RMS was
typically very small (less than 0.1%), this calculation didn’t show any effective change
in the optical parameters.

In the process of development of this correction, different alternatives were also
tested. For instance, another correction was implemented consisting in generating
MC runs, again with and without NCD geometry, for all the runs in the NCD phase
scans and implementing a PMT-by-PMT correction. Thus, while performing an
optical fit, besides the real OCA data for each run in the scan, the simulated data
was also loaded and a occupancy correction was applied by considering the ratio
of the simulated occupancies for that specific run and PMT. However, this method
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was much more dependent on the precision to which we knew both the LB and the
NCD positions for each specific run and could not match the precision of neither the
analytical correction nor the more generic method described previously.

Due to schedule constraints in the SNO data reprocessing and analysis, it was
not possible to propagate the results of this correction into the final neutrino data.
Nonetheless it was important to determine if there was a relevant difference from
using the analytical correction. The results shown in Section 4.5 use the MC-based
correction instead of the default analytical correction.

4.3.5 Determination of NCD Reflectivity with Monte Carlo

Simulation

All the corrections to the PMT occupancies due to NCD reflections described in
Section 4.3.4 relied in the NCD reflectivity, which is defined in the Monte Carlo as
[88]:

R (λ) = −0.01387 + 4.5357× 10−4λ− 2.3154× 10−7λ2 (4.5)

and is shown graphically in Figure 4.12 (λ is in nm).
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Figure 4.12: NCD reflectivity as a function of wavelength (in nm) as implemented in the
Monte Carlo simulation.
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It should be noted that the parameters in the reflectivity parametrisation in
Equation 4.5 have unknown errors. A study to evaluate the NCD reflectivity by using
MC was then performed [114] to estimate the reflectivity from the match between
real data and MC. The technique consisted in generating a series of MC runs at each
of the six wavelengths using different NCD reflectivities and use this information to
verify which MC data set best described the real data.

From the studies performed while implementing the occupancy correction for the
NCD reflections, it was known that it wouldn’t be possible to accurately perform this
study by looking just at the prompt light of the PMTs. This is illustrated in Figure
4.8(b) where the difference inside the prompt time window is shown to be extremely
small. In this case, the study would inherently have a large uncertainty due to the
low reflection statistics in this region.

Thus, the best option would be to look at the PMT late light, where it was
guaranteed that a more considerable portion of the collected light would be due to
NCD reflections. This is illustrated in Figure 4.8(b), where there is a clear increase in
the integrated PMT hits in several regions outside the prompt time window. However,
this method imposed other difficulties, such as overlapping reflection patterns from
other elements of the detector. For example, in Figure 3.2(b), several peaks caused by
different types of signals are identified, including the prompt AV reflections and the
PSUP reflections. Potentially, any of the identified peaks could affect this analysis as
all of them scale with the event statistics. It was therefore necessary to first identify
a suitable region in the timing spectrum. Figure 4.13 shows the timing spectra from
MC generated data using different values of reflectivity for two runs where the source
was located in different positions. In Figure 4.13(a) the source is located in the centre
of the detector and the features shown in Figure 3.2(b) can be identified. On the
other hand Figure 4.13(b) shows the time spectrum, integrated over all PMTs, for a
run whose source is located on the edge of the NCD array. In this case the reflection
peaks are not visible, eliminating a large region of the timing spectrum as a candidate
for this study.

In the figure the time spectrum obtained with real data is also shown. It should
be noted that, unlike in the Monte Carlo based NCD reflection correction discussed
in Section 4.3.4, in this study the Monte Carlo simulation was configured to perform
an exact simulation of the real data, including all physical effects that could change
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Figure 4.13: Integrated timing spectra for MC generated runs with 500 nm laser at different
positions in the detector. The corresponding real data run obtained at the same location is
also shown for comparison.

the number of hits in the PMTs, such as laserball intensity distribution, Rayleigh
scattering, and a more advanced model of the PMT geometry.

From Figure 4.13, two conclusions could be drawn right away. Firstly, the late
light was not being correctly modelled by the Monte Carlo simulation. Taking as an
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example the central run of Figure 4.13(a), it is visible that the first late pulsing peak
(t ≈ 10 ns) shows more hits in the real data than in it does in the simulations, while
the second late pulsing peak (t ≈ 40 ns) seems to be a good match between MC
and real data. However, the most striking differences seem to concern the reflection
peaks: the prompt AV reflection peak (t ≈ 50 ns) shows a considerably lower number
of hits in the MC simulation, the PSUP reflection peak (t ≈ 75 ns) shows a much
higher number of hits in the simulation and the 35◦ PMT reflection peak seems to
have completely vanished in the MC simulation. It should also be noted that these
features were observed for all wavelengths [114].

Since in the NCD phase the energy estimator algorithm only uses the prompt
time window [115], there was never a great concern with the accuracy of the late
light timing spectrum. Nonetheless, this analysis was still carried out by choosing a
region of the time spectrum where none of these effects dominate. From Figure 4.13,
the chosen candidate was the region between 15 − 30 ns. A detail of this region is
shown in Figure 4.14 for the same runs shown in Figure 4.13.

From Figure 4.14 another difficulty to this analysis became clear. The simulated
runs show a variation according to the source position. By looking at Figure 4.14(a),
and using an interpolation of the integral counts in the interval 20− 25 ns, the NCD
reflectivity was estimated to be approximately 20% higher than the nominal value
implemented in the Monte Carlo. However, as the source position moved towards
the outer region of the detector, the spectrum shapes became more distinct from the
real data. In particular, for Figure 4.14(b) by using the same time interval the NCD
reflectivity was estimated to be approximately 25% lower than the nominal value.
This suggests that the problem lies not only in the value for the reflectivity, but likely
also in the model for its angular distribution.

Therefore, even though the spectra suggest that the model has a potential to be
applicable, the discrepancies between Monte Carlo and real data in the late light
portion of the spectrum raised questions to its accuracy, as the discrepancy in the
structures of the late timing spectra suggest that the MC was not tuned to accurately
reproduce the optics at late timing. In order to further develop this method it would
be necessary to tune the MC to accurately match the real data. Due to schedule
constraints in the SNO experiment, this was not possible and therefore the analysis
was not pursued any further.
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Figure 4.14: Detail of time spectra in the region of interest to study the NCD reflectivity,
integrated over all PMTs.

4.4 Additional Improvements to the Analysis

Although the introduction of the NCDs brought major changes to the optical cali-
bration, further improvements were sought that were not directly related with the
NCDs. In this section two major improvements to the analysis affecting all the optical
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calibration data since the beginning of SNO will be described.

4.4.1 NCD Attachment Anchors

In the detector design, 96 NCDs were planned to be deployed3. In order to fix
the NCDs in the desired position an acrylic anchor was attached, for each planned
NCD, on the bottom of the AV during the detector building phase. Each anchor was
shaped as a cylinder with a diameter of 7.62 cm (3 in), and a height of 5.72 cm (2.25

in). These anchors were made of standard commercial acrylic [116], having different
optical properties than the acrylic in the AV, resulting in an unknown effect in the
optical parameters.

Geometrical Cut

An optical cut was then implemented to identify, for each LB position, which PMTs
were shadowed by the NCD anchors. A similar cut to the one used to mask the NCD
shadows was employed, with a slight modification to adapt to a 3D reference frame.

For each set of a LB position, a NCD anchor and a PMT, the full optical path
between the source and the PMT was found. This path was then tested against all
the NCD anchor positions, in order to determine the minimal distance between the
optical path and the anchors dmin. This distance included a correction to account
for both the LB and the PMT solid angles.

This distance was later checked against a tolerance value (∆L), like in the NCD
shadow cut, which was typically 5 cm, measured from the centre of the anchor. If,
for a pair of PMT-LB, there was an anchor for which dmin < ∆L, that PMT was
flagged as bad and removed from the optical fit.

Figure 4.15 shows the amount of PMTs affected by this cut for two different
source positions. For a central run this cut typically affected 5% of the PMTs, while
a run with the source in the bottom of the AV affected approximately 11% of the

3Only 40 NCDs were effectively deployed as it was later concluded that by deploying all the 96
NCDs the signal degradation from the D2O events would be too large.
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PMTs. In a full optical calibration scan, this cut would affect a total of 5% of the
data points.

(a) Source at center of the detector (0, 0, 0).

(b) Source at bottom of the detector (0, 0,−490).

Figure 4.15: Affected PMTs in a flat projection of the detector, with the source at the centre
and at the bottom of the AV. The blue marks represent unaffected PMTs and the red marks
represent PMTs discarded from the optical fit due to this cut.
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Effect on the Optical Parameters

After implementing this cut a series of optical calibration scans were reprocessed, in
order to evaluate the effect of this cut at different stages of the experiment live-time.
The results showed that the cut didn’t produce any effect in the PMTR. However,
a non negligible difference was observed in the media attenuations, especially in
the D2O and Salt phases. Figure 4.16 shows the difference observed in the D2O

attenuations for a series of D2O (oct03) and Salt phase scans (sep01, may02, apr03).
A similar difference was observed for the H2O attenuation, but this parameter has a
large statistical uncertainty and thus the difference is covered by the uncertainties.
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Figure 4.16: Difference in heavy water attenuations due to the NCD anchor cut in D2O
and Salt scans.

This study was also performed on the NCD phase scans, but as most of the PMTs
affected by this cut were also affected by the NCD shadow cut, there was no visible
effect in the results caused directly by this cut [88, 117].

Effect in the PMT Efficiencies

The results obtained after applying the NCD anchor cut provided a good basis to
suggest that the PMT efficiencies might be affected as well. Since the optical fit
in the NCD phase relies in the PMT efficiencies of the interim D2O scan taken in
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October 2003, a new set of PMT efficiencies were then extracted applying the new
optical cut [88, 117]. The distribution of the extracted PMT efficiencies before and
after the implementation of the optical cut are shown in Figure 4.17(a).
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Figure 4.17: Effect of the NCD anchors optical in the extracted PMT efficiencies at 420 nm
of the October 2003 scan.

Figure 4.17(b) shows the correlation between the extracted PMT efficiencies,
which was approximately 94.9%. This was expected as the optical parameters extrac-
tion only shows a difference in the heavy water attenuation. Nonetheless, as there
was a decrease of up to 10% at larger wavelengths, a difference was still expected.

Albeit the strong correlation between the PMT efficiencies obtained from both
extractions, a more interesting result was observed when looking at the spacial dis-
tribution of the PMT efficiencies in the detector. Figure 4.18 shows the distribution
of the PMT efficiencies as a function of one spacial coordinate. While the results are
perfectly consistent along the y axis (Figure 4.18(a)), the same was not observed in
the case of the distribution along the z axis. In fact, from Figure 4.18(b), a differ-
ence can be clearly observed a difference in the PMT efficiencies at the bottom of
the detector (Z ≈ 600 cm). This difference grows as one goes towards the bottom of
the detector, which is where the NCD anchors are attached. In fact, this difference is
clearly understood by considering the fact that, being Ultra-Violet (UV) absorbent,
the NCD anchors were causing a reduction in the PMT occupancies at the bottom of
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Figure 4.18: Profile of PMT efficiency distribution along two coordinate axes. Results from
the 420 nm runs in the oct03 scan. Similar results were observed for all wavelengths.

the detector. In the extraction of the optical calibration parameters this translated
into a shorter heavy water attenuation length, which was observed in Figure 4.16,
and lower PMT efficiencies at the bottom of the detector.

As the optical calibration method in the NCD phase (Occupancy) relied in the
PMT efficiencies, these results suggested that the NCD anchors could play a role in
the optical analysis of the NCD phase. Therefore, the newly extracted PMT efficien-
cies were used to re-analyse the NCD phase scans to obtain an updated estimation
of the optical parameters. The results from this re-analysis showed that the new
efficiencies only caused a small change in the H2O attenuations, which was irrelevant
due to the large uncertainties in this parameter [117].

Nonetheless, the new efficiencies were used in further reprocessing of the neutrino
data of the NCD phase, in order to use the best knowledge of the optical properties
of the SNO detector.

4.4.2 Up-Down Asymmetry in the Detector

During the combined analysis of the neutrino data of phase I and II with a lower
threshold (low energy threshold analysis (LETA)), a difference of up to 5% in the
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reconstructed energy of the events occurring in the top and bottom hemispheres of
the detector [118]. While this effect was independently studied in the context of the
energy reconstruction [118, 119], a similar study was also performed in the context of
the optical calibration [120–122]. As stated in Section 3.2, the optical model of SNO
measures average quantities, assuming an homogeneous detector response. However,
this was thought to be an oversimplification in the case of the PMT and reflector
assembly.

In order to search for an asymmetry in the detector, the OCA algorithms were
modified to fit simultaneously for two separate PMT angular responses. The PMTs
could then be separated into two groups, according to their location, and two different
PMTRs were fitted in the same optical scan, allowing to search for different PMT
angular responses in the detector [121].

Figure 4.19 shows the results obtained for a selected Salt phase scan (April 2003)
and the interim D2O scan (October 2003). The figures show the results obtained by
grouping the PMTs by its z coordinate. In the particular case of Figure 4.19, the
separation is performed by the plane z = −100 cm. The reason for this particular
separation plane is because upon several tests over a large amount of the Salt phase
scans, the separation by this plane resulted in the largest asymmetry. Similar tests
were performed using other coordinates as the separation plane, but no asymmetry
was observed in those cases.

The results show a clear asymmetry between the two groups of PMTs, with the
PMTs on the top part of the detector showing a larger PMTR at higher incidence
angles. It is also possible to observe that there is an effect due to uneven detector
coverage in this analysis: the PMTR on the top of the detector has consistently larger
statistical uncertainties. As shown in Figure 4.1, a portion of the upper part of the
detector is not reachable by the calibration source and therefore fewer calibration
runs exist in the upper hemisphere, especially at high radius which are the major
statistics contributors to the PMTR at higher incidence angles. By grouping the
PMT on the upper part of the detector and fitting their angular response separately,
the reduced statistics in each PMTR are reflected.

This effect was thought as being a result of the degradation of the PMT reflectors,
and thus an asymmetry increasing with time was sought. However, this was hard to
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(b) Apr03 LB distribution profile
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(d) Oct03 LB distribution profile

Figure 4.19: PMT angular response of two scans demonstrating the asymmetry along the z
axis by separating the PMTs into two groups according to their position. The corresponding
functional profiles of the laserball distribution are also shown.

verify as the asymmetry was found to depend strongly with other optical parameters,
such as the source isotropy, and therefore it was hard to attribute a single conclusive
reason to the asymmetry.

Therefore, by looking at a wide range of scans it was not possible to determine
any relation of the asymmetry with time, nor with any specific optical parameter.
The asymmetry was shown to be weakly dependent on the particular separation
plane z coordinate used. This is shown in Figure 4.20 where the PMTR is shown
for the same scan and wavelength, but applying different groupings. The reference
value obtained considering all PMTs as having the same angular response is shown
in black, together with a shaded area which corresponds to its statistical uncertainty.
All other results were grouped by performing the separation of the PMTs at different
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z coordinates. Each pair of groups from a individual fit have the same colour and a
different symbol. The results show that the PMTR in the lower part of the detector
completely dominates the values obtained when no separation is made and that the
response in the upper part of the detector varies considerably.
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Figure 4.20: PMT angular responses obtained by grouping the PMTs by different regions in
z.

Similar tests were performed grouping the PMTs by a series of different criteria,
such as their position along the x and y axes, but the asymmetry was only observed
along the z axis, with a maximal asymmetry when one group of PMTs contained all
PMTs whose z coordinate was below the plane z = −100cm.

Despite confirming the existence of an up-down asymmetry in the detector, it was
not possible to find out the source of such effect. Several hypotheses were considered,
being the most accepted one that the effect was caused by debris deposited in the
bottom of the detector, both in the AV and the PMTs, such as the degradation of
the PMT reflector petals (different production batches were distributed in the top
and bottom part of the detector).

Not being able to correct the asymmetry observed in the optical calibration, an
additional systematic uncertainty was then implemented on the PMTR that would
account for the asymmetry observed. For this, the difference at each incident angle
obtained from the two groups of PMTRs was used, each one separated by the plane
z = −100 cm.
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It should be noted that this systematic uncertainty varies from scan to scan
and from wavelength to wavelength. The specific implementation of this systematic
consisted in effectively adding an additional iteration to the optical fit where two
PMTRs were extracted. The difference between the PMTR of each group was then
calculated and stored as a systematic uncertainty. Figure 4.21 shows the correction
for all wavelengths of the interim D2O scan (October 2003).
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Figure 4.21: Systematic uncertainty applied to the PMT angular response due to the PMTR
asymmetry along z.

It should be noted that although the image shows negative and positive values,
the associated uncertainty is implemented as an additional symmetric uncertainty to
the PMTR. From Figure 4.21 it is possible to notice that the uncertainty varies with
the wavelength. This uncertainty represents at most an additional 5% systematic
uncertainty in the PMTR.

4.5 Results on the Optical Parameters

This section presents the optical constants extracted from the optical fit after im-
plementing all the improvements described in this chapter. The results focus mostly
on the NCD phase, although the extraction of the optical parameters for individual
D2O and Salt scans were also performed, in order to check the time evolution of
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the parameters. Furthermore, some of the improvements discussed before also affect
these phases.

The D2O and Salt phase scans were analysed using the OccRatio method, for
maximum consistency with the official extraction at the time of the analysis of each
phase. The NCD phase scans were analysed using the Occupancy method, applying
the PMT efficiencies from the October 2003 scan (NCD commissioning phase).

The comparison of the results of the NCD commissioning phase scan using the
OccRatio method are already shown in Section 4.2. The errors quoted in the param-
eters include the contribution of the systematic uncertainties that are pertinent for
that specific phase, which are explained in more detail in Section 4.6.

4.5.1 Data Set and Selection.

The results are presented for the marked optical scans in Table 4.1. Of these, only
one scan is from the D2O phase (September 2000). There are also four scans from
the Salt phase and another five scans in the NCD phase. Although there were other
optical calibrations scans, not all of them were included as some of them presented
technical difficulties, such as bad runs and low statistics. This selection however is
sufficient to demonstrate the time dependence of the optical parameters and their
evolution through the whole time of operation of SNO.

The analysis of the data occurred in the way already described in the previous
sections. In particular cases some runs were removed from the data sets due to various
reasons such as corrupted occupancies, failure in calculating the optical paths between
the source and the PMTs, or the fitted positions of the source were not compatible
with the recorded position by the calibration instrumentation. Then, for each chosen
run the PMT data was selected following two types of cuts. The first type was based
in the geometry of the detector and the light paths, and was described in Sections 3.3,
4.3.1 and 4.4.1. This type of cuts removed from the fit PMTs whose optical paths were
difficult to model, for a specific run, and therefore would introduce variations that
were not compatible with the characterisation of the detector by average quantities
that is the base of the optical calibration.
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A second type of cut was also implemented as an implicit χ2 cut. This cut
aimed to remove outlier PMT data, whose individual contribution to the χ2 was too
large. As mentioned in Section 3.3, the optical calibration fit, after applying the
quality cuts and reconstructing the source positions and optical paths, ran through
five iterations. At the end of each iteration, the individual PMTs whose data had
a contribution to the global χ2 above a certain threshold was removed from the fit
and a new iteration of the optical calibration fit started. This procedure allowed to
identify outlier PMTs, and ensure that the data in the fit was consistent with the
homogeneous detector optical response model. The χ2 threshold for the last iteration
was χ2 < 25. This χ2 cut affected approximately 3− 5% of the PMT data in a scan.

The geometrical cuts affected a much larger portion of PMTs, being dependent on
the source positions in a scan. In the D2O and Salt phase they affected approximately
40% of the PMTs statistics, while in the NCD phase the geometrical cuts affected
approximately 75%, where the NCD shadow cut was the largest contribution.

The number of floating parameters in the optical fit varies for each combination
of scan-wavelength, due to the quality cuts and options of the fit. Table 4.2 lists
the different contributions to the total number of floating parameters. Some of these
contributions are exclusive, i.e., only one of the options can be active. Such an
example is the LB intensity distribution, where only one of the options (histogram
or functional form), or none at all, can be active. In the case that none of the LB
distribution models is floating, the LB distribution profile in θ (mask function) is
also deactivated from the floating parameters. The same happens in the case of the
PMTR, where the number of floating parameters depends on the configuration of the
fit (whether the PMTs are separated into two groups or not).
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OCA parameter Total possible Notes Typical free parameters
parameters D2O, Salt NCD

PMTR 2× 90 1 bin per incidence angle (total of 90). 45 45
Two possible PMTR being fitted.
Dynamically adjusted by PMT statistics.

Source characterisation (LB) Only one model can be used
Histogram distribution 12× 36 12 bins in cos θLB 432 432

36 bins in φLB
Dynamically adjusted by PMT statistics.

Functional distribution 2× 24 Amplitude and phase of sinusoidal wave 48 48
24 angles in cos θLB

Source profile in θ 6 Exact value dependeds 6 4
(LB mask function) on source characterisation model used
Media attenuations 3 acrylic attenuation was usually fixed 2 2
Rayleigh scattering 3 Usually fixed to pre-determined values 0 0
Run Occupancy normalisations Nruns Depended on the total number 20− 30 40− 50

of runs in the fit

Table 4.2: List of possible configurations of the optical fit and corresponding number of floating parameters. The typical values for
each type of scan are also shown.
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Besides these adjustments to the number of floating parameters there are also
dynamic adjustments that are based in the quality of the data. This dynamic adjust-
ment is also applied to both the PMTR parameters and the LB distribution. In both
cases, if the number of data points contributing to a particular parameter is smaller
than a pre-set threshold, that parameter is fixed. For example, in the D2O and Salt
phase scans, any PMTR parameter (incidence angle bin) containing less than 100
PMTs contributing to it was fixed to one. In the case of the LB distribution, the
threshold to fix a particular parameter was 25 PMTs. Due to the different statistics
of the NCD phase scans, these thresholds were decreased, respectively, to 50 and 15.

In the NCD phase analysis the use of the functional parameterisation of the
laserball distribution was used since the results were shown to not be significantly
affected by the change in model and the new parameterisation largely reduced the
number of floating parameters, improving the statistical uncertainties. An extensive
description of each model and respective comparison is performed in [123].

More details about the individual OCA parameter characterisation are given be-
low.

4.5.2 Results

In this section the results of the optical parameters are shown. The figure of merit
of the fit is the χ2 of Equation 3.6 for the case of the D2O and Salt scans, or the
χ2 of Equation 3.10 in the case of the NCD scans. As demonstrated in Section 4.2
both methods yield similar results meaning that a direct comparison of the extracted
parameters is valid.

In the following sections we will cover the results of each optical parameter in
more detail. The errors in the plots correspond to the total uncertainties, which
are composed of a statistical component, and a systematic component, which is
discussed in more detail in Section 4.6. The analysis of the time variation of the
optical parameters is provided in more detail in Section 4.5.2.
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Media Attenuations

The media attenuations are fitted, and extracted, as the inverse of the of the atten-
uation length in the medium. The values obtained in the fit correspond to the total
media attenuations. However, a fraction of the photons experience forward Rayleigh
scattering and arrive to the PMTs outside the prompt time window. The results
shown account for the pure media extinctions, which are obtained by subtracting a
fraction of the theoretical prediction of Rayleigh scattering lengths from the values
obtained in the fit. Therefore, the quoted results are all pure absorption lengths,
having the Rayleigh component already subtracted.

The results obtained for the D2O attenuations as a function of the wavelength in
the analysed scans are shown in Figure 4.22. Figure 4.22(b) show the results obtained
in the NCD phase, while Figure 4.22(a) shows the corresponding results for D2O and
Salt phases. The results of the interim D2O phase (October 2003) are shown in both
figures to allow a better comparison.
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Figure 4.22: D2O media attenuations as a function of wavelength. The October 2003 results
are shown in both figures.

The D2O attenuations are consistent within the uncertainties. A problem in the
optics fibres during data taking at 337 nm in the September 2000 scan gave origin to
an artificial lower value in the D2O attenuation.

It is also possible to verify that although the values are compatible, there is a
larger variation between the heavy water attenuations in the Salt phase than in any
other phase. This was found to be caused by residual contamination with MnOx
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used for radio assays already discussed in Chapter 2. The attenuation showed an
increase during this phase and returned to the original values by the end of the Salt
phase, when the heavy water was desalinated and re-purified [124, 125]. The media
attenuations in the NCD phase are more compatible with the ones from the D2O

phase, showing a larger uncertainty due to the additional systematic uncertainties.

The results for the H2O attenuations are shown in Figure 4.23. The layout of
the plots is the same as for the D2O. The H2O attenuations show a similar be-
haviour as the D2O attenuations. The results are consistent across all scans, within
uncertainties. In this case no discrepancy is observed in the Salt phase.
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Figure 4.23: H2O media attenuations as a function of wavelength. The October 2003 results
are shown in both figures.

PMT Angular Response

The results obtained for the PMT angular response are shown in Figure 4.24 for all
six wavelengths. Similarly, the results obtained for all analysed scans, including D2O

and Salt phases, are shown in Figure 4.26.

The results are consistent at low incidence angles, but a larger variation between
scans is observed for higher angles, where the NCD phase scans show consistently a
lower response. The cause for the lower response is most likely to be due to PMT
reflector degradation which causes the light collection at higher incidence angles to
be less efficient [126].
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(a) 337 nm.
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(b) 365 nm.
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(c) 386 nm.
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(d) 420 nm.
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(e) 500 nm.
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Figure 4.24: PMT angular response as a function of the incidence angle in the NCD phase
for all six tested wavelengths.

Laserball Characterisation

The LB intensity is also fitted and is modelled as a source with intensity distributed
in terms of the polar angles (cos θLB, φLB). The angle θLB describes the angle of
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emission with respect to the z axis and the φLB describes the angle of emission with
respect to the x axis. The source intensity is also weighted by a function, known
as the laserball mask function, which depends on cos θLB and describes the variation
caused by the source support body.

The LB characterisation takes the most part of the variable parameters in the
optical fit. Two parameterisations of the intensity distribution were implemented in
the fit. The simplest model assumes that the LB distribution is smooth, being the
LB characterisation modelled by sinusoidal functions for a total of 54 parameters
(six parameters for the LB mask function and 48 parameters for the LB intensity
of which 24 are bins in cos θLB and two are coefficients of the sinusoidal azimuthal
intensity distribution function (A sinφLB), where A is the amplitude and φLB is a
phase). The second model does not make any assumption about the LB distribution
and thus introduces 438 parameters in the fit, describing a grid of 12 bins in cos θLB

and 36 bins in φLB (plus the six parameters of the LB mask function).

The LB characterisation was also one of the parameters that most varied in the
optical calibration, being considerably different in a scan-by-scan basis, as improve-
ments in the LB distribution were attempted. However, in the NCD commissioning
phase, one last intervention in the LB resulted in a very uniform source, which was
kept stable through the whole phase.

Figure 4.25(a) shows the result obtained for the LB characterisation obtained
with the functional form for a 500 nm run in the October 2003 scan.

Figures 4.25(b) and 4.25(c) show the profile of the LB intensity as a function of
the polar angle θLB. The shadowing effect of the source support structure is clearly
visible in the region close to cos θLB ≈ 1. The profiles for several scans is shown,
which demonstrates how the isotropy of the source varied along the whole live-time of
SNO. The NCD phase scans show a large stability, which is not verified in the other
phases. Although only the intensity profiles for 500 nm are shown, similar results
were observed for all wavelengths.
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Figure 4.25: Distributions of the laserball characterisation at 500 nm in the october 2003
scan. Figure 4.25(a) shows the functional parameterisation that implicitly assumes an uni-
form laserball. The intensity profiles in the different phases are shown in Figures 4.25(b)
(D2O and Salt phase scans) and 4.25(c) (NCD phase scans).

Time Variation of the Optical Parameters

The frequent OCA scans permitted the study of the time variation of the optical
parameters, especially the media attenuations and the PMTR. This analysis was of
particular importance to study the stability of the optical properties in the detector.
Furthermore, if the stability of the the detector was confirmed by this analysis it
would be possible to use the average optical properties in the Monte Carlo simulation
and energy reconstruction algorithms, greatly simplifying the neutrino data analysis.

In Figure 4.26, the PMTR for all re-analysed scans is shown, sampling the whole
SNO data taking period. Except for the September 2000 scan, all other results
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are consistent taking into account the uncertainties. However, a decreasing trend of
approximately 2% was observed between scans in each phase at high angles. Nonethe-
less, this drift is smaller than the total uncertainties in the PMTR meaning that, for
each phase, the average PMTR of the OCA scans of that phase could be used.
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(a) 337 nm.
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(b) 365 nm.
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(d) 420 nm.
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(e) 500 nm.
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(f) 620 nm.

Figure 4.26: PMT angular response as a function of the incidence angle for all re-analysed
scans.
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Figure 4.27(a) shows the variation of the D2O attenuations for all six wavelengths
for all re-analysed scans. It should be noted the consistency in the attenuation
between the D2O scans (including the NCD commissioning phase) and the NCD
phase results. In the Salt phase a drift was observed which was caused by the
contamination due toMnOx calibrations mentioned before [124, 125]. In fact for this
reason the propagation of the optical constants into the simulation and reconstruction
was propagated differently, with a drift function being used to model the variation
of the optical properties over time.

Figure 4.27(b) shows a more detailed comparison for a single wavelength (500
nm) comparing only the D2O and NCD phase scans, together with a linear function
estimating the drift in the attenuations. A consistent result is clear, with the slope of
the function, which characterises the drift in the attenuations, being consistent with
zero when the uncertainties are taken into account, with a slope of (−1.4± 3.5)×10−4.
The same figure shows the results obtained by averaging the D2O attenuation in the
NCD phase. As the results were consistent over the whole NCD phase, one could
use a weighted average of all NCD phase results, which were later used in the Monte
Carlo and energy reconstruction.
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(a) D2O attenuations in all scans.
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phase scans.

Figure 4.27: D2O attenuations for all six wavelengths for all re-analysed scans.

Figure 4.28 shows a similar comparison performed for the H2O attenuation. In
this case there is no drift observable in the Salt phase. As in the case of the D2O

attenuation, the slope is consistent with zero (slope = (−3.2± 25.1)× 10−4).

For this reason it was safe to assume that the detector was stable and therefore
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(b) Drift in H2O attenuation at 500 nm in NCD
phase scans.

Figure 4.28: H2O attenuations for all six wavelengths for all re-analysed scans.

in the Monte Carlo simulation and energy reconstruction the average quantities for
the media attenuations were used.

4.6 Systematic Uncertainties of the Optical Calibra-

tion

Along with the extraction of the optical parameters, a series of systematic uncertain-
ties were implemented to estimate the effect of the different cuts and assumptions
employed in the extraction. These systematic uncertainties can be grouped into
classes, depending on the origin of the systematic uncertainty. Table 4.3 shows a list
of the systematic uncertainties for the optical parameters, along with the different
classes they belong to.

The total systematic uncertainties that are common to all phases and deal with
errors related with the distance between the source and the PMTs, as changes to
the way the fit is executed (statistical cuts) were first defined in [83]. The NCD
phase systematic uncertainties were first defined in [108]. The systematic errors were
evaluated by either smearing the data points or by fixing a parameter of the optical
fit and refit the data to extract a new set of optical parameters. The systematic error
was then obtained by quantifying the differences between the nominal and the shifted
fits.
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Origin Systematic Effect Weight factor (fi)
Systematics Common to all phases

Source position

Radial position scale R
′
PMT = RPMT × 1.01 0.20

Radial position shift R
′
PMT = RPMT + 5cm 0.20

Radial position smear R
′
PMT = RPMT +Gauss(0, 5)cm 0.20

Source z position Z
′
LB = ZLB + 5cm 0.40

Source x position X
′
LB = XLB + 5cm 0.20

Source size d
′
PMT = dPMT − 3cm 0.50

Source Distribution Source intensity L
′
ij = L2

ij 0.05
Source uniformity L

′
ij = 1 0.05

PMT-PMT variability − σPMT = 0 0.2

Statistics χ2cut(3σ) χ2 < 9 1.0
χ2cut(4σ) χ2 < 16 1.0

PMT Response PMT Efficiencies ε
′
j = εj +Gauss(0, 0.001) 0.50

z asymmetry Separate fit of PMTR(Section 4.4.2 0.5
NCD phase systematics

NCD effects

NCD tolerance parameter ∆L
′

= 0.5×∆L 0.5
NCD reflections R (λ) = 0 1.0
NCD reflection probability w

′
ij = wij × 10 0.2

NCD reflectivity R (λ)
′
= 2×R (λ) (in MC) 1.0

Table 4.3: Systematic uncertainties in the optical parameters.
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In most cases the systematic variations employed are larger than expected for
actual running conditions in the detector in order to exaggerate the possible effect
on the final oscillation analysis. In order to account for this, each systematic effect is
weighted by a factor fi, which estimates the fraction of the systematic change that
actually applies to the data. These factors are shown in the last column of Table 4.3.

A brief description of the uncertainties considered, as well as the weights applied,
are given in Appendix B.1. Two particular systematics are strongly related to the
work of this thesis.

The z asymmetry systematic is only applied to the PMTR and was previously
discussed in Section 4.4.2. This systematic affects all optical calibration scans and
accounts for observed asymmetry in the PMTR, as it was not possible to find a
definite reason for this asymmetry in a way that would be possible to produce a
correction. This systematic is calculated by adding an additional iteration to the
optical fit, after the final results were obtained, in which the optical parameters are
re-extracted using two PMT angular responses. As it was observed in Section 4.4.2,
this procedure causes a reduction of statistics in each PMTR, especially in the group
of PMTs that are located in the upper part the detector (z > −100 cm). For this
reason a weight of fzasym = 0.5 is applied to the difference in the PMTR of the two
groups. This results into an overall effect of 2% in the PMTR.

The NCD reflectivity systematic is only applied in the case the MC based NCD
reflection correction is used (Section 4.3.4). Therefore, this systematic supersedes
the NCD reflection probability, which is specific for the analytical correction (Section
4.3.4). Although this systematic is partly propagated together with other systematics
such as the source position and size systematics and the NCD tolerance parameter, a
second correction map using a NCD reflectivity that is twice as large as the nominal
value was generated and is used in the correction. In order to fully evaluate the
extent of this correction, and also accounting for the fact that the NCD reflectivity
used is taken from a model and thus has no uncertainties, a factor fNCDref = 1.0 is
applied.

It is also important to note that the PMT efficiencies systematic was not effec-
tively applied in the D2O and Salt phase scans, as in this case the PMT efficiencies
were not used in the fit, since in these phases the OccRatio fitting method was used.
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Table 4.4 summarises the effect of each systematic in the optical parameters for
all phases. It should be noted that the effect of each systematic was observed to
vary with the wavelength in the same scan, due to the available statistics. This was
particularly important in the earliest scans, with a larger incidence in the September
2000 scan [83]. In the D2O and Salt phases the dominant systematics were related
with the source position, which affected mostly the media attenuations. In the NCD
phase, although these systematics were also dominant, the contribution from the
NCD related systematics, such as the shadow cut and the NCD reflection correction,
were also considerable. In both cases the most affected optical parameters were the
media uncertainties.

However it is hard to perform a proper comparison of the systematics from phase
to phase. As the experiment progressed, the optical calibration method also evolved
by improved algorithms and better planning of the source positions and statistics
collected. Therefore the results in Table 4.4 should be understood as an evaluation of
the contribution of each systematic in the optical parameters and not as an evaluation
of the variation of the systematic uncertainties from phase to phase.

It should also be noted that although the results of the D2O phase include the
results from the October 2003 scan, the uncertainties are dominated by the fit results
in the September 2000 scan which has typically much larger systematic uncertainties
than the results from October 2003. Again, this is due to the different planning
on the source positions and the statistics accumulated. While the September 2000
consisted of data taken in 19 different positions, the October 2003 scan uses data
taken in 30 different positions and considerably more statistics.

In both cases, the dominant uncertainty in the PMTR was the PMTR asymmetry
systematic that could induce an effect of up to 3%.
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Index Systematic Error Affected Parameters
D2O Salt NCD

1 Radial Position Scale αd(≤ 15%), αh(≤ 35%) αd(≤ 10%), αh(≤ 30%) αd(≤ 10%), αh(≤ 20%)
2 Radial Position Shift αd(≤ 10%), αh(≤ 35%) αd(≤ 10%), αh(≤ 25%) αd(≤ 15%), αh(≤ 25%)
3 Radial Position Smear αd(≤ 5%), αh(≤ 5%) αd(≤ 8%), αh(≤ 10%) αd(≤ 5%), αh(≤ 10%)
4 Source z Position αd(≤ 10%), αh(≤ 20%) αd(≤ 10%), αh(≤ 15%) αh(≤ 5%)
5 Source x Position αd(≤ 2%), αh(≤ 5%) negligible αh(≤ 1%)
6 Source Size αd(≤ 10%), αh(≤ 15%) αd(≤ 7%), αh(≤ 10%) αd(≤ 5%), αh(≤ 10%)
7 Source Intensity negligible negligible negligible
8 Source Uniformity negligible negligible negligible
9 PMT-PMT variability αd(≤ 1%), PMTR(≤ 1%)
10 3σχ2cut αd(≤ 3%), αh(≤ 40%) αd(≤ 3%), αh(≤ 30%) αd(≤ 2%), αh(≤ 10%)
11 4σχ2cut αd(≤ 5%), αh(≤ 20%) αd(≤ 4%), αh(≤ 35%) αd(≤ 3%), αh(≤ 5%)
12 PMTR z asymmetry PMTR (≤ 3%)

NCD Phase Systematics
13 PMT Efficiencies αd(≤ 5%), PMTR (≤ 1%)
14 NCD Tolerance αd(≤ 1%)
15 NCD Reflections αd(≤ 2%)
16 NCD Reflection Probability αd(≤ 5%)
17 NCD Reflectivity αd(≤ 3%)

Table 4.4: Effects of the systematic uncertainties.
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4.7 Conclusions on Optics

Chapters 3 and 4 describe the optical calibration improvements implemented to ad-
dress the challenges of an experiment composed of different phases of operation. In
particular the introduction of the NCDs in the third phase required a reimplementa-
tion of the OCA analysis, in order to address the physical detector changes and the
new physics phenomena resulting therein.

The work described in these chapters led to a better understanding of the detector
response, which was then used in the reprocessing of the SNO data for the LETA
analysis and for the NCD phase.

In particular, the implementation of the Occupancy method allowed to obtain a
precision in the optical parameters that was comparable to the D2O and Salt phases,
despite the large statistics reduction of photon detection by the PMTs caused by the
NCD shadows. Along with this improvement, the extraction of the PMT efficiencies
allowed a more accurate simulation of the detector response.

The implementation of an optical cut to address the previously ignored NCD
attachment anchors, led to an improvement in the PMT efficiencies that helped
understanding the existing asymmetries in the detector [119], and thus led to an
improvement in the detector response. Along with this change, the implementation
of a simultaneous fit of two PMT angular responses led to the characterisation of
the detector asymmetry in the optical calibration, observable in the PMT angular
response.

A Monte Carlo based correction to address the NCD reflections was implemented,
even though it was not used in the final reprocessing of SNO data, which was done
before the work was completed. However, this analysis yielded results consistent with
the analytical correction in place at the time, validating the analytical correction. In
fact as the NCD reflections are one of the dominant systematics specific of the NCD
phase, this correction demonstrated a slight reduction of the systematic uncertainty.

A study to determine the NCD reflectivity based on late light from Monte Carlo
generated data was also carried out. This study showed a considerable discrepancy in
the timing spectrum between real data and the Monte Carlo, which was only visible
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in the late light. Although this did not affect the physics analysis, it questioned the
validity of the NCD reflectivity study. Nonetheless, by choosing a region where there
were no secondary contributions expected, such as other detector element reflections,
the study suggested that the average NCD reflectivity might be approximately 20%
higher than indicated by the initial ex-situ measurements.

Although in a scan-by-scan basis, the optical parameters in the NCD phase had
larger uncertainties than in previous phases, the number of good calibration scans
and the detector stability over time in the NCD phase allowed to decrease the un-
certainties by performing a weighted average of the optical parameters.

The media attenuations were stable in the NCD phase, and consistent with the
results obtained in the D2O phase. A decrease was observed in the PMT angular re-
sponse at large incidence angles which was consistent with the drift also seen through
the Salt phase, which is most likely caused by the degradation of the PMT reflectors.
Nonetheless, this variation is negligible considering the uncertainties in the PMT
angular response.

Unlike the previous SNO analyses, the last analysis of SNO started after the
detector was already shutdown and thus some of the analyses discussed in these
chapters did not make it into the last data reprocessing. Nonetheless these analyses
were important to validate the detector description used in the last data reprocessing
and to assess the need for the extra effort in an additional data reprocessing. The
results showed that the latter was not necessary. Furthermore, some of the results
discussed were important to validate assumptions made in the calibration analysis, in
particular the MC based NCD reflection correction validated the previously analytical
correction that was used in the data analysis. The study of the up-down asymmetry
in the detector demonstrated that the asymmetry observed also in the energy recon-
struction was also visible in the optical calibration data therefore validating a data
correction applied directly in the energy reconstruction level [118].

In addition to the validation and confirmation of observed results, this work will
also be important in the future as the SNO detector will be re-used by the SNO+
collaboration.





Chapter 5

Neutrino Signal Extraction

The signal extraction (SigEx) in SNO is one of the most important steps of the
analysis chain, providing the link between the raw data and the physics interpretation.
In the combined 3-phase analysis the whole SNO data is analysed together, leading
to additional difficulties due to the differences between each phase.

In this Chapter a brief description of the analysis formalism and methods will
be presented, with emphasis on the solar neutrino flux and survival probability
parametrisation. Although the work developed in this thesis did not cover directly
the signal extraction, it is nonetheless important to understand the analysis chain
leading to the measurement of the solar neutrino oscillation parameters. However,
a contribution to this part of the analysis was also performed: a study to deter-
mine the best polynomial parameterisation to describe the electron neutrino survival
probability was performed and is described in Section 5.6.3.

A detailed description of the SigEx analysis can be found in [127–131]. A general
description of the SigEx observables will be given in Section 5.2. Sections 5.3 and 5.4
will then provide a reference for the backgrounds and systematic uncertainties. The
output of SigEx will then be provided in Section 5.5, with a reference to previous
SNO analyses. Finally, Sections 5.6 and 5.7.1 will describe the strategy of the 3-
phase combined SigEx and the outputs that shall be used in the neutrino oscillation
analysis described in Chapter 6.
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5.1 Introduction

SigEx is responsible for separating the neutrino events into different classes in a way
that can later be used in physics analyses. As the objectives of the different SNO
analyses changed with time, so the SigEx methods and outputs have evolved:

• In the individual analyses of phases I and III, the objective of the SigEx con-
sisted in the separation of the neutrino data into different classes of events,
providing the output in the form of a number of events for CC, ES, NC and
backgrounds integrated over the energy window of the analysis.

• The analysis of phase II provided the output in the form of a spectrum of recon-
structed electron kinetic energy of CC and ES events, as well as an integrated
number of events detected through the NC reaction, which directly translated
into a 8B Solar neutrino flux measurement.

• Later, the first combined analysis of the two first phases of SNO (LETA) also
followed the method of phase II, as well as a measurement of the Solar electron
neutrino spectral distortion, which will be the only SigEx method employed
in the 3-phase analysis, where a new analysis of the proportional counter data
from the NCD phase is also carried out, performing pulse shape analysis (PSA)
of NCD events (Section 5.6.2).

5.2 Observables

In phases I and II, and also for the PMT data of phase III, it was not possible to make
a distinction of the event types in an event-by-event basis. Therefore, the main goal
of SigEx was to attribute a probability of belonging to a certain class (CC, ES NC
or background) for each event based on their observables signature, and to perform
a statistical separation of the CC, ES, NC and background event classes.

In the following subsections each observable shall be described, as well as the
cuts applied through each observable to the data. Figure 5.1 shows the Monte-Carlo
distribution probability density functions (PDFs) of the observables discussed below
for the D2O, Salt and NCD phases.
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Event Position

The event position is characterised by a volume weighted radius, the parameter ρ,
which is defined as

ρ =

(
rev
RAV

)3

. (5.1)

where rev is the distance of the event vertex to the centre of the detector and
RAV is the radius of the acrylic vessel (600 cm). Two position estimators were used
in the analysis of SNO data: the position of the events from the D2O and Salt
phases were assigned by using the FTP estimator [132], while the data in the NCD
phase were assigned the position by using FTU/FTN [109, 133]. Both estimators are
similar in concept, using the residual between the transit time for each PMT, but
the FTN/FTU fitter was optimised to deal with the additional challenges imposed
by the NCDs, such as shadows and reflections.

This observable has a critical role in the event reconstruction, as it is used as
an input to determine two other observables: the event energy and isotropy, both
of which are described below. Furthermore, the reconstructed position was also
important to apply a fiducial cut in order to separate the events that originated
inside from those from outside the AV, such as backgrounds. Finally, this observable
is used to separate CC and NC events and to identify tails from external backgrounds
inside the fiducial volume.

Event Direction

The direction of the events is another of the fundamental observables, along with
the event position, being used in the determination of other observables, such as
the event energy. This observable is obtained by fitting the PMT hit pattern to the
Čerenkov ring distribution. In the context of the SigEx it is usually characterised as
cos θ�, where θ� is the angle between the event direction and the Sun-Detector axis.

This observable is crucial to separate the ES events from the other classes of
events, as the direction of ES events is strongly correlated with the direction of the
incoming neutrino, due to the kinematic distribution of the electron from the ES
reaction.
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Isotropy (β14)

The isotropy parameter of an event is evaluated by using the distribution of hit PMTs
from the event position and is defined as [134]:

β14 = β1 + 4β4, (5.2)

βl =
2

n (n− 1)

n−1∑

i=1

n∑

j=i+1

Pl (cos θij) , (5.3)

where n is the number of hit PMTs, θij is the angle between PMTs i and j from
the vertex and Pl is a Legendre polynomial [135]. This observable was crucial in the
separation of CC and NC events in the Salt phase [65, 70]. In the NCD and D2O

phases this observable is not relevant, as the NC reaction in the D2O produces a
single γ, nonetheless it was used for D2O phase data in the LETA analysis.

Effective Electron Kinetic Energy (Teff )

The effective electron kinetic energy (Teff ) is reconstructed for each event based on
the number of hit PMTs. Each detected event was assigned an observed energy by
an energy estimator algorithm. Different estimators were used in SNO, namely the
FTK [118] and the RSP [115].

The difference between these energy estimators lie mostly in the hit PMT time
window used for the energy estimation. While RSP only uses the data in the prompt
peak to assign the energy of the event, FTK uses virtually the full time window (150
ms), including reflected photons, resulting in an improvement in the energy resolution
of about 6%. This translates in a considerably more efficient separation of signal and
backgrounds, and consequently into an improvement in the background reduction of
approximately 60% [118]. The LETA analysis (combination of phases I+II) used the
FTK estimator, while the NCD phase used the older RSP estimator, as there was no
reprocessing of the NCD data for the 3-phase analysis.
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The analysis window for this observable is also different for each phase. The data
from D2O and Salt phases have a threshold of 3.5 MeV in Teff , while the NCD phase
data are selected with an energy threshold of 6 MeV. The higher energy threshold of
the NCD phase data is due to the larger low energy backgrounds introduced by the
NCDs and to the worse energy resolution.

The results of the SigEx procedure were usually presented as a function of only
one of the observables that was left free to float: the effective energy Teff . However,
this is not compulsory, as it would be equally valid to represent the results as a
function of any other observable. The reason for this choice lies in the fact that the
observed energy is the observable that retains more features about physical meaning
of the results, since neutrino oscillations are energy dependent.

5.3 Backgrounds

The backgrounds represent a large fraction of data at low energies. In the early
SNO analyses of the individual phases the energy thresholds were set high enough
to avoid them, especially to avoid low energy tails that were difficult to characterise
[36, 65, 69]. The main sources of backgrounds were already described in Section 2.5,
and are explained in detail in [69, 70]. Like in the LETA analysis, in the 3-phase
analysis the backgrounds are treated as another class of events, for which a series of
MC simulations were generated in order to build background PDFs, the same way as
for the signal classes of events. These simulations were validated through extensive
source calibrations and analysis in the 3.5 to 16 MeV energy range.

Some particular backgrounds, due to having shapes very similar between them,
have their scale (measured independently) constrained in the fit [131]. Thus, in the
SigEx analysis, some backgrounds have their scales floating, i.e. free to vary in the fit,
while others are fixed and have their uncertainty propagated by shifting the scale to
the extremes of the uncertainty range and refitting. This last method is usually called
shift and refit, and it essentially propagates the maximum effect that the uncertainty
in their scales causes in the separation of the event classes. Obviously, it is of utmost
interest to minimise the number of background types that are treated this way, as it
leads to larger uncertainties in the final results.
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Figure 5.1: Monte-Carlo distributions of the different signals as a function of the observ-
ables. Only the D2O and Salt phase data are shown. Having the same detection medium,
the NCD phase distributions are similar to the ones from the D2O phase, except for the
Teff distribution due to the different energy threshold and worse resolution. Figures from
[70].

For the neutrino oscillation analysis that is the subject of this thesis, the back-
ground levels are of no direct consequence. Only the uncertainty in the physics
outputs is used in the neutrino oscillation analysis. Therefore, it is important that
the SigEx analysis propagates the effect of the background levels to the uncertainty
in the output parameters, but the background levels themselves are not used in the
oscillation analysis.
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5.4 Systematic Uncertainties

As discussed in Chapter 2, the SNO experiment dedicated a large portion of its live-
time to calibrations. This, along with a strong effort in tuning the Monte Carlo
simulation to describe the data, led to an improvement of the systematic uncertain-
ties, which are most of the time derived from the comparison of the calibration and
simulation data.

In the SigEx analysis most of the systematic uncertainties are described by a
central value and a spread of a given parameter and are propagated in two ways:
virtual shifts in their central values (within their spreads), or by allowing the central
values of the uncertainty parameters to be constrained by the data itself. The latter
are integrated into the fit algorithm as floating parameters, along with the remaining
observables and some of the backgrounds, so that their value can vary to better fit
the data, within a pre-determined allowed range.

This procedure has a number of advantages: by allowing the systematic uncer-
tainty parameters to vary, or float, the data itself helps to constrain these uncertain-
ties, effectively choosing the value of each uncertainty parameter that better agrees
with the data itself; a similar advantage is that by constraining the floating range of
the systematic parameter by means of penalty terms, the problem of overestimated
systematics is minimised.

Being a computationally intensive operation, as one is effectively increasing the
number of parameters in the model, the floating procedure is only implemented for
the dominant systematics. Two of the most relevant ones being the energy scale and
resolution. These systematic parameters are allowed to vary in order to change the
acceptance of the detector to low energy backgrounds events close to the analysis
threshold.

The list of uncertainty parameters results from a combination of the systematic
uncertainties of the 3-Phase analysis are described in detail in [131].

In the context of this thesis, as the output consists of a parameterisation of
the electron neutrino survival probability, the individual systematics do not have
any direct effect in the neutrino oscillation analysis. Thus, the total systematic
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uncertainty is summed in quadrature with the statistical uncertainty. More details
will be given below.

5.5 Outputs from the Signal Extraction

In this Section, a brief summary of the outputs from the SigEx is given. As stated
previously, the SigEx procedure aims at not only separating signal events from back-
grounds, but also separate between different types of signal events.

The analysis consists basically of an Extended Maximum Likelihood fit, where the
different types of events present in the data set are modelled by means of a probability
density function (PDF) and a scale, with uncertainties. Usually the PDFs were
multi-dimensional, representing the distribution of the event class (including some
backgrounds) as a function of each of the observables.

This basis has remained unchanged for all analyses, even though the technical
details of the implementation have changed. Similarly, the output of the SigEx has
also evolved with the different analyses. Two different models of outputs have been
implemented in the different SNO analyses: Reconstructed energy spectrum and
polynomial parameterisation of the spectral distortion. In the following subsections
the description of these types of output will be clarified.

5.5.1 Reconstructed energy spectra

In the analysis of the three individual phases, and also in the combined analysis of
phases I+II, the output of the SigEx analysis focused in a statistical separation of the
neutrino events into different types. To avoid a long description of this SigEx method
for each analysis, we will focus on outputs of the LETA SigEx analysis through this
method. However, detailed descriptions of each individual analysis can be found in
[14, 36, 64, 65, 69, 70].

Despite being able to detect events through three different reactions, SNO wasn’t
able to perform an event-by-event separation of the signals detected by the PMTs.
Thus a statistical separation of the event classes by means of an Extended Maximum
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Likelihood fit was performed for each dataset. This constraint also influenced the
output of the SigEx analysis as, by not being able to tag individual events, the
output was either a distribution of each event type in terms of the reconstructed
energy (Teff ) or a total number of each event class integrated over the whole energy
range of the analysis.

In order to perform the SigEx analysis, 4-dimensional PDFs were built from
simulated MC events, describing the signature of each class of event as a function of
the four observables described in Section 5.2 and taking into account the response of
the detector in each phase1.

A negative extended Log-Likelihood fit was then performed on the data. The
results of the fit were the fractions of each class of events, per bin of the PDFs, in
the data set. Additionally, the NC events were integrated, as these are detected by
capture of the termalised neutron from the NC reaction, and thus do not have in-
formation about the incoming neutrino. The total number of neutrons (statistically)
identified as originating from the NC reaction was then an almost direct measurement
of the solar flux of 8B neutrinos2.

By letting the relative amplitude of individual Teff bins vary, an unconstrained
fit was performed, losing the last model dependence, the 8B spectrum shape. As
the number of NC events, after correcting for the neutron backgrounds, was a direct
measurement of the total 8B solar neutrino flux, this allowed to perform a virtually
model independent analysis.

The output for the CC and ES signals was presented in terms of a binned recon-
structed electron energy spectrum. Alternatively, these spectra were shown in terms
of the fraction of the SSM that should be detected in that reconstructed energy bin,
in case no neutrino oscillations were present. This last method essentially allows to
show an effective flux of solar neutrinos detected through CC (or ES) for each bin in
reconstructed energy. In Figure 5.2, the reconstructed energy spectra of CC and ES
events obtained from two independent SigEx methods used in the LETA analysis is
shown as a fraction of the SSM prediction. The large uncertainty on the CC events

1In case of LETA analysis, the unconstrained fit result was obtained by using two separate
detector response functions, each one describing one of the analysed phases.

2As described in Chapter 2, there were a series of backgrounds that could fake a NC event. These
had to be subtracted in order to obtain the number of NC events from 8B solar neutrinos.
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at the low energy range (3.5MeV ≤ Teff ≤ 4.5MeV ) in Figure 5.2(a) is due to the
large number of low energy background events at these energies.

The corresponding electron energy spectrum for ES events is also shown in Figure
5.2(b), where the large error bars make clear the effect of the low statistics for this
reaction in SNO.
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Figure 5.2: SigEx output from the LETA analysis for CC and ES events. The red and black
marks represent results from different SigEx methods. Figures from [70].

As the neutron events do not carry any information about the incoming neutrino
the total number of NC events was then converted into a flux of 8B solar neutrinos.
Figure 5.3 shows the result obtained in the SigEx in the LETA analysis, compared
with two SSMs with different metallicity models .

This method, however, has a few shortcomings when applied in the simultaneous
analysis of data from different phases [136].

• Unphysical large number of degrees of freedom: The width of the differential
cross section (dEν/dEe), combined with the detector response, spreads a single
neutrino energy over nearly 4 reconstructed electron energy bins.

• Interpreting the output spectrum is a non-trivial task: The very broad res-
olution in mapping neutrino energy to reconstructed electron energy makes
individual CC bins to have large correlations which are not captured directly
in the covariance matrix in the fit. These correlations come from the assump-
tion that CC events come from a smooth neutrino spectrum which is smeared
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Figure 5.3: Measurement of the total 8B Solar neutrino flux in LETA analysis, as well as
predictions from two SSMs (BS05(OP,GS)) and BS05(OP,AGS) [26]).

out by the CC interaction and the detector response. In order to properly treat
these correlations when performing a physics analysis, one needs a full analytic
form for all these terms.

• Difficulty in combining phases with very different energy resolutions: By having
different energy resolutions, the reconstructed energy of events from each phase
may not have a direct correspondence, which strongly limits the number of bins
in Teff , and weakens the physics analysis potential of the results.

For these reasons, with most relevance to the last, a different approach for the
SigEx was implemented, which is described below.

5.5.2 Polynomial parameterisation of the Electron Neutrino

Survival Probability

In the combined analyses of the different phases of SNO, a new method of SigEx was
developed, in which the results are now described as a function of the total 8B solar
neutrino flux and a parameterisation of the spectral distortion observed. This method
was created in order to deal with a series of shortcomings in the previous method
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that are associated with the combination of different phases of SNO. By measuring
the distortion of the neutrino 8B energy spectrum, this SigEx method is virtually
performing a direct determination of the electron neutrino survival probability (Pee).

The observables are the same as the reconstructed energy method, but now the
PDFs have an additional dimension: the MC generated neutrino spectrum (Eν) for
each bin of the reconstructed energy. As there is no direct information from the
detector concerning the neutrino energy of each event, the signal PDFs are no longer
static as in the previous method. They now have to be re-weighted for each event, as
the neutrino energy PDF will have a different shape depending on the reconstructed
energy of the event.

Furthermore, this SigEx method attempts to evaluate the distortion of the energy
spectrum of the 8B electron neutrinos, and thus its output is a function of Eν . In
lack of a better generic functional form, as the electron neutrino survival probability
results from the solution of a system of coupled differential equations (see Chapter 1),
the survival probability is expanded in a form of a polynomial around Eν = 10MeV ,
which corresponds to the best energy response of the SNO detector:

Pνe→νe = c0 + c1 (Eν − 10 [MeV ]) + c2 (Eν − 10 [MeV ])2 . (5.4)

Additionally, the asymmetry of the signal events detected by day and night is
also parameterised as a linear function:

Aee (Eν) = a0 + a1 (Eν − 10 [MeV ]) . (5.5)

More details about the exact implementation of these functions in the SigEx anal-
ysis are presented in Section 5.6. In this context, the centre of the energy response of
SNO detector corresponds to the peak of the neutrino spectrum sensitivity, after tak-
ing into account all detection effects such as cross sections, efficiencies and detector
response in electron reconstructed kinetic energy. This is basically the 8B neutrino
spectrum convoluted with the cross sections and detector energy response for elec-
trons, taking into account the analysis cuts and is henceforward referred to as the
detector sensitivity function (or spectrum). In Figure 5.4 the sensitivity function of
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SNO is shown, along with two examples of the electron neutrino survival probability.

The outputs of this analysis method are the polynomial coefficients ci, ai and the
scale of the 8B flux determined by the NC events in comparison with the SSM used in
the MC. Together with the central values, the output also consists of the parameter
uncertainties, both statistical and systematic. Additionally, the correlation matrix
is also necessary to carry out the physics analysis, as the correlations between the
coefficients are stronger than the ones obtained in a reconstructed energy fit.
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Figure 5.4: Sample survival probability curve of 8B neutrinos as a function of neutrino
energy for the energy range relevant for SNO. Both day and night survival probabilities at
the SNO location are represented. The SNO sensitivity in neutrino energy is also shown.
The sensitivity spectrum is not to scale.

For the neutrino oscillation analysis the detector sensitivity function is also nec-
essary. More information about the usage of this spectrum will be given in Section
6.3.2. This sensitivity spectrum is obtained from the SigEx fit, by projecting the
signal PDFs used to obtain the SigEx outputs into neutrino energy.

5.6 The 3-phase Combined Analysis

The three phase combined analysis (3-phase) is the latest and probably the last solar
neutrino analysis of SNO data sets. It uses the data sets of the low energy threshold
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analysis (LETA), where the D2O and Salt phases were combined and reanalysed
in a single analysis with a lower reconstructed energy (Teff ) threshold of 3.5 MeV
[70], with the NCD phase data, both PMT and NCD, and perform a single analysis
of all three phases as a single data set. This means that the same cuts, estimates
of backgrounds, and systematic errors of each original analysis will be used, where
possible. This shall lead to a single result, that will describe the whole data set of
SNO covering the three phases of data taking.

A new analysis of the data from the NCD array is also performed , the pulse shape
analysis (PSA), which is included in the general signal extraction [137, 138]. The
ionisation waveform produced by neutron capture on the 3He proportional counters is
distinguishable from other waveforms, making it possible to be used together with the
total energy to distinguish neutron captures from other backgrounds. This analysis
will produce a constraint in the Neutral Current flux measurement of SigEx. Some
more details will be given below.

5.6.1 Combination of Data Sets

The combination of the D2O and Salt phase is extensively documented in [70, 136,
139, 140]. By aiming to use the most of the previous LETA [70] and NCD phase
analysis [69], the systematic uncertainties defined for each analysis were also inher-
ited and used for the 3-phase fit. In this context, the only correlating systematic
uncertainty will be the energy scale.

In the previous analysis (LETA), the primary SigEx method consisted in the sta-
tistical separation of events using the observables described in subsection 5.2 and the
output was obtained as a function of the reconstructed electron energy, as described
in 5.5.1. Later, using only the CC part of the events, a measurement of the electron
neutrino survival probability was performed providing the output described in sub-
section 5.5.2. In this case the ES portion of the events was not considered, as the
statistics are very low and it was considered that it wouldn’t significantly affect the
final result [136].

One of the major challenges of combining different phases is dealing with the
different energy responses of the detector in each phase. While D2O and Salt phases
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have energy responses similar enough that could be properly dealt with a sensible
choice of the bin widths in reconstructed energy; it is not the case in the 3-phase
analysis. By introducing the proportional counters in the NCD phase, the PMT
energy response was significantly changed and thus a SigEx analysis in reconstructed
electron energy was seriously compromised [141] as the width of the reconstructed
energy bins would have to be considerably larger (at least 1 MeV, as opposing to
the 0.5 MeV used in the past analyses) and thus the physics analyses would be
substantially limited.

Thus, in the case of the 3-phase analysis, there isn’t a SigEx separation in recon-
structed energy, and thus the only SigEx method used is the interpretation of the
solar neutrino spectral distortion as described in subsection 5.5.2. The reconstructed
energy (Teff ) will still be one of the input observables but now, together with the
additional dimension in the PDFs (the distribution of neutrino energies as a func-
tion of the detector reconstructed energy) the detector response going from neutrino
energy to electron energy is included in the MC used to generate the PDFs.

It is important to note that by aiming to extract a survival probability from the
whole data set, the ES class of events should be separated into the electronic compo-
nent (ESe) and the remaining active component (ESµτ ), as they contribute differently
to the survival probability. The ESµτ component contributes to the survival probabil-
ity as ∝ 1−Pee(Eν), while its electronic component has a direct Pee(Eν) contribution.
This also means that although improvements such as background estimations and en-
ergy resolution will be inherited from the previous analyses, a completely new SigEx
will be performed.

Besides the signal extraction of the 8B flux and survival probability, there is also
an attempt to measure the solar neutrino flux from the hep neutrino reaction, which
up to now has never been experimentally measured. Only theoretical predictions and
an experimental upper limit exist [129].

In the following subsections a brief description of the most relevant improvements
to the analysis will be given.
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5.6.2 Pulse Shape Analysis

In the initial analysis of the data from the NCD phase [69], the data from the pro-
portional counters was analysed by studying only its energy spectrum, originating
from the integrated charge of the shaped electrical signal. This was produced by
the electron-ion pairs generated by the proton and triton produced in the counter,
as described in Section 2.4. This consists in a statistical separation of the neutron
events from the other NCD backgrounds, of which α particles are the most common.

For the 3-phase analysis, a new method of counting the detected neutron events
was implemented, by use of the digitised NCD pulse shapes: the pulse shape analysis
(PSA).

When a particle ionises the gas inside the proportional counter, an ionisation
waveform is produced. This waveform has a series of features, that depend on the
dE/dx and can be used to distinguish the particle that originated from the pulse. In
the case of the NCDs the large majority of the events come from neutrons (signal
and background) and from α particles (background). Examples of the corresponding
waveforms obtained both from data and MC are shown in Figure 5.5. Figure 5.5(a)
shows an α waveform obtained from a NCD counter filled with 4He and the corre-
sponding best fit from the PSA analysis for the α hypothesis. Figure 5.5(b) shows a
neutron waveform obtained from 24Na calibration data and the corresponding PSA
best fit for a neutron signal.

Although this technique is very promising for event-by-event discrimination, there
are some inherent difficulties. For instance, the exact shape of the current pulse
depends on the radius at which the primary ionisation occurred. Therefore the shape
of the pulse also depends strongly on the location of the ionisation track in the counter
and in what direction the proton and triton or alpha were traveling. This leads to a
wide variety of possible pulse shapes.

Due to the large variety of possible pulse shapes, different methods of analysis
were implemented using different principles. The details of those methods are thor-
oughly described in [131, 137, 138]. The final number of NC events is obtained by
combining the event-by-event selection of the three PSA methods, and then feeding
their background constraint to an energy fit of the NCD data, thus reducing the
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Figure 5.5: Examples of waveforms obtained from real data with the corresponding Monte-
Carlo generated pulses. The blue lines represent the boundaries of the time windows used to
fit the data to the MC. Figures from [127].

statistical uncertainties [131]. The number of NC neutrons obtained from this fit is
then joined in the final SigEx fit as a constraint of the total NC events.

5.6.3 Choice of the Survival Probability Parameterisation

In Section 5.5.2, a description of the new output parameterisation was presented.
In this context, the choice of the specific parameterisation is an important step. In
order to decide upon the best spectral distortion parameterisation, there are two
aspects that need to be taken under consideration. Firstly, since there is no simple
theoretically-motivated parameterisation of the electron neutrino survival probability,
it was decided to use the most general empirical approach that could describe the
distortion. Second, one has to make a compromise in the number of degrees of
freedom of the parameterisation in order to optimise the sensitivity to the widest
range of oscillation parameters, but still be able to have reasonable uncertainties in
the output parameters. In the context of this thesis, a verification of the former
consideration was performed and will be explained below [142].

As the electron neutrino survival probability in the presently allowed region of
oscillation parameters (quoted in Table 1.3) behaves like a continuous, slowly varying
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function, and by lacking a more accurate analytical expression, a high order poly-
nomial was considered to be the best choice. In general, a choice of a polynomial
function is a dangerous choice as the regularity of the function can hide effects that
otherwise could be visible. In fact, different alternative parameterisations were tried,
with particular emphasis on a binned parameterisation [131]. However, this was later
verified to yield biased results, coming from the fact that event statistics constrained
the number of bins in neutrino energy to be small. Inside a bin the survival prob-
ability was thereafter averaged, losing the distinctive features of a slowly varying
function[131, 143].

In Figure 5.4, an example curve of electron neutrino survival probability (Pee) is
shown for a random set of oscillation parameters inside the current allowed region.
The SNO sensitivity is also shown in terms of neutrino energy.

Definition of a goodness of fit condition

Given the generality of a polynomial parameterisation, one should use the highest
polynomial degree possible, keeping under consideration that the higher the degree,
the longer the fit would take to converge, and the neutrino event statistics might not
be enough to constrain reasonably each of the parameters.

In order to verify which polynomial degree could better describe the model sur-
vival probabilities, it was necessary to define a figure of merit that would evaluate the
accuracy of the fit over a wide range of survival probability parameters. In Figure
5.6, different examples of survival probability curves are shown for different regions
characterised by two oscillation parameters (tan2 θ12 and ∆m2

21) that were once con-
sidered as the best fit solution for the values of these parameters. For instance, the
current allowed region of oscillation parameters (quoted in Table 1.3) is located in a
region commonly denominated Large Mixing Angle (LMA), characterised by a large
(albeit non-maximal) mixing angle of ≈ 35◦ and a value of ∆m2

21 on the order of
1 × 10−5eV 2. In this region the survival probability has a shape similar to the one
shown in the upper left plot of Figure 5.6. However, it should be noted that the cur-
rent parameter limits are obtained by joining the data from all neutrino experiments.
The allowed regions of oscillation parameters for each experiment taken alone are in
fact much wider, as their sensitivity is not enough to rule out the other regions.



5.6 The 3-phase Combined Analysis 165

Figure 5.6 illustrates clearly the problem of defining a reasonable goodness of fit in
the evaluation of how well a polynomial function describes the survival probabilities.
For instance, the survival probability in the LMA region shows a small, slowly de-
creasing variation of the survival probability around Pee ≈ 0.30 (for neutrino energies
above 4 MeV, which is the region of interest for SNO), while for instance the survival
probability in the small mixing angle (SMA) or vacuum (VAC) shows a different be-
haviour, not only in shape, but also in the scale. In the figure, the blue shaded area
is the sensitivity of SNO in neutrino energy, the same that was shown in Figure 5.4.
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Figure 5.6: Examples of survival probability curves in different solutions, identified by the
oscillation parameters. The solution are: large mixing angle (LMA), low mass (LOW),
small mixing angle (SMA) and vacuum (VAC) . The oscillation parameters considered for
each curve are given in the figure.

In order to estimate how much the polynomial parameterisation is similar to the
full numerical calculation of the survival probability P theo

ee (Eν) the relative differ-
ence between the two is used for a discrete, but large, number of points sampled
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equidistantly in neutrino energy in the range from 4 to 16 MeV;

Gn =
1

N

N∑

i=0

∣∣P n(Ei
ν)− P theo

ee (Ei
ν)
∣∣

P theo
ee (Ei

ν)
. (5.6)

The choice of using the modulus was taken in order to always get a positive value
and avoid cancelations in the residual between the polynomial and the full numerical
calculation. Furthermore, although the survival probability is a continuous function,
in the analysis algorithm there is a well defined number of sampled neutrino energies.
By determining the relative difference one does not have to worry about the scale of
the survival probability for a particular subgroup of the oscillation parameters. The
closer the sum in Equation 5.6 is to zero, the better is the agreement between the
theoretical survival probability and the polynomial parameterisation.

As an example, in Figure 5.7, an example of the fit using five polynomial functions
of different orders. The results of the agreement between the polynomials and the
functions are shown in the figure.
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Figure 5.7: Fit of five polynomial functions of different orders, centered at 10 MeV, to the
model survival probability a selection of oscillation parameters compatible with the LMA
solution. The oscillation parameters used were tan2 θ12 = 0.447 and ∆m2

21 = 8.5 × 10−5

eV2. The results obtained by determining the difference using Equation 5.6 are also shown.

It is important to note that the polynomials are defined as the day survival prob-
ability centered at 10 MeV.
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Results

Using the definition of Equation 5.6, the range of the oscillation parameters (hence-
forward called MSW parameter space) was sampled for the respective day survival
probabilities in the region of neutrino energies from 4 to 16 MeV, which is the re-
gion where SNO is sensitive. Each survival probability curve was then fitted to five
polynomials of different orders following the form described in Equation 5.7:

P n(Eν) =
n∑

i=0

ci (Eν − 10MeV )i (5.7)

and the term Gn was obtained, for n = 1, ..., 5.

Figure 5.8 shows the results obtained for each of the polynomials considered. The
range of oscillation parameter values sampled is much larger than the current allowed
region to evaluate how accurate this procedure would be without prior information
about the oscillation parameters. As expected the results show an increasing accuracy
of the fit with higher orders of the polynomials. From the results it was verified that,
for polynomials above third order, the benefit was marginal although a second order
polynomial already yields very good results with a relative integrated difference of less
than 2%, which is less than the theoretical uncertainties in the 8B neutrino spectrum,
showing only a small disagreement in the more peripheral regions of the currently
allowed parameter space.

Similar tests performed on the SigEx analysis side demonstrated that the number
of events in the data set wouldn’t allow the fit to go beyond a second order polynomial
[136]. Therefore the final choice was settled as performing a second order polynomial
fit.

It is important to recall that this verification aimed solely to verify how well
polynomial functions of different orders agreed with the model survival probability.
In this sense it would be better to use a third or higher order polynomial. However,
there is an important factor that has to be taken under consideration. The expression
used to evaluate the accuracy of the polynomial parameterisation weighs equally the
survival probability at all neutrino energies, which is not true in the case of a real
experiment. A more accurate verification should also account for the sensitivity of
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Figure 5.8: Accuracy of the fitted polynomials as a function of the oscillation parameters.
The current allowed region for the oscillation parameters obtained from a combined fit of all
solar neutrino experiments is also shown. The colours represent the value of the parameter
Gn described in Equation 5.6.
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the experiment in neutrino energy.

Therefore Equation 5.6 was changed to weigh in the differences according to the
sensitivity distribution w(Eν) that is shown in Figure 5.6. The new expression to
evaluate the accuracy of the fit then became

Gn
weighted =

1

N

N∑

i=0

w(Eν)
∣∣P n(Ei

ν)− P theo
ee (Ei

ν)
∣∣

P theo
ee (Ei

ν)
. (5.8)

Repeating the analysis and using the sensitivity distribution, scaled to have the
maximum at one (where the sensitivity is higher), the results shown in Figure 5.9
were obtained.

The results show a much better accuracy in the polynomial representations, which
now show a discrepancy well below 1%. As the sensitivity decreases steeply from it
maximum at 10 MeV, it becomes less relevant if the polynomial function is not so
accurate at the edges of the sensitivity range.

Furthermore, taking into account the detector sensitivity it is shown that the
second order polynomial agrees with the model survival probability to less than 2%
over a wider range of the oscillation parameters. It should be noted that the region
of the current limits on the oscillation parameters are at 3σ level, making the regions
where the polynomial function does not represent well the model curves strongly
disfavoured.

As mentioned before, a similar verification was performed in the SigEx side of the
analysis by constructing distorted Monte Carlo data sets distorted by the model sur-
vival probabilities and using a polynomial parameterisation to recover the distortion
applied. Those tests yielded results consistent with the ones described here [136].

5.6.4 Specific Survival Probability Parameterisation

Following the results discussed in the previous section and the results obtained from
the SigEx analysis, it was planned to extract a second order polynomial parameter-
isation of the day survival probability with an additional first order polynomial to
parameterise the asymmetry between day and night.
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Figure 5.9: Accuracy of the fitted polynomials weighing the residuals by the sensitivity of
SNO.The colours represent the value of the parameter Gn described in Equation 5.8.
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The polynomial fit employed in the analysis has six free parameters:
c0, c1, c2, a0, a1 and f8B, which are the output that later is used in the neutrino oscil-
lation analysis (Chapter 6). The ci terms are the coefficients of the polynomial that
describes the survival probability during the day, where there are no Earth matter
effects:

PD
ee ≡ Pνe→νDe (Eν) =

2∑

i=0

ci (Eν − 10 [MeV ])i . (5.9)

The ai parameters describe the asymmetry between day and night neutrino sur-
vival probabilities,

Aee (Eν) =
2
(
PN
ee − PD

ee

)

PN
ee + PD

ee

, (5.10)

which is defined in the fit as

Aee (Eν) = a0 + a1 (Eν − 10 [MeV ]) . (5.11)

Using these definitions, the day CC and electronic component of the ES fluxes
during the day are scaled by PD

ee . The night time equivalents are scaled by

PN
ee = PD

ee

1 + Aee/2

1− Aee/2
. (5.12)

The non-electron components of day and night ES flux are scaled, respectively,
by 1− PD

ee and 1− PN
ee .

Since the fit now aims to look directly into a possible electron neutrino spectral
distortion, the fit is no longer independent of the shape of the 8B neutrino spectrum.
Although the detector response to neutrons is well known, and the NC reaction is
insensitive to neutrino flavour, the term f8B is a direct comparison of the NC flux
with respect to the SSM predicted 8B solar neutrino flux.
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5.7 Results from the Signal Extraction

The technical details of the SigEx algorithms are extensively documented [70, 128,
130, 131, 136]. For the purposes of this thesis, these details are not particularly
relevant as the output parameterisation is well established. In the following sections
the structure of the outputs for the specific case of the 3-phase will be given, as well
as the additional information necessary to carry on the neutrino oscillation analysis.
Furthermore, the final results obtained in the 3-phase analysis will also be presented,
as those outputs will be used in Chapter 6 to perform the neutrino oscillation analysis.

5.7.1 Outputs from Signal Extraction of the 3-Phase Analysis

As described earlier, the outputs of the 3-phase analysis will consist in three coeffi-
cients of a second order polynomial function, centred at Eν = 10 MeV, two additional
linear function coefficients that describe the asymmetry between day and night (also
centred at 10 MeV) and one parameter that describes the scale of the 8B flux mea-
sured by SNO against the prediction of the solar model used in the MC. Each of
these outputs will have an associated total statistical uncertainty and a systematic
uncertainty.

Besides these outputs, the correlation matrix is also provided, being coefficients of
a function in neutrino energy. There are strong correlations between the coefficients
themselves. It is easy to understand why it is so. For instance the night survival
probability is not added directly to the fit, but is parameterised by the two parameters
a0 and a1 that describe the difference between the day and night survival probabilities.

Some systematic uncertainties and background levels are also part of theSigEx fit.
Although effectively their values are part of the SigEx output, the neutrino oscillation
analysis does not depend on them directly. In the final results a single systematic
uncertainty is provided for each polynomial parameter, which is obtained by adding
up the contribution of each individual hidden floating or scanned parameter.

In Table 5.1 there is a complete list of the outputs of the SigEx analysis. The top
part of the table lists the parameters that are relevant for the neutrino oscillation
analysis, while the second part of the table lists other parameters that were floated
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in the fit, along with the model parameters, but are not passed on to the neutrino
oscillation analysis, either because they have no physical meaning in terms of neutrino
oscillations (like backgrounds), or because their effect is propagated through the
systematic uncertainties on the relevant parameters.

5.7.2 Signal Extraction results of the full 3-Phase data set

In the following section the final results obtained from the analysis of the full 3-phase
data set are described, with particular emphasis to the results necessary to carry the
neutrino oscillation analysis described in Chapter 6. Some informations about each
of the phases was already provided in Section 2.2.

Data set results

In Table 5.2 the outputs relevant for the neutrino oscillation analysis are presented.
The systematic uncertainty in each parameter corresponds to a total systematic un-
certainty adding up the contributions from all fitted, scanned and shifted parameters.

The correlations between the parameters are also necessary in order to perform
the physical interpretation of the data and are quoted in Table 5.3.

The results obtained from this analysis can be separated into two parts. The
measurement of the total solar neutrino flux, which is extracted in the form of a
fraction of the total solar neutrino flux predicted by the solar model used in the
generation of the MC (BS05(OP) : Φ8B = 5.69 × 106 cm−2s−1) and is identified
as f8B. Figure 5.10 shows an updated version of Figure 5.3, now including the
result obtained from the 3-phase analysis. The uncertainty in the total 8B neutrino
flux was slightly improved with respect to the previous SNO measurement, reducing
the uncertainty of 4% obtained in the LETA analysis down to 3.7%. Despite this
improvement in the total flux uncertainty, which is now four times smaller than the
solar model uncertainty, it is not possible yet to distinguish between different solar
models, as shown in Figure 5.10, since the central value of SNO falls precisely in the
intersection of the 1σ ranges of both solar models.
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Parameter Type Description
a0

Model parameter

ADNcoefficients
a1
c0

PDee coefficientsc1
c2
f8B Scale of NC flux versus SSM

Outputs not used in the neutrino oscillation analysis
d2o_bi_d2o_day

Internal Backgrounds

214Bi in D2O
d2o_bi_d2o_night
salt_bi_d2o_day
salt_bi_d2o_night
d2o_tl_d2o_day

208Tl in D2O
d2o_tl_d2o_night
salt_tl_d2o_day
salt_tl_d2o_night
salt_24na_night 24Na in D2Osalt_24na_day
d2o_bi_h2o_night

External Backgrounds

214Bi in H2O
d2o_bi_h2o_day
salt_bi_h2o_day
salt_bi_h2o_night
d2o_bi_av_bulk_day 214Bi in the AVsalt_bi_av_bulk_day
d2o_tl_h2o_day

208Tl in H2O
d2o_tl_h2o_night
salt_tl_h2o_day
salt_tl_h2o_night
d2o_tl_av_bulk_day

208Tl in the AVsalt_tl_av_bulk_day
d2o_av_surface_n_d Neutron events on AV surfacesalt_av_surface_n_d
d2o_pmt_day 208Tl and 214Bi in PMTssalt_pmt_day
ncd_pmt_b8nc_n_cap Scale parameter NC flux to PMT NC events factor
ncd_pmt_ex_dn Systematic Error External neutrons DN asymmetry
ncd_pmt_ex External Background External neutrons (H2O,AV)
ncd_pmt_d2opd Internal Background Internal neutrons (D2O)
ncd_pmt_d2opd_dn Systematic Uncertainty Day/night asymmetry (internal neutrons)
ncd_pmt_atmos Background Atmospheric neutron events
ncd_pmt_ncdpd Background NCD bulk neutron events
ncd_pmt_k2pd Background NCD hotspot
ncd_pmt_k5pd Background NCD hotspot
ncd_ncd_b8nc_n_cap Scale parameter NC flux to NCD NC events factor

Table 5.1: List of all SigEx outputs separated into outputs used in the oscillation analysis and
outputs propagated through systematic uncertainties. Detailed explanation of each parameter
in [69, 70, 131, 136].
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Parameter Central value Statistical Uncertainty Total Systematics
8B Scale 0.9235 +0.0283

−0.0280
+0.0189
−0.0220

PD
ee (Eν) polynomial coeficients

c0 0.3174 +0.0163
−0.0156

+0.0093
−0.0093

c1 0.0039 +0.0065
−0.0067

+0.0045
−0.0045

c2 -0.0010 +0.0029
−0.0029

+0.0014
−0.0016

ADN(Eν) coeficients
a0 0.0464 +0.0307

−0.0306
+0.0141
−0.0131

a1 -0.0163 +0.0253
−0.0253

+0.0096
−0.0106

Table 5.2: Results of f8B, Pee and Aee from the 3-phase data set.

8B Scale c0 c1 c2 a0 a1
8B Scale 1.000 -0.723 0.302 -0.168 0.028 -0.012
c0 -0.723 1.000 -0.299 -0.366 -0.376 0.129
c1 0.302 -0.299 1.000 -0.206 0.219 -0.677
c2 -0.168 -0.366 -0.206 1.000 0.008 -0.035
a0 0.028 -0.376 0.219 0.008 1.000 -0.297
a1 -0.012 0.129 -0.677 -0.035 -0.297 1.000

Table 5.3: Correlation matrix of the output parameters quoted in Table 5.2.

Another important result is the functional parameterisation of the electron neu-
trino survival probability. Figure 5.11 shows the RMS spread in the survival prob-
abilities, PD

ee (Eν), P
N
ee (Eν) and day/night asymmetry ADN(Eν) corresponding to the

obtained results of Tables 5.2 and 5.3. The bands were computed by generating 1000
samples of correlated random coefficients through Cholesky decomposition [110] and
drawing the corresponding RMS spread.

In this context it is relevant to note the value of the parameter c0, which corre-
sponds to the scale term of the polynomial. In other words, this parameter represents
roughly the ratio CC/NC. This is further confirmed by the large anticorrelation with
f8B verified in Table 5.3. Similarly, one can interpret the value of 1−c0/σc0 as the
significance of the flavour change hypothesis. From the values in Table 5.2 one can
verify that the flavour change hypothesis has a significance of over 30 sigma. Look-
ing at the numerical values and respective uncertainties of the remaining polynomial
parameters it is possible to infer that the final results are consistent with a flat dis-
tribution (i.e. no spectral distortion). The same conclusion can be drawn from the
asymmetry parameters, whose values are consistent with zero. In this context it is
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Figure 5.10: Comparison of the total 8B Solar neutrino flux measured by the different anal-
yses of SNO with the predictions from two solar models using different heavy element abun-
dance models (BS05(OP,GS) and BS05(OP,AGS) [26]). The final results from the combined
analysis o the 3 phases of SNO described in this Section is also shown.
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Figure 5.11: Best fit and RMS spread in the day (Pee(Eν)) for both day and night survival
probability functions and day/night asymmetry (Aday−night(Eν)). The curves were generated
using the data from Tables 5.2 and 5.3.

also interesting to notice the large anti-correlation between the slope parameter of
the day survival probability (c1) and the slope parameter of the day-night asym-
metry (a1). This result is consistent with the conclusion of the absence of spectral
distortion, where both slope parameters compete with each other in the shape of the
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survival probability.

In the next Chapter these results will be used in the context of a phenomenological
study of neutrino oscillations, aiming to extract the most precise estimate of the
neutrino oscillation parameters.





Chapter 6

Neutrino Oscillation Analysis

The remaining of this thesis covers the interpretation of the properties of solar neu-
trinos based on the experimental data, in the context of matter induced neutrino
oscillations. This work represents the totality of the neutrino oscillation analysis in
[127], plus some further analyses which were not included in the final paper. Some
of the concepts and verifications described in this chapter were also used in [70].

The presented results are obtained from the combined 3-phase signal extraction
results described in Chapter 5. Section 6.1 is a review of the phenomenology of
neutrino oscillations. A description of the different inputs necessary to obtain the
survival probability of an electron neutrino at a given location in the Earth is de-
scribed in Section 6.2, along with a demonstration of their respective effects on the
survival probability. Section 6.3 gives a description of the analysis methods employed
in the determination of the neutrino oscillation parameters. Finally in Section 6.5
the results of a neutrino oscillation analysis with SNO data are shown. An oscillation
analysis combining all solar neutrino experimental data up to date is also presented,
which allows a further improvement on the oscillation parameters and an attempt
to constrain the currently unknown parameter θ13. A global analysis combining the
reactor experiment KamLAND [61] and the θ13 constrain of several other accelerator
and reactor experiments are shown which allows not only to demonstrate the confir-
mation of the neutrino oscillation phenomenon by combining results from different
types of experiments, but also to obtain the best possible constraint in θ13.

179
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The mechanism at the source of neutrino oscillations has been briefly described
in Chapter 1 and is explained in the following sections in more detail.

6.1 Phenomenolgy of Neutrino Oscillations

The heart of the phenomenological study of neutrino oscillations is the calculation of
the electron flavour neutrino survival probability (Pee) for a given detector location
and a set of oscillation parameter values. In the following sections the phenomenology
of neutrino oscillations will be revisited and the theoretical derivation of the survival
probability using different approaches will be covered.

6.1.1 Introduction

Neutrino oscillations are a direct result of the quantum interference patterns of the
neutrino mass eigenstates. Neutrinos are produced in weak eigenstates which are a
quantum mixture of mass eigenstates. If the masses differ, interference patterns arise
from the evolution of the neutrino states in time resulting in an oscillatory pattern in
its composition in terms of weak eigenstates. This mixing effect is governed by the
mixing matrix, U , which can be parameterised in terms of three angles (θ12, θ13, θ23),
that govern the amplitude of the oscillations, and a complex phase (δ) that allows
the possibility of CP violation:
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U =




Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3




= R23 ×R13 ×R12

=




1 0 0

0 c23 s23

0 −s23 c23


×




c13 0 s13e
−iδ

0 1 0

−s13e
iδ 0 c13


×




c12 s12 0

−s12 c12 0

0 0 1




=




c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13


 . (6.1)

where cij = cos θij and sij = sin θij and R12, R23 and R13 correspond to the
three rotation matrices in which the mixing matrix can be parameterised. The only
constraint on the mixing matrix is that is has to be unitary.

There are several references in literature covering the formalism of neutrino os-
cillations [2, 19, 20, 144–146], but most only cover the calculation in a two flavour
scenario. The two neutrino state model assumes two flavour (νe, νa=µ,τ ) and mass
(ν1, ν2) eigenstates. In this context the parameter θ13 is set to zero, decoupling R12

and R23, reducing the mixing matrix in Equation 6.1 to the rotation matrix R12. This
common approximation is due to the simpler calculations, but mostly because only
recently the precision of the solar neutrino experimental results was enough to study
the second order effects of θ13. The calculations in this thesis will all be carried in
a three flavour framework, keeping in mind that one can at any point recover a two
flavour scenario by eliminating the oscillation angle θ13 by fixing its value to zero.

The following sections will review the formalism of the survival probability cal-
culation in vacuum and matter, in order to better understand its implementations
explained later on.
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6.1.2 Oscillations in Vacuum

Following up from the derivation described in Section 1.2.1 and considering that
neutrinos are produced in the Sun replacing the flavour states α, β ≡ e we can obtain
an explicit form for the vacuum electron neutrino survival probability as:

Pee =

∣∣∣∣UeiU∗iee
−i∆m2

i1L

2Eν

∣∣∣∣
2

=

∣∣∣∣|Ue1|2 + |Ue2|2e−i
∆m2

21L

2Eν + |Ue3|2e−i
∆m2

31L

2Eν

∣∣∣∣
2

=
(
|Ue1|4 + |Ue2|4 + |Ue3|4

)
+ 2|Ue1|2|Ue2|2 cos

(
∆m2

21L

2Eν

)

+ 2|Ue1|2|Ue3|2 cos

(
∆m2

31L

2Eν

)
+ 2|Ue2|2|Ue3|2 cos

(
∆m2

21 + ∆m2
31

2Eν
L

)
. (6.2)

Replacing the matrix terms Uei by the angle dependent terms the resulting sur-
vival probability is:

Pee = 1− 1

2
cos4 θ13 sin2(2θ12)

(
1− cos

(
∆m2

21L

2Eν

))

− 1

2
sin2(2θ13)

(
1− cos

(
∆m2

31L

2Eν

))

− 1

2
sin2 θ12 sin2(2θ13)

(
cos

(
∆m2

31L

2Eν

)
− cos

(
∆m2

21 + ∆m2
31

2Eν
L

))
. (6.3)

6.1.3 Oscillations in Matter

In the context of solar neutrinos it is important to consider the matter effects in
neutrino oscillations, where the flavour states are affected by effective potentials
caused by matter, that alter the evolution equation.

Following the discussion in Section 1.2.2, by considering the effect of charged
current interactions, the total Hamiltonian in the flavour basis becomes the sum of
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a vacuum part H0 and a matter part H1, both of which are described in different
bases:

Hf = UH0U † +H1

=
1

2E




Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3







0 0 0

0 ∆m21 0

0 0 ∆m31







U∗e1 U∗µ1 U∗τ1

U∗e2 U∗µ2 U∗τ2

U∗e3 U∗µ3 U∗τ3




+
1

2E




ACC 0 0

0 0 0

0 0 0


 ,

(6.4)

where ACC = 2
√

2EνGFNe is the matter potential already described in Section
1.2.2. The mixing matrix U is used to perform a transformation to convert the
vacuum Hamiltonian into the flavour basis.

There exists now a new basis, {|νmi >}i=1,2,3, the matter eigenstate basis, where
the Hamiltonian is diagonal. In this new basis the time evolution of the eigenstates
is just e−i

Ei
~ t, where Ei are the eigenvalues of the total Hamiltonian including the

matter term. By diagonalising this Hamiltonian one can solve for this basis and then
find the transformation T that transforms back to the flavour basis:

T †HfT |νmi >=Ei|νmi >

|νf >f=e,µ,τ=T |νmi >i=1,2,3 . (6.5)

As solar neutrinos are produced close to the core of the Sun, they experience
large and varying electron densities, which affect the Hamiltonian at any point of the
neutrino propagation making the determination of an analytical solution for the oscil-
lation probabilities extremely difficult without using several assumptions and approx-
imations. Therefore the most general calculation of the electron survival probability
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involves a numerical integration of a system of coupled differential equations:

i
d

dx
ψα (x) = Hfψα (x) , (6.6)

where x is the position along the propagation direction and ψα (x) is a vector
containing the real and imaginary coefficients of the wave function in flavour space.
This system is then solved for each point x as the wave function is propagated from
the starting point to the end point.

Within the allowed range of the oscillation parameters, it is possible to derive
analytically the survival probability in matter through an adiabatic approximation.
This calculation is explained in more detail below.

Adiabatic Approximation

The present allowed range on the oscillation parameters constrain the θ12 mixing angle
to be large, but not maximal; while the solar neutrino dominant mass splitting, ∆m2

21

has a value on the order of 10−5 eV2. In this region of the MSW parameter space,
it has been shown [23, 146–148] that the evolution of the neutrino states in the Sun
can be described by an adiabatic approximation to a precision of better than 10−5,
well below the present solar neutrino experimental sensitivity.

In the adiabatic approximation, it is assumed that the mass eigenstate of the
produced neutrinos remains unchanged through its propagation in the Sun, with only
its flavour content being changed as it travels through regions of different densities.
Therefore, under the adiabatic approximation, the neutrino flavour component at
the exit from the Sun only depends on the conditions of the location where it was
produced.

Let us then consider the neutrino evolution equation in the flavour basis described
by Equation 1.17 :

i
d

dt
|να〉 = Hf |να〉 . (6.7)
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If we let T be the transformation from the matter eigenstate basis |νm〉 to the
flavour basis (|να〉 = T |νm〉) we can write the propagation equation as

i
d

dt
|να〉 = THmT † |να〉

i
d

dt
T |νm〉 = THm |νm〉

iT
d

dt
|νm〉+ i

(
d

dt
T |νm〉

)
= THm |νm〉 (6.8)

where Hf = THmT † and Hm is the Hamiltonian in the mass eigenstate basis
which can be written explicitly as:

Hm =




c2
12c

2
13V (t) s12c12c

2
13V (t) c12s13c13V (t)

s12c12c
2
13V (t) s2

12c
2
13V (t) + 2δ s12s13c13V (t)

c12s13c13V (t) s12s13c13V (t) 2∆ + s2
13V (t)


 , (6.9)

with δ =
∆m2

21

4E
, ∆ =

∆m2
31

4E
and V (t) =

√
2GFNe(t) is the matter-induced potential

of neutrinos that depends on the electron density, as described in Section 1.2.2.
Finally, as TT † = 1, one can rewrite Equation 6.8 as :

i
d

dt
|νm〉 =

(
Hm − iT †

(
d

dt
T

))
|νm〉 . (6.10)

Under the adiabatic approximation we consider that the electron density in the
Sun varies smoothly and therefore the oscillation wavelength is much smaller than
the length-scale of the variation of matter density in the Sun. Therefore we can drop
the term with the derivative over T in Equation 6.10. Under this approximation
the determination of the survival probability becomes a question of determining the
matter eigenstates by diagonalising the Hamiltonian Hm at the point where the
neutrino is produced. As neutrinos are only produced in the electron flavour in the
Sun, the determination of the matter eigenvalues and eigenvectors becomes a matter
of algebra, since the initial condition is known.
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The matter eigenvectors of the resulting diagonalisation are the columns of the
unitary matrix T , mentioned previously, which relates the flavour eigenstates and the
matter eigenstates and has the form:

T =




cM13c
M
12 cM13s

M
12 sM13

−sM12 cM12 0

−sM13c
M
12 −sM13s

M
12 cM13


 , (6.11)

where cMij ∼ cos θMij and sMij ∼ sin θMij and θMij are the matter oscillation angles
which can be easily converted to their vacuum counterparts by using Equations 1.22.

The electron neutrino survival probability is then given by :

Pνe→νe =
3∑

i,j=1

|Uei|2 |Tej|2 |〈νi|νj〉|2 , (6.12)

where |〈νi|νj〉|2 is the probability that the jth matter eigenstate evolves into the
ith vacuum eigenstate. Under the assumption of the adiabatic approximation this
means that

|〈νi|νj〉|2 = δij. (6.13)

Finally we reach an explicit formulation for the electron neutrino survival prob-
ability, under the adiabatic approximation:

Pνe→νe = cos2 θ13 cos2 θM13

(
cos2 θ12 cos2 θM12 + sin2 θ12 sin2 θM12

)
+ sin2 θ13 sin2 θM13 .

(6.14)

In the following sections the effective inputs necessary to perform the calcula-
tion of the survival probability are described, as well as their effective effect in the
calculations.
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6.2 Calculation of the Survival Probability

The calculations presented in the previous sections explain the behaviour of the
neutrino from its source of production until it is detected. These sections explain
the dependence of the neutrino survival probability on the oscillation parameters
and how they are suitable to use in the interpretation of the experimental data.
However, in order to obtain a numerical value for the survival probability of a neutrino
detected at a given detector d, additional information is necessary in order to properly
characterise the conditions of neutrino production and propagation. In this section
these inputs will be explained.

6.2.1 Propagation in the Sun

In order to obtain the survival probability at the surface of the Sun of an electron
neutrino produced in its interior, two properties are necessary, which are detailed
below.

Solar Electron Density

The electron density as a function of the solar radius, ne (r), is a necessary element to
describe the matter potential ACC responsible for the matter effects on the neutrino
propagation. In Figure 6.1 the electron density as a function of the solar radius
r/R� is shown for the considered SSMs in logarithmic scale. The total radius of the
Sun is measured to be R� = 6.9551 × 108m [12]. Figure 6.1(b) shows the relative
difference between each model and BS05(OP), which in this thesis is considered as
the reference model. As it can be observed from the figure, the electron density
has approximately a linear variation in logarithmic scale. Considering this smooth
variation, the electron density values for which there is no numerical data available
were obtained by performing a linear interpolation of the available data.

The differences of the electron density between models are at most 5%, which is
virtually irrelevant in the context of solar neutrino analysis. Furthermore, all solar
neutrinos are produced close to the core of the Sun, where the difference is even
smaller.
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Figure 6.1: (a)Radial profile of the electron density as a function of solar radius for the solar
models considered in this thesis. (b) Differences between each model agains BS05(OP).

The most significant difference relates to the BPS09(AGSS09) solar model, be-
cause it assumes a considerably different solar composition.

Neutrino Production Regions

The distribution of the neutrino reaction source in the Sun is the other key element
in the calculation of the survival probability. This is usually parameterised as a
radial profile of intensity of neutrino production rate as a function of the Solar radius
r/R�. In Figure 6.2 the radial profile of neutrino production from each reaction is
shown for all the considered solar models. For SNO, the most relevant profiles are
the ν(8B) and ν(hep), which are identified with filled regions. The differences in the
solar models are minimal with slight variations mostly in the CNO fluxes (13N,15O,
and 17F), especially in the BPS09(AGSS09) solar model, which differentiates most
from the other models by considering a lower heavy element density in the Sun [28].

From Figure 6.2 it is visible that all neutrinos are produced close to the core of
the Sun (r < 0.35R�). In fact, this distribution has a strong effect on the survival
probability, as neutrinos produced closer to the centre of the Sun will have a longer
distance with a high density of electrons to cross. This effect is clearly illustrated in
Figure 6.3(a) where the survival probability as a function of the neutrino energy Eν
is shown for the neutrino reactions relevant for SNO (8B and hep) for a fixed set of
oscillation parameters inside the presently allowed limits. Incidentally these reactions
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Figure 6.2: Radial profiles of the neutrino production regions for each reaction as function
of the solar radius for different solar models.

have a different solar radial distribution, which translates into the differences observed
in the survival probability curves.

On the other hand, Figure 6.3(b) shows the survival probability of 8B neutrinos
at the surface of the Sun obtained by using the inputs from different solar models. In
this case it is clear that the difference is much smaller. In fact, the black line consists
in fact of three lines superimposed where the survival probability was obtained for a
common set of oscillation parameters but different solar model inputs. Clearly the
curves cannot be differentiated. In blue the relative difference is shown, in percent,
of the BPS09 solar models with respect to BS05(OP). The scale of these lines are
shown on the right side of the figure.
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Figure 6.3: Survival probabilities of 8B and hep neutrinos at the surface of the Sun as a
function of the neutrino energy for different solar models. The oscillation parameters used
were tan2 θ12 = 0.469, ∆m2

21 = 7.9×10−5eV 2, sin2 θ13 = 0.01 and ∆m2
21 = 2.46×10−3eV 2,

the best fit points from [72]. The blue curves on Figure 6.3(b) give the relative difference in
the survival probability between the BPS09 solar models and BS05(OP).

Although these parameters are key components in the determination of the sur-
vival probability, their variation is small for different solar models. This is particu-
larly noticeable for the neutrino production regions, which are virtually unchanged
from model to model. Therefore, the stability of the solar properties relevant to
the calculation of the survival probabilities could allow us to use the same survival
probabilities for all standard models. However, for the sake of precision, the survival
probabilities in this thesis were calculated independently for each solar model.

6.2.2 Propagation in the Earth

While passing through Earth, neutrinos can again experience enhanced oscillations
due to its matter potential.

When studying matter effects in the Earth it is usual to use the angle between the
detector-centre of the Earth axis and detector-Sun axis to describe the path traveled
by the neutrino through the Earth. There are two commonly used concepts when
describing this angle:

Zenith angle (θz) Refers to the angle between the detector-Earth core and
detector-Sun axes counting from the detector-Sun axis.
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Nadir angle (η) Refers to the angle between the detector-Earth core and detector-
Sun axes counting from the detector-earth core.

Both definitions provide the same information, but from different reference frames
with η = π − θz.

Although the matter effects are expected to be small in the Earth, due to its lower
matter density, it is nonetheless relevant to account for this effect. Unlike the Sun,
the different layers of the Earth have considerably different densities, and therefore
a model for the matter density at each layer is necessary.

In most publications, the matter density in the Earth is taken from the Pre-
liminary Reference Earth Model (PREM) [149], which is inferred from seismological
considerations. However, there is a particular feature in this model that makes it
sub-optimal for a precision analysis. The model performs an average of the Earth’s
matter density at each point of its radius, imposing a spherical isotropy in the matter
density. Thus, the upper three kilometres of the Earth are set to a matter density
close to the one in water (1.0 g/cm3), as it covers most of the planet at these radii. This
is not optimal for studying the matter effects in the Earth in the context of neutrino
oscillations, as the location of most of the present solar neutrino experiments (espe-
cially SNO) is far enough from the ocean, and thus have a considerably larger matter
density in their vicinity. Despite the small effect of Earth density, this discrepancy
can be potentially misleading considering that, due to the phase transitions in the
different layers of the Earth, the matter effects are dominated by the transitions in
the vicinity of the detector [137].

Thus, the alternative Continental Parametric Earth Model (PEM-C) [150] was
selected to be used as an input for the calculation of the survival probability in the
Earth. This model was published by the same authors of PREM and describes in
detail the density profile of the continental part of the Earth. Figure 6.4(a) show the
distribution of matter density of both models as a function of the Earth radius r/R⊕,
where R⊕ = 6371km is the mean radius of the Earth.

Both models have the same description in the core and mantle of Earth. However,
the description of the upper crust differs quite significantly between the models. This
is illustrated in Figure 6.4(b), where a detail of the models in the upper layers of the
Earth is shown. As it can be observed from the figure, the PREM model has a much
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lower matter density in this region, which is caused by the dominance of water in the
upper radii of Earth.

⊕
R
r0 0.2 0.4 0.6 0.8 1

)
­3

D
en

si
ty

 (
m

o
l 

cm

1

2

3

4

5

6

PREM

PEM­C

Matter Density Profile in the Earth

(a) Density Profile in the Earth.
⊕

R
r0.99 0.992 0.994 0.996 0.998 1 1.002

)
­3

D
en

si
ty

 (
m

o
l 

cm

0.6

0.8

1

1.2

1.4

1.6

PREM

PEM­C

Matter Density Profile in the Continental Crust

(b) Detail close to the Earth’s surface.

Figure 6.4: Radial profiles of matter density in the Earth.

This situation is particularly relevant in the calculation of the survival prob-
abilities using the adiabatic approximation, where the accuracy of the calculation
is strongly dependent on the description of the detector vicinity, where the matter
effects are most relevant.

In order to illustrate the importance of an accurate description of the matter
density in the detector vicinity, Figure 6.5 shows the survival probability of neutri-
nos arriving at the detector at the horizon (η = θz = π/2). At this angle, and in
the particular case of the SNO detector (although it is equally valid for most solar
neutrino experiments), neutrinos go through approximately 200 km of Earth crust,
and never at a depth lower than 2 km (which is the depth at which SNO is located).
Therefore, by using the PREM model, one is considering a matter density closer to
that of water. However, for most solar neutrino experiments at this angle, neutrinos
go through continental crust, which is considerably more dense and therefore causes
a higher regeneration of the electronic flavour.

By using the PEM-C model, one obtains a higher electron neutrino regeneration
at high energies. As it can be observed in Figure 6.5, there is a difference of approx-
imately 3% in the survival probability at this zenith angle. However, this effect is
smeared by averaging the survival probabilities calculated for all paths through the
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Earth. Nonetheless, by updating the model we ensure that we are using the most
accurate description of the neutrino propagation path.

6.2.3 Integration over zenith-angle exposure

After performing the propagation of the neutrino states both in the Sun and in the
Earth, it is necessary to integrate the survival probability over the different calculated
paths in order to obtain a final curve of the survival probability, as a function of the
neutrino energy, at the detector. This is achieved by performing a weighted average
of the different paths, taking into account the live-time distribution L(θz) of the
detector.

For each experiment, a series of paths along the Earth were defined as a function of
the zenith angle (θz), for which the survival probabilities were calculated. Therefore,
the survival probability at a detector "det" was obtained by the weighted sum of Nz
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survival probabilities calculated for the different angles :

Pee(Eν)
det =

1∑Nz
z=1 L(θz)

Nz∑

z=1

L(θz)P
z,det
ee (Eν), (6.15)

where L(θz) is taken from the live-time distributions such as the ones shown in
Figure 6.6.
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Figure 6.6: Live time distributions of individual SNO phases and the final live-time distri-
bution of the combined three phases. The ideal live-time distribution is also shown in Figure
6.6(b). The shapes of each phase and the total live-time distributions are scaled to the same
maximum. cos θz < 0 corresponds to the paths that cross the Earth below the horizon (night)
and cos θz > 0 corresponds to trajectories crossing the Earth above the horizon (day).

In the case of SNO, the live-time distributions were taken directly from the data
run lists. It allowed to account for patterns in the detector live-time that were not
easily seen if a geometrical calculation was performed. Figure 6.6 shows the live-time
distributions for the three phases of SNO and the resulting distribution obtained by
combining the data from the three phases. The live-time distributions in the figure
are scaled to have the same maximum, as the different phases have different total
live-times (quoted in Section 2.2). The total live-time distribution of the full SNO
data set is shown in Figure 6.6(b), together with the ideal distribution that would
be obtained in case SNO was acquiring neutrino data without any interruption. The
later was obtained by performing a geometrical calculation considering the detector
coordinates in the Earth and the position of the Sun relatively to the detector for a
whole year.
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The differences between the curves express not only the different time patterns
in data taking, but also dead time due to calibrations, commissioning and other
activities that required interruption of collection of neutrino data. In fact, it should
be noted that most of the neutrino data was taken during the night (cos θz < 0), as
most of the maintenance and calibration activities were performed during the day
shifts. It is also important to remark the absence of live-time for the very low and
very high zenith angles. That is due to the geographic location of the detector, which
means that the Sun is never aligned with the detector-Earth core axis.

For all other solar neutrino experiments used in the oscillation analysis discussed
in this thesis, a geometrical calculation was performed considering the detector loca-
tion, as the detailed live-time information is not publicly available. In this case, the
Earth was assumed as having spherical symmetry with a mean radius R⊕ = 6371 km
[151].

In fact, the averaging of the survival probability over different sampled paths
through the Earth makes the effect of using an updated Earth model to be less
significant than the effect shown in Figure 6.5, which was the situation where the
effect was more significant. By looking at the live-time distributions of SNO (Figure
6.6) one can see that, at θz = π/2, the fraction of live-time is small, meaning that
the effect will be significantly suppressed. The sampled paths where the live-time
is considerably higher correspond in large majority to the regions where both Earth
models agree. After calculating the weighted average over the sampled paths, the
effect of the new Earth model in the survival probability in the detector was of about
0.2%, down from the 3% observed at θz = π/2.

This averaging of a finite sample of paths through the Earth can lead to one
problem that is easily overlooked: aliasing effects caused by the number of sampled
paths with respect to the value of ∆m2

31
1. The neutrino mixing angles are responsible

for defining the amplitude of the oscillations, while the mass square differences define
the frequency of such oscillations. In the case of ∆m2

31, the present best fit value
(∆m2

31 = 2.36 × 10−3eV 2) yields an associated wavelength of approximately 20 km
for a neutrino with energy of the order of 10 MeV .

1Aliasing effects are unphysical interferences that can appear from sampling a periodic function
with a frequency smaller than the function’s own frequency.
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If one samples a relatively small value of neutrino paths over the Earth, say 60,
the difference in length for each path will be ∆l = 2R⊕/Nz ≈ 212km which is roughly
ten times larger than the ∆m2

31 wavelength. Therefore unphysical interferences could
arise at specific energies. Figure 6.7 shows this effect by demonstrating the resulting
survival probability at the SNO detector by sampling 60, 90, 180 and 480 paths.
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In this analysis, the live-time distribution was sectioned into Nθz = 480 equal
bins, corresponding to the amount of sampled neutrino propagation paths through
the Earth. For each path a Sun+Earth survival probability was obtained as a function
of the θz angle P z

ee (θ12,∆m
2
21, θ13,∆m

2
31, Eν , θz).

Using the live-time distribution, the final Sun+Earth survival probability at a
defined detector was obtained by performing the weighted average of the survival
probability using Equation 6.15.

It is easy to understand that the effect of matter enhanced oscillation in the Earth
will vary from detector to detector due to the different locations (both depth and
live-time distribution). However, the matter effects on the Earth do not depend on
the neutrino source, unlike the calculation in the Sun which is independent of the
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detector location but depends on the source of neutrinos that are detected by the
experiment.

In order to better match the experimental outputs, the survival probabilities were
averaged using different day/night considerations. In the case of SNO, the outputs
are separated into a day and night survival probability, and thus two sets of survival
probabilities PD

ee and PN
ee are obtained using the corresponding portion of the live-

time distribution. The day survival probability is almost undisturbed as the amount
of matter above the detectors is small and thus causes a negligible effect in the
survival probability. On the other hand the night survival probability changes quite
considerably, especially at higher energies2, as it weighs the paths that cross the dense
layers of the Earth. Figure 6.8 shows the difference between day and night survival
probabilities for 8B neutrinos in the 3-phase analysis. For reference, the Sun survival
probability is also shown. In the same figure, the relative differences calculated with
respect to the Sun-only survival probability are also shown in grey. In this case, the
scale is shown on the right side of the figure.

At this point all the inputs necessary to obtain a survival probability at a given
detector have been presented, as well as their effects on the survival probability at
the detector. The following section will describe the method employed to analyse the
experimental results in the context of neutrino oscillations.

6.3 Neutrino Oscillation Analysis Method

The neutrino oscillation analysis consists of the estimation of the neutrino oscillation
parameters that better describe the experimental data. In this section this process
will be described in more detail, explaining how it is possible to interpret the exper-
imental outputs.

As described in Chapter 5, the experimental outputs of SNO previously consisted
in a reconstructed energy spectrum of the detected neutrino events, or the equivalent
integral of the number of events detected above a given threshold, which is also
the output format for the other solar neutrino experiments. In the SNO 3-phase

2For the presently allowed range of oscillation parameters. For smaller values of ∆m2
21 the

day-night effect is visible at lower energies.
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analysis, the output of the SigEx analysis is a parametrisation of the electron survival
probability and corresponding asymmetry between day and night periods. In this
section the analysis of both types of outputs will be described, since both are needed
for a full analysis of all solar neutrino experiments.

In the following sections, the term MSW space is used frequently to describe the
range of the oscillation parameters (θ12, θ13,∆m

2
21), which are the parameters aimed

to be determined. Two oscillation parameters are implicitly fixed in the analysis:
θ23 = π and ∆m2

31 = 2.46× 10−3eV 2. This is due to the extremely low sensitivity of
solar neutrinos to these parameters. Considering the energy range of solar neutrinos
(1-20 MeV) and the distribution of the neutrino source (radial profile of neutrino
production), the survival probability becomes virtually unaffected by varying θ23

and ∆m2
31 within their present uncertainties. Furthermore, the phase averaging per-

formed in the Sun calculation further smears the effects of varying these parameters
and therefore in this thesis they are fixed to their current best fit points, as even
propagating their uncertainties do not show any effect in the neutrino oscillation
analysis [143, 152].
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6.3.1 Calculation of Expected Event Rates

Besides the combined analyses of SNO data, the output of the signal extraction from
the solar neutrino experiments, although varied in the specific format, usually consist
of a measurement of detected events (or a fraction compared to the SSM prediction),
as explained in Section 1.4. Specifically, the radiochemical solar neutrino experiments
(Homestake, SAGE and Gallex) [38, 43], being unable to tag the time or energy of
the detected event, presented their experimental result in the form of an integrated
number of detected events. Real-time experiments, Čerenkov or scintillation, being
able to reconstruct the energy of the events, usually produced their result in the
form of a number of detected events as a function of the reconstructed energy (Teff )

(SK [50, 51, 53], Borexino [55–57] and previous SNO CC and ES measurements
[14, 36, 64, 65, 69, 153]).

However, in general, all these measurements are similar in the way that the out-
put consists in one or more experimental observations (Rexp

n )n=1,..,N of detected events
which do not directly describe the incoming neutrino flux. Thus, the most common
implementation of the neutrino oscillation analysis for this type of outputs consists
in building a figure of merit that evaluates the match between an estimate of the the-
oretical oscillated prediction Rtheo

n against a corresponding experimental observable
Rexp
n , for a given point in the MSW space.

Solar Neutrino Spectrum and Survival Probability

These quantities directly characterise the solar neutrinos, and thus are expressed as
a function of the neutrino energy (Eν). Each of the eight types of solar neutrinos
(pp, pep, hep, 7Be, 8B, 13N, 15O, 17F) has its own flux scale Φνi and spectra shapes as
a function of neutrino energy φ (Eν). In the case of the pep and 7Be neutrinos the
shape corresponds to one and two spectral lines, respectively.

For a detector d and neutrino type νi, the solar neutrino spectrum shape at the
detector is given by

φdνi (Eν) = φνi (Eν)× Pee,νi (Eν) , (6.16)
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where Pee,νi (Eν) is the Sun+Earth survival probability at the detector for the
selected neutrino type. It should be noted that φνi is only the neutrino spectrum
shape, whose normalisation Φνi , is the total neutrino flux for the considered neutrino
type.

In this thesis, three different solar models are tested, each having their own flux
normalisation Φνi . The spectrum shapes, however, are independent of the solar
model and therefore are the same for all models. Figure 1.3 (Chapter 1) shows the
un-oscillated neutrino spectra for each solar neutrino type.

Interaction Cross Sections

Since the detectors do not directly detect neutrinos, but rather the byproducts of their
interactions, the different interaction cross sections are another important input in
the determination of the event rates. The neutrino interaction cross section is specific
for each detection medium and reaction. In the particular case of SNO, four different
cross sections have to be considered: σCC , σNC , σESµ,τ and σESe . Although the ES
interaction is sensitive to all flavours, σESe is approximately six times higher than
σESµ,τ .

In Figure 6.9, these four cross sections are shown as a function of the neutrino
energy (integrated over the recoil energies).

The cross section for the CC and NC reactions are taken from the calculation of
Butler-Chen-Kong (BCK) [154], which includes radiative corrections. The ES cross
sections were originally calculated by Bahcall [155–157], which also includes radiative
corrections. These calculations have an associated uncertainty, but they are much
smaller than the uncertainties of the solar model neutrino flux and therefore negligible
in the calculation of the expected rate.

Detector Response Function

The detector response function R (Te, T ) describes the detector resolution. This
function evaluates the probability of an electron with a true kinetic energy Te to
be detected with an energy T ≡ Teff . It is roughly Gaussian with additional tails.
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Figure 6.9: Cross sections of the possible neutrino interactions in the SNO experiment.

Therefore this function is specific to each experimental result. For SNO, each data
taking phase had a different detector response function [64, 65, 69].

Usually an average of the response function is obtained through Monte Carlo
simulations, tuned and validated with calibrations, as both the true and the recon-
structed energies are known. In the case of other neutrino experiments the detector
response functions are usually provided by the respective collaborations along with
their experimental results.

Expected Event Rates in the Detector

Using the inputs described in the previous sections the predicted event rates are
calculated by the means of an analytic convolution of the original neutrino spectrum
in neutrino energy through the reaction energy thresholds, cross sections and detector
responses.

Where there is an ability to discriminate the energy of a detected event, the
number of expected events for a given reconstructed energy interval from a neutrino
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type νi is then given by:

RT,νi = NeΦνi

∫ ∞

0

φνi (Eν)Pee,νi (Eν)

∫ ∞

0

dσ

dTe
(Eν , Te)

∫ T+∆T

T

dR

dT ′

(
Te, T

′
)

dT
′
dTedEν ,

(6.17)

where ∆T is the bin width in Teff . When there is no possibility to discriminate
the energy of the event, such as the neutron events of SNO (NC), the number of
events for a neutrino type νi will be simply given by:

Rνi = NnΦνi

∫ ∞

0

φνi (Eν)σ (Eν) dEν . (6.18)

Note that in this case the response function was also dropped as the detected
neutrons are thermalised and thus contain no history of their initial energy, nor
of the incoming neutrino. In both cases, to obtain the total expected rate at the
detector, it is only necessary to sum the rates obtained for each neutrino type.

Using these equations it is then possible to obtain a theoretical predicted event
rate for a specific set of oscillation parameters, which can then be compared to the
effective experimental measurement. The terms Ne and Nd include other factors
such as live-time, neutrino flux normalisation, target volume and neutron capture
efficiency, which are needed to effectively determine the number of events.

Figure of Merit

Upon building the model prediction of the observable R, one can build a figure
of merit which evaluates the goodness-of-fit between the specific set of oscillation
parameters and the experimental data.

The definition of the figure of merit in this section presents a general formalism
which is used to analyse the output from other solar neutrino experiments and the
combined analysis of all experiments. For the specific case of the output of the 3-phase
analysis of SNO the figure of merit is constructed in a slightly different manner, which
is described in Section 6.3.2. As the output consists in a functional parameterisation
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of the survival probability, the determination of the figure of merit is considerably
simpler.

In the following, the fractional rates mentioned previously are indexed with n,
carrying statistical uncertainty un and total uncertainty σn. To each rate is assigned
a set of k systematic uncertainties cnk. Correlated systematic uncertainties can take
different numerical values depending on the rates they affect.

The predicted values of the rates, Rtheo, may hide dependences on additional
parameters, fi , which in general are allowed to vary away from their best estimates f 0

i

with constraints σfi . For instance, when the parameter fi describes a given systematic
uncertainty, the associated systematic errors cnk may also depend on fi.

The figure of merit consists of a χ2 calculation through the covariance method
which was originally proposed in [158] and is the method widely used in neutrino
oscillation analysis. The covariance method consists in building the following χ2

function from the measured (Rexp
n ) and predicted (Rtheo

n (fi)), fractional observables:

χ2
covar =

∑

n,m

(
Rexp
n −Rtheo

n

)2 [
σ−2
total

]
nm

(
Rexp
m −Rtheo

m

)2
+
∑

i

(
fi − f 0

i

σfi

)2

. (6.19)

The χ2 is minimised with respect to the parameters fi with penalty terms in the
second sum. The inverse total error matrix

[
σ−2
total

]
nm

is composed of the statistical
and systematic uncertainties, and includes the statistical correlations between the
observables and systematic uncertainties:

σ2
total,nm = ρstatnm unum +

∑

h,k

ρsysthk cnh (fi) cmk (fi) , (6.20)

where the correlation coefficients ρij ∈ [−1; +1]. The matrix σ2
total,nm also depends

on the fi even though it is not shown explicitly. Among the solar neutrino experiments
studied in this thesis, SNO is the only experiment where ρstatij is used because of the
strong correlations inherent to the specific SigEx output. Furthermore, the other solar
neutrino experiments usually shape their output so that the correlations between
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different bins can be neglected and therefore these are not provided by the original
publications.

6.3.2 Analysis of SNO 3-phase Output

As described in Chapter 5, the SNO 3-phase signal extraction procedure provides the
results of the 8B neutrino signal measurements in the form of six parameters: f8B, the
normalization scale of the 8B solar neutrino flux (with respect to 5.69×106 cm−2s−1,
the prediction of the BPS05(OP) solar model), three parameters of a second order
polynomial describing the day νe survival probability (c0, c1, c2), and two parameters
describing a linear day-night asymmetry (a0, a1). The correlation matrix between
the parameters and the respective uncertainties (both statistical and systematic) are
also provided (see Tables 5.2 and 5.3).

As the fit directly produces a description of the electron neutrino survival prob-
ability, it is possible to directly compare the model survival probability to the fit
outputs. However, the fit results are coefficients of both a second and first order
polynomials, while the model prediction is a general, numerically defined function
of the oscillation parameters. Therefore, in order to construct a figure of merit for
a set of oscillation parameters, it is necessary to convert the model prediction into
the same parameterisation as the experimental fit result, i.e., it is necessary to find
the second order polynomial function (and the corresponding day-night asymmetry
function) that best represents the particular model survival probability to be tested.
For a given set of oscillation parameters (θ12, θ13,∆m

2
21,∆m

2
31), it is necessary to find

the parameters of the second and first order polynomials that better approximate,
respectively, the day survival probability PD

ee and the day-night asymmetry ADN .

This parameter transformation is dependent on detector effects, such as the anal-
ysis threshold, energy dependence of the cross sections and analysis cuts, and so the
transformation must account for the sensitivity of the detector as a function of the
neutrino energy. In order to account for these effects a Monte Carlo simulation was
used to count the number of detected events of each neutrino energy that passed all
the cuts3. In practice this corresponds to a MC generated “detected neutrino energy

3In fact, this simulation is obtained from the SigEx fit, as the scaled PDFs from the fit can be
projected in neutrino energy, since this is a parameter of the SigEx
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spectrum“, undistorted by neutrino oscillations.

Using a model predicted survival probability for the considered MSW parameters,
the MC generated spectrum mentioned previously is distorted with the polynomial
parameterisation allowing the polynomial parameters (c0, c1, c2, a0, a1) to vary in the
fit. This will effectively return the polynomial parameters that best represent the
model, taking under consideration the detector effects.

Figure 6.10 shows the MC generated spectrum produced under the conditions
described above in the analysis of the 3-phase data for both day and night. Each
phase spectrum was rescaled so that the live-time scaling of each phase can be seen.
In particular it is important to note the tail at lower neutrino energy caused by the
fact that only the first two phases of SNO were analysed with an analysis threshold in
reconstructed energy of Teff = 3.5 MeV, while the third phase of SNO was analysed
with a more conservative analysis threshold of Teff = 6 MeV, as mentioned in Section
5.2.
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Figure 6.10: MC generated neutrino energy spectra of all electron events (CC and ES) that
passed the analysis cuts in the SNO 3-phase data set, which is used to weigh the polynomial
fit over the model survival probability.

Furthermore, it is also possible to notice the different detector responses of each
phase, by comparing the green line with the blue and red lines. The sensitivity curve
of the NCD phase is clearly shifted towards higher energies, which is caused not only
by the higher analysis cut but also by a worse energy resolution in the NCD phase
induced by the introduction of the proportional counters into the detector.



206 Neutrino Oscillation Analysis

In practice, by the procedure described above, one obtains the polynomial pa-
rameterisation that the SNO experiment would be able to obtain for the considered
set of oscillation parameters. Having the polynomial parameterisation of the model
survival probability, it is now possible to test whether the oscillation parameters un-
der consideration correctly describe the SigEx result. A χ2 figure of merit is then
calculated comparing the model polynomial parameterisation and the SigEx output,
using the uncertainties and correlations produced by the SigEx fit:

χ2
(
θ12,∆m

2
21, θ13,∆m

2
31

)
=

4∑

m,n=0

(
pSigExn − pmodeln

) [
σ−2
SigEx

]
nm

(
pSigExm − pmodelm

)
,

(6.21)

where pSigExi are the polynomial parameters obtained from the SigEx fit (p0,1,2 ∼
c0,1,2 and p3,4 ∼ a0,1), pmodeli are the polynomial parameters obtained from the model
survival probability, as described above, and σnm is the covariance matrix obtained
from the SigEx fit including the correlations and the uncertainties on the parameters.

Repeating this procedure over all points in the MSW space, one can obtain a χ2

map that describes how well SNO data adjusts to each point in the MSW parameter
space.

It should be noted that this procedure completely disregards one of the outputs
of SNO: f8B. In fact, to extract the oscillation parameters only from SNO, this pa-
rameter is not needed as the survival probability is independent of the total neutrino
flux. However, when combining the SNO results with other experiments, this output
becomes necessary as it effectively is a measurement of the total neutrino flux and
therefore it is correlated with the other experimental results.

The procedure to extract the oscillation parameters and their uncertainties is the
same independently from the type of output used and is described in the following
section.
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6.3.3 Combination of SNO with other solar Experiments

By definition, the figures of merit in the previous subsections perform a comparison
of each experimental observation (strictly speaking, each signal extraction output
parameter) to the corresponding theoretical model prediction for a point in the MSW
parameter space. In this context, the SNO SigEx outputs (polynomial coefficients
and f8B) are also considered an experimental observation Rexpt ≡

{
ci, ai, f8B

}
, with

the solar model prediction Rtheo corresponding to the model survival probability
polynomial coefficients obtained through the method explained in Section 6.3.2 for
the polynomial coefficients (ci, ai).

Therefore, for a neutrino oscillation analysis of all solar data there is no need
to involve a special treatment for the SNO specific output, as the figure of merit
corresponds simply to a comparison between a measured and a theoretically predicted
observable. In this context all observables are the same, keeping in mind that the
determination of the model predictions must remain consistent with the form in
which the corresponding output parameter is shaped. A more detailed description of
each experimental output will be provided in Section 6.5.3.

In the following subsections a description of some details of the analysis is pre-
sented, with particular emphasis to the most relevant improvements in this analysis,
and the issues that was necessary to take into account while performing the combined
analysis of data from multiple experiments.

Fractional Observables

The neutrino oscillation analysis depends on several inputs, both from the experi-
ments themselves but also from the underlying physical model. As the experiments
evolved through time, it is only natural that the different experimental outputs used
different assumptions. One of the most common differences is the underlying solar
model used in the SigEx analysis of each experiment. In the case of SNO, this is not
particularly important, as the measurement of the NC event rate provides an almost
direct measurement of 8B flux. However, other neutrino experiments have to rely
heavily on an assumed solar model to provide a scale of their event rates.
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Together with the experimental observations Rexp, the solar neutrino experiments
always provide the solar model used in their analysis. Furthermore, all experiments
also provide their predicted rates in the case no oscillations were present Rpred

∣∣
Pee=1

.
The superscript pred is used in order to distinguish the unoscillated prediction pro-
vided by the experiments from the model prediction calculated in the analysis (the
superscript theo will be used in this case).

Thus, instead of using directly in the neutrino oscillation analysis the experimen-
tal outputs Rexp, one can use the ratio

Rexp
f ≡ Rexp

Rpred|Pee=1

. (6.22)

This normalises each experimental measurement to their solar model prediction,
allowing the oscillation analysis to use any solar model of choice. In order to keep
consistency in the calculation of the theoretical prediction Rtheo to be used in the
oscillation analysis, one should now replace Rtheo with

Rtheo
f ≡ Rtheo

Rtheo|Pee=1

. (6.23)

The major reasons for applying this normalisation to both the experimental and
model predicted observables are not only to keep consistency of the analysis for a
single solar model but also to eliminate unknown detector effects from the other
experiments which are not publicly available, such as live-time distribution, mak-
ing it difficult to determine exactly the model predicted number of events for each
observable.

In the case of the SNO output, the polynomial coefficients are not fractional, as
they are already treated differently and do not require any analytical convolution.
The f8B parameter, although being obtained independently of a specific solar model
is presented as a fraction of the SSM 8B flux prediction that is used in the MC(

ΦSNOMAN
8B

)
and therefore its normalisation is one. To perform a combined neutrino

oscillation analysis using a different solar model than the one used by the SNO SigEx
analysis, this normalisation has to be rescaled by the ratio of the solar model predicted



6.3 Neutrino Oscillation Analysis Method 209

flux used in the analysis and the predicted flux used in the Monte Carlo simulation,
ΦSSM8B /ΦSNOMAN

8B
, where ΦSSM

8B
is the total 8B neutrino flux for the SSM under study.

Observable Rates

Most experiments are sensitive to more than one neutrino type leading to their experi-
mental measurements of detected events to have multiple contributions from different
neutrino types. For instance Gallium experiments (SAGE and Gallex) measurements
[43] have contributions from all types of solar neutrinos.

Furthermore, SNO is able to perform a model independent measurement of the
8B solar neutrino flux, which has always been more precise than the solar model
[36, 65, 69, 70]. Thus, in a neutrino oscillation analysis, the SNO measurement of
the neutral currents is usually used to constrain the 8B solar neutrino flux, allowing
the flux to be floated. In this case, the solar model uncertainties associated with the
8B flux should no longer be applied to the prediction of the event rate.

In order to cope with this sensitivity to multiple neutrino sources, the number
of expected events Rtheo is not calculated directly through Equation 6.17 but by the
sum of several specific rates AR:

Rtheo =
∑

i

wi
ARi, (6.24)

where the term wi is a weighting factor which allows for different contributions
from each individual neutrino reaction rate to the total observable.

For practical purposes, each rate is defined by the experiment, solar neutrino type
νi, the detection reaction (CC, ES, NC) and the day-night orientation. For a point in
the MSW space, the theoretical prediction of the number of events detected is given
by the sum of the rates which contribute to that specific measurement. Similarly,
systematic uncertainties that only affect a particular rate are only propagated into
that rate, correctly affecting Rtheo. Furthermore, each rate may affect differently a
specific Rtheo. For example, the output of the first analysis of SK [50] provides a
reconstructed energy spectrum where some bins enumerate the number of detected
events independently of the direction of the incoming neutrino (ES events are strongly
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correlated with the direction of the neutrino), while other bins are constrained by a
zenith angle range. In this case, the term wi will be different for the individual rates,
reflecting the different live-time fraction for each zenith angle range.

In the specific case of the SNO 3-phase analysis, due to the nature of its output,
this feature is not so relevant as the polynomial coefficients do not use the analytical
convolution, and the f8B parameter is a direct measurement of the flux in the form
of a fraction of the solar model prediction used in the Monte Carlo (BS05(OP)).

Improved precision on the survival probability calculation

In the past analyses of SNO, the survival probability calculation was performed
through the numerical integration of the system of coupled differential Equations
6.6. This calculation is extremely CPU-intensive (in the order of several months of
CPU time) and thus a prior calculation of the survival probability curves for each
experiment was carried out and stored on tables for later access. The technical de-
tails of this procedure are described in [108]. In particular it is important to mention
that in those tables the parameter ∆m2

31 was fixed to 2.3× 10−3 eV2 [159]4 and the
tables were built by sampling the remaining oscillation parameters in a logarithmic
scale covering the range specified in Table 6.1.

Parameter Limits Number of Bins Step Size
log10 tan2 θ12 [-4 ; 1] 101 0.05
log10 ∆m2

21 [-13 ;-2] 221 0.05
log10 sin2 θ13 [-5 ; -0.6] 45 0.1

Table 6.1: Limits and dimensions of the survival probability calculated through numerical
integration and stored into tables for later use. The step size is in logarithmic scale.

These tables were produced prior to the previous SNO analysis (LETA) and
therefore the decision of its limits and achievable precision was based in the knowledge
of the oscillation parameters at that time. This decision was further constrained
by the large computing demands to perform the numerical integration in the Sun
and therefore the range and precision of the tables was aimed more towards the

4θ23 was previously fixed at π/2 and the CP violating phase was set to zero, assuming CPT
invariance
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practicalities than towards a precision measurement. With the results of the SNO
LETA analysis [70] it was found that the pre-calculated tables limited the precision
with which the oscillation parameters could be extracted, especially the mixing angle
θ12. However, due to time constraints in the schedule of the experiment, it was no
longer feasible to recalculate these tables.

Thus for the 3-phase analysis an implementation of the analytical calculation de-
scribed in 6.1.3 was carried out, taking care to avoid numerical limitations to the
precision [160]. This implementation, which will be referred from now on as the an-
alytical calculation, or PSelmaa5, was strongly optimised to be able to determine the
model survival probability directly while running the neutrino oscillation analysis,
and thus the only precision constraint comes from the precision of the approxima-
tion itself, which was shown to be better than the uncertainties imposed by the
assumptions used in the construction of the tables used in the previous analyses
[131]. Extensive tests were carried out, revealing that the analytical calculation is
able to reproduce the results of the numerical integration to better than 0.1% [131],
which is very good considering the experimental uncertainties of a few percent and
the finite detector response.

This approximation however brings some limitations. In particular it is not pos-
sible to use it in the calculation of the survival probability for a range of oscillation
parameters as large as the one calculated in the tables. In particular, the adiabatic
approximation cannot be applied in a region where the parameters ∆m2

21 < 10−8eV 2

[21]. However, this region has already been disfavoured by previous analyses both of
SNO data and of other solar neutrino experiments [67, 69, 70, 72, 73].

In the present range of interest (the region of the MSW parameter space allowed
by SNO alone), this calculation can be safely applied. This is demonstrated in Figure
6.11 where a coarse sample of survival probability curves covering a region larger than
the region of interest for this analysis is compared with the results obtained by the
particular implementation using the adiabatic approximation described in Section
6.1.3.

Considering the finite amount of survival probability points in neutrino energy
5This naming follows an internal convention of programming implemented on SNO and stands

for Physics interpretation Sun-Earth Large Mixing Angle Adiabatic Approximation.
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Figure 6.11: Comparison between the survival probability curves obtained by the adiabatic
approximation and the numerical integration. The colour gradient represents the compati-
bility between the survival probability curves following the method described in Section 5.6.3.

that were calculated through the numerical integration and are stored in the lookup-
tables, the comparison was performed following the same method as described in
Section 5.6.3 where the difference in the curves is normalised by the area of the
numerical integration curve. Therefore, Figure 6.11 represents the relative difference
between the curves over the whole range of neutrino energies from 1.0 MeV to 16
MeV.

The figure shows a very good agreement of less than 1% in the LMA region. In
fact, the range of oscillation parameters shown in the figure is already considerably
larger than the current limits, which are also shown in the figure.

The analytical calculation is able to obtain the model survival probability for any
set of oscillation parameters (θ12, θ13,∆m

2
21,∆m

2
31) and neutrino energy Eν , with no

lower limit in the precision of the parameters, which largely compensates the intrinsic
limitation imposed by the adiabatic approximation. An additional, independent, test
of the analytical calculation was performed to validate the analytical calculation.
The calculation was downgraded to include all limitations of the pre-calculated tables
used in the previous analysis SNO LETA analysis which were generated through
numerical integration and therefore are not affected by any limitation of the adiabatic
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approximation. The data from LETA was then re-analysed with the downgraded
analytical calculation algorithm. The results obtained showed no visible difference
to the results published in [70], therefore demonstrating that any changes from using
the new calculation are a result of the improvements rather than a limitation imposed
by the adiabatic approximation or the algorithm itself.

Propagation of the systematic uncertainties

While performing the neutrino oscillation analysis, several sources of systematic un-
certainties have to be considered since they can affect the experimental observables
in different ways. In most cases the systematic uncertainties are specific to each
experiment and therefore its treatment is usually carried out following the recipes
provided by the respective experiments. However, some special cases exist and they
have to be treated differently:

• The solar model uncertainties, which are common to all experiments and in
some cases represent the major source of systematic error. These uncertain-
ties affect the different neutrino sources, and therefore its effect varies from
experiment to experiment. However, by using the concept of observable rates
described above, the propagation of their effect is passed directly to the af-
fected rate leading to a proper propagation of correlated uncertainty. More
details about these uncertainties will be given below (Section 6.3.4).

• The 8B neutrino spectrum shape affects almost all experiments (with the ex-
ception of Borexino) and its effect is strongly tied to the total 8B neutrino flux.
As it is explained further on, due to the NC measurement of SNO, this flux is
allowed to vary in the fit, and therefore the contribution of this uncertainty has
to be accordingly re-propagated to the predicted observables.

• For the remaining of the systematic uncertainties, the large majority are specific
to each experiment and are propagated by the method previously described as
shift and refit.

• The energy scale and resolution systematics for the experiments whose outputs
are provided in the shape of an energy spectrum affect directly the detector



214 Neutrino Oscillation Analysis

energy response and therefore it’s propagation is performed dynamically when
calculating the model predicted observables.

6.3.4 Solar Models and Propagation of their Uncertainties

In the analysis of solar neutrino oscillations, the solar model is one of the major
components of the analysis. The solar model is a physical model which describes the
Sun properties and therefore it is used not only to model the energy generation but
also the particle propagation from its interior. These models are necessary not only
to calculate the survival probability at the detector, but also the expected event rates
for the different experiments.

These models are usually developed and later validated by comparing the model
predictions for specific observables such as helium abundances at the surface of the
Sun and the depth of the convective zone, with observations, such as helioseismologi-
cal measurements. These models not only provide a series of parameters necessary to
calculate the survival probabilities, such as the electron density and the radial distri-
bution of the neutrino production reactions, but are also defined by a large amount
of parameters which affect the model predictions, such as the heavy elements abun-
dances, luminosity and radius. The solar models are usually quite complex and
depending on numerous parameters, of which several cannot be directly measured.
Nowadays, the solar models are defined as a function of 20 major parameters, which
have different correlations with the neutrino production reactions and therefore their
uncertainties are included in the oscillation analysis. These uncertainties are used in
the form of partial derivatives which consist in a set of model systematic uncertainties
affecting the predicted flux separately for each neutrino type. They correspond to
uncertainties on the model input parameters propagated to the neutrino fluxes as a
function of the neutrino energy.

Due to the limited amount of data available to develop the solar models, different
models have emerged, which can be separated into two major groups based on the
predicted metallicity (relative abundance of elements heavier than Hellium): the high
and low metallicity models. Although most of the solar model parameters relevant
for the calculation of the neutrino survival probability are very similar for all solar
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models, the predicted neutrino fluxes at the Earth can vary considerably from model
to model.

In the context of this thesis three models have been tested: the conservative
BS05(OP) [25] and the two more recent BPS09(GS) [26, 27] and BPS09(AGSS09)
[26, 28]. The BS05(OP) model is considered conservative as the uncertainties on the
21 solar model input parameters are defined by taking the difference between the
central values of the high and low metallicity models. The parameterisation of the
more recent solar models are considered optimistic because the uncertainty in solar
model parameters are defined by using considerably smaller uncertainties associated
to the specific abundance model used. While the usage of any of these solar models in
the neutrino oscillation analysis is valid, it is considered more appropriate to use the
conservative approach due to the limited amount of experimental data used to develop
these models. Therefore, it is widely considered that the optimistic uncertainties are
in general underestimated and could potentially overconstrain the extracted neutrino
oscillation parameters.

In this thesis the results are primarily shown for the BS05(OP) solar model, with a
specific section (Section 6.5.4) dedicated to compare the results obtained by using the
more optimistic models. It should be noted though that, besides the yet unmeasured
fluxes from the CNO cycle, the major difference between the models is in fact in the
8B flux thus the constraint by SNO removes one of the major differences between the
models.

The different uncertainties of the solar model are propagated in the analysis as
systematic uncertainties directly affecting the rates composing the theoretical predic-
tions. However, as the total 8B flux is directly measured by SNO’s NC measurement
(f8B), the solar model uncertainties are not applied to the rates involving the 8B

neutrinos. In this case, the only model uncertainty applied is the φ8B spectrum
shape uncertainty, which was taken from [161]. Furthermore, in the case of the solar
neutrino analysis, the absolute scale of the 8B neutrino flux was treated as a free
parameter in the fit. By using the SNO measurement as a constraint, it is possi-
ble to perform a simultaneous fit of the neutrino oscillation parameters and the flux
normalisation reflecting the different contributions from all experimental data. This
procedure has already been employed in the past and is explained in great detail in
[158]. It is commonly referred as a free-flux fit, where the only assumption about the
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8B neutrino flux is the shape of its spectrum.

The solar model inputs were all taken from the original publications where the
model was published. The sole exception is the 8B neutrino spectrum shape φ8B (Eν),
for which an independent, and more accurate, measurement is used [161].

The solar model parameters and the corresponding partial derivatives are listed
in Tables C.2, C.3 and C.4 of Appendix C.2. A more detailed description of these
parameters and their effect on the neutrino fluxes is provided in [25]. The terms S11,
S33, S34, S114, S17 and Shep correspond, respectively, to pp, 3He-3He, 3He (4He, γ) 7Be,
14N (p, γ) 15O, 7Be (p, γ) 8B and hep low energy cross section uncertainties that di-
rectly affect these nuclear reactions. The terms L�, Age, Op. and Diff. correspond
to the uncertainty on the Sun luminosity, age, opacity and the uncertainty on the
diffusion model. The term Be7e defines the uncertainty on the theoretical rate of the
electron capture reaction 7Be (e−, ν) 7Li. Finally, the remaining input parameters of
the solar model describe the uncertainty on heavy element composition for the more
abundant elements.

The parameter partial derivatives αki are propagated by applying them directly
to the individual fractional rates F i

n and therefore build the SSM part of the error
matrix:

F th
n =

8∑

i=1

F i
n (6.25)

σ2
SSM =

8∑

i=1

F i
n

8∑

j=1

F j
n

20∑

k=1

(∆p)2 αkiαkj, (6.26)

where ∆p is the 1σ value of the kth systematic uncertainty.

6.4 Validation of the Method

While the procedure described above is common for this type of analysis [158], the
extraction of the oscillation parameters from an output defined as a polynomial
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parametrisation of the survival probability is a novelty and therefore the method
had to be further tested.

A series of ensemble tests were carried out to assess the capability of recovering
the true oscillation parameters from a SigEx output. Using Monte Carlo simulations,
the different types of events in SNO were simulated, producing a simulated version
of the 3-phase data sample. This pool of data was then statistically separated into
250 fake sets, each one containing a portion of each event type following a Poisson
distribution of the expected number of events of that type.

Using a randomly chosen set of oscillation parameters a survival probability curve
was calculated and a distortion was applied to spectra of neutrino events in the
simulated data, producing 250 fake sets mimicking the 3-phase data with a known
solar neutrino oscillation effect. The aim of this procedure was to be able to test each
stage of the analysis chain (both the SigEx and neutrino oscillation analyses), as the
output of each step should be compatible with the conditions in which the data was
generated.

The SigEx fit was run over each of the produced data sets, returning a total of 250
outputs. Each of these outputs was then used to run a SNO-only neutrino oscillation
analysis, trying to recover the original set of oscillation parameters that were used to
produce the simulated data sets. Considering the 250 outputs obtained by performing
the neutrino oscillation analysis on each fake data set, one can calculate the biases
and pulls of each extraction, for each oscillation parameter θ

Bias =
N (θ)− E (θ)

E (θ)
(6.27)

Pull =
N (θ)− E (θ)

σ (θ)
, (6.28)

where N (θ) and E (θ) are, respectively, the extracted oscillation parameter ob-
tained from each data set and the true value for that same parameter used to generate
the distorted set. The term σ (θ) is the fitted statistical uncertainty on the parameter
θ.

The accuracy of the analysis could then be evaluated based on the mean biases
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and pulls of all fake data sets. In this context the bias is the fractional difference
between the fitted and expected values, while the pull is the significance of the shift
in terms of the fit uncertainty. After a large number of ensembles are fitted, the
distribution of the biases should be centred around zero and the distribution of the
pulls should be normal N (0, 1), if the extraction method is unbiased. Therefore the
biases test the accuracy in recovering the central values and the pulls check both the
fitted mean and uncertainty.

Figure 6.12 shows the distributions of the fitted best fit points for the 250 fake
data sets. In Figures 6.12(a) and 6.12(b) the original oscillation parameter used to
produce the sets is shown with the label "Truth value". It should be mentioned
that the analysis was performed only in the context of two effective neutrino flavours
(θ13 = 0). The reason lies in the fact that SNO alone is only weakly sensitive to this
parameter.
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Figure 6.12: Distribution of the best fit points for fitted 250 fake data sets. The original
oscillation parameter is also shown.

As it can be observed in Figure 6.12(b), a part of the fake data sets yielded a ∆m2
21

best fit in the so called LOW region, which has a typical value of ∆m2
21 ∼ 1× 10−7

eV2, approximately three orders of magnitude lower than the true value. This is
due to the lower sensitivity of SNO to this parameter. By looking at Figure 5.6,
SNO has difficulty in distinguishing between the LMA and the LOW regions and
therefore approximately 20% of the fits yield a LOW best fit point, as expected.
Therefore, in the validation tests, we will always use the best fit point in the LMA
region, independently of the true best fit point being located in the LOW region.
Additional tests demonstrated that this procedure does not affect the best fit point
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in tan2 θ12, which is the parameter to which SNO is most sensitive. Furthermore,
the LOW region is already excluded with high confidence by the KamLAND reactor
experiment and also by combined analyses of all solar neutrino data.

Figure 6.13 shows the mean bias and pulls, obtained after extracting the neutrino
oscillation parameters from each of the 250 SigEx outputs. The figures show the re-
sults for three different methods characterised by the parameterisation of the SigEx
output (binned or polynomial) and the survival probability calculation used (PSelmaa
or tables). As mentioned in Section 5.6.3 different parameterisations of the SigEx out-
put were initially considered. Results using a binned parameterisation of the survival
probability are represented in the figure with black markers. Similarly, the polyno-
mial parameterisation of the survival probability result with pre-calculated survival
probability tables (used in the previous analysis) were also tested (red markers) along
with the new survival probability calculation implemented (PSelmaa) whose results
are shown with blue markers.

Figure 6.13(a) shows that the mean bias on the extraction of tan2 θ12 is consistent
with zero for the polynomial parameterisation. From this figure it is also clear why
the binned survival probability parameterisation was abandoned. From these tests
it was observed that this parameterisation was intrinsically biased mostly due to the
very limited amount of bins necessary for the fit to converge, which resulted in a dis-
tortion of the survival probability shape, which later could not be properly recovered
when performing the neutrino oscillation analysis. On the other hand, by comparing
the results obtained with the pre-calculated survival probability tables and the new
analytical calculation, a very good agreement was found, demonstrating that the
adiabatic approximation did not impose any bias in the extracted parameters. The
results of a series of bias tests using the same polynomial SigEx parameterisation,
but using the survival probability tables used in the previous analyses was also per-
formed, yielding unbiased results. Considering the results shown here, the survival
probability calculation (PSelmaa) and analysis method employed in this thesis was
shown to be the less biased of the different analysis models under consideration.

The bias in the extraction of ∆m2
21 is still consistent with zero, but slightly shifted

towards a higher value of the parameter. The errors shown in the figure correspond
to the error on the mean.
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Figure 6.13: Mean bias and pull of neutrino oscillation analysis performed from the results
of the signal extraction of 250 ensemble data sets.

This result is not entirely surprising, as the SNO experiment is sensitive only
to High Energy (HE) solar neutrinos and thus has a very weak sensitivity to the
parameter ∆m2

21. In fact, the solar neutrino experiments in general have a lower
sensitivity to ∆m2

21 than to the mixing angle, as this parameter reflects the oscillatory
pattern of the neutrino flavour transitions and thus is very sensitive to the distance
travelled by the neutrino. As all solar neutrinos are produced in about 1/3 of the
Solar radius, the precision to ∆m2

21 is considerably degraded by the phase averaging
at the surface of the Sun. By looking at the sensitivity of SNO in terms of neutrino
energy in Figure 5.6 it is easy to understand that the sensitivity does not allow to
obtain a definite handle on the exact shape of the survival probability, which resulted
in the slight shift on the bias of ∆m2

21 shown in Figure 6.13.

Figure 6.13(b) shows that the mean pulls have width of 1σ, meaning that the
uncertainties have been properly propagated from the observables to the outputs.
The error bars shown in the figure are the RMS of the pulls.

Considering these results, and keeping in mind the lower sensitivity of the so-
lar neutrino experiments to the ∆m2

21, it was demonstrated that the implemented
method of extraction is well suited to perform the neutrino oscillation analysis. Con-
cerning the lack of sensitivity of SNO in the extraction of the ∆m2

21, it should also
be kept in mind, that this parameter is extracted with very good accuracy by the
reactor neutrino experiment KamLAND [59].



6.5 Oscillation Analysis Results 221

6.5 Oscillation Analysis Results

This Section presents the confidence intervals of the neutrino oscillation parameters
based on the results of the SNO 3-phase combined analysis. Further studies con-
sidering other experimental results (such as other solar neutrino experiments and
KamLAND) will also be performed demonstrating how the combination of the dif-
ferent experimental measurements can further constrain the limits on the oscillation
parameters.

6.5.1 Estimation of the oscillation parameters

The technique employed to obtain the parameter best-estimate and corresponding
uncertainties was a grid-scan on the MSW space. In this case the oscillation param-
eters are scanned over a very fine grid in linear scale. This was only possible with
the analytic calculation of the survival probability implemented in this thesis, as the
numerical integration tables had a maximal precision set beforehand. In Section 6.3.3
this implementation was shown to provide very good agreement in the survival prob-
ability curves when compared with the numerical integration results. As the analytic
calculation was considerably faster than the numerical interaction of the neutrino
wave functions, it was possible to optimise the step size in the grid so that it could
be adjusted until no further improvement was obtained on the uncertainty of the
estimated parameters. Furthermore, in order to obtain the best precision, instead of
using a logarithmic scale grid spanning over a wide range of oscillation parameters,
a linear scale grid was used using smaller steps.

The reason to perform a scan on the oscillation parameters, rather than a fit is
purely technical. A fit on the oscillation parameters was also implemented using the
same algorithms, but two reasons disfavoured this approach. As the survival proba-
bility curves vary considerably over the MSW space (as shown in Figure 5.6 of Section
5.6.3), it means that the χ2 obtained as a function of the oscillation parameters can
have several local minima. This requires a very robust fitting algorithm that can deal
with multiple local minima. The second reason for choosing a parameter scan over
a true fit of the oscillation parameters relies in the computation time required by
this analysis. An analysis of the combined data from all solar neutrino experiments,
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Parameter Range Step Size (linear scale)
tan2 θ12 [1× 10−1; 1] 1× 10−4

∆m2
21 [1× 10−5; 1× 10−3] 1× 10−6

sin2 θ13 [1× 0.0; 0.25] 5× 10−3

Table 6.2: Limits and step sizes of the MSW space tested in the neutrino oscillation param-
eter scan.

although having only a single minimum, contains more than a hundred observables.
Performing the analysis as a simultaneous fit of the flux scale and the oscillation
parameters implies that the fit cannot be parallelised, imposing an unreasonable re-
quirement on the processing time for the analysis. For instance, the three-flavour
neutrino oscillation analysis of all solar neutrino data discussed below would require
a total of five years of processing time6. This would be absolutely impossible in a
single fit without more advanced parallel analysis techniques.

On the other hand, by performing a scan the objective is to build a map of the
χ2 over the full region of interest in the MSW space. It is therefore possible to break
the space into segments, analysing each segment independently and later joining the
smaller maps into a full χ2 map of the MSW space. Although this method implies
a pre-set precision, by means of the grid stepping size, and requires the full space to
be tested, the oscillation analysis can be performed considerably faster, depending
on the number of available CPUs. Both methods have been tested in the same
analysis yielding identical results, as expected [108]. The details of the MSW space
sampled in this thesis is detailed in Table 6.2. The limits on the analysis region
were set by extending to a range beyond 5σ significance in the present limits, and
the precision (step size) was obtained by improving the precision below which no
further improvement was obtained by re-running the analysis on the solar neutrino
experimental results.

Having defined the region of interest and setting the intended precision, the MSW
parameter space was scanned and the χ2 values stored as a function of the oscilla-
tion parameters producing a χ2 map. Confidence Levels (CLs) of the oscillation
parameters were then obtained by projecting the map into one or two dimensions.
The χ2 differences ∆χ2 = χ2 − χ2

min, listed in Table 6.3 were used as indicators of
6That particular analysis consumed approximately 4.3× 104 h of processing time using approx-

imately 1000 2.5 GHz, 64 bit, cores.
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Nσ CL ∆χ2 2D ∆χ2 1D
1 68.27% 2.298 1.0

1.64 90.00% 4.605 2.706
1.96 95.00% 5.991 3.841
2.57 99.00% 9.210 6.635
3 99.73% 11.83 9.0

Table 6.3: Number of standard deviations (Nσ) and confidence levels (CL) associated with
the differences ∆χ2 − χ2

min in one and two dimensions.

the Confidence Levels (CLs) in one and two dimensional space. The definition of
these values follow the prescription of [162] for construction of confidence intervals
by performing a Gaussian approximation in order to avoid the full Neyman construc-
tion of the confidence region. In particular, the two-dimensional confidence intervals
are obtained by selecting the region where the fit on the data yields a ∆χ2 within
the range that corresponds to the same two-sided confidence level for a standard χ2

distribution with two degrees of freedom, which is quoted in the second column of
the table. Similarly, the uncertainties on each individual oscillation parameter are
determined by projecting the χ2 obtained at each point as a function of the displayed
parameter while marginalising all other parameters. Therefore, the confidence levels
used to determine the uncertainties on each parameter are described in the third
column of the table.

One special case to be taken under consideration is the determination of the upper
limit on sin2 θ13. Although tan2 θ12 is known to be located in a physical region to
more than 3σ, the parameter sin2 θ13 is known to be very small and therefore close
to an unphysical region. As the analysis algorithm restricts the fit to the physical
region (sin2 θ13 > 0), one should not use the values quoted in Table 6.3 as they
will potentially lead to wrong confidence limits [162]. Therefore, a one-sided 95%
confidence level of ∆χ2 = 2.71 is used to obtain the upper limit on the parameter.

6.5.2 Results from SNO

The results obtained for a SNO-only analysis were treated as described in Section
6.3.2. For each set of oscillation parameters, the model survival probability was
transformed into the same polynomial parameterisation that was used in the SigEx
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procedure, composed by three second order polynomial coefficients {c0, c1, c2} and two
day-night asymmetry polynomial coefficients from a first order polynomial {a0, a1}.
The additional f8B parameter is not used at this stage, as the polynomial coefficients
already describe the survival probability, which does not depend on the specific scale
of the 8B neutrino flux. The χ2 tables were built from the outputs of the SigEx
procedure using the correlation matrix and total uncertainties on the coefficients.

Figure 6.14(a) shows the results obtained by analysing the SNO data considering
a wide range of oscillation parameters in the context of two effective flavours (two
flavour analysis). The results show the existence of a local minimum in the LOW
region (∆m2

21 ≈ 1 × 10−7eV 2). As observed in the past [65, 69, 70] and in Figure
6.12(b), the SNO experiment alone is not able to distinguish between both solutions,
having however a preference for the LMA solution with very small significance (0.2σ).
The numerical results obtained from this analysis are quoted in Table 6.4, where both
local minima are described. For the sake of comparison, the results obtained in the
previous SNO analysis (LETA) are also quoted, as both analyses have the same data.
The difference in the results reflects the improvements of the 3-phase analysis, both in
terms of signal extraction and neutrino oscillation analysis. Here, the most important
factor consists in the combination of the data from the 3 phases as a single data set,
taking care of all correlations and common systematics. In the LETA analysis, the
NCD phase was considered a separate and uncorrelated experiment without CC and
ES spectral information.

For the sake of comparison, the same results are shown in Figure 6.14(b) together
with the confidence intervals obtained by performing an oscillation analysis with
three effective neutrino flavours (three flavour analysis). It permits to observe the
effect of introducing the third mass eigenstate in the analysis. The results show a
large loss of precision on the oscillation parameters, which is expected considering
the low statistics provided by a single experiment and the low sensitivity of solar
neutrino experiments to θ13. Nonetheless it is important to remark how even in the
context of a three flavour analysis, the allowed regions remain LMA and LOW with
a small region at small mixing angle that is disfavoured at the 95% confidence level.

The effect of the θ13 mixing angle in the survival probability acts as an absolute
scaling factor, whose effect increases with its absolute value. It is therefore much
harder to distinguish from the dominant scaling effect of θ12. In the context of solar
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(a) Two flavour analysis.
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(b) Three flavour analysis.

Figure 6.14: Confidence regions of the neutrino oscillation parameters obtained from the
SNO only results by scanning a wide range of oscillation parameters. The numerical results
are quoted in Table 6.4.

Oscillation analysis tan2 θ12 ∆m2
21 (eV 2) χ2/n.d.f

SNO 3-phase analysis
Best fit (LMA) 0.427+0.033

−0.029 5.62+1.92
−1.36 × 10−5 1.39/3

Best fit (LOW) 0.427+0.043
−0.035 1.35+0.35

−0.14 × 10−7 1.41/3

SNO LETA analysis
Best fit (LMA) 0.437+0.038

−0.042 5.50+2.21
−1.62 × 10−5 8.20/9

Best fit (LOW) 0.457+0.058
−0.058 1.15+0.38

−0.18 × 10−7 6.80/9

Table 6.4: Extracted neutrino oscillation parameters and corresponding uncertainty for a
SNO-only result in a two-flavour analysis. As shown in Figure 6.14, SNO data alone is not
enough to obtain a full constrain in a three flavour oscillation analysis. For comparison the
results from the previous SNO analysis published in [70] are also shown.

neutrino experiments, a three flavour analysis is only relevant when a large amount
of statistics is available, which is only achievable by combining several experimental
results. In fact, since the effects of the oscillation parameters vary with energy, the
sensitivity to the θ13 parameter is increased not only by increasing the statistics, but
also by increasing the regions in neutrino energy being sampled. It is by comparing
the low energy and high energy solar neutrino data that we can constrain θ13.



226 Neutrino Oscillation Analysis

6.5.3 Results from combining all solar neutrino data

The previous results showed that SNO alone is not able to constrain the oscillation
parameters to a single solution, therefore a combined analysis of all solar neutrino
data is needed. It is of major importance to perform a combined analysis of all solar
neutrino data. While the SNO experiment is only sensitive to high energy neutrinos
(8B and hep), with a sensitivity above Eν ∼ 4.5MeV , other experiments provide
increased statistics and different sensitivities, as discussed in Section 1.5. Such are
the cases of the radiochemical experiments that are sensitive to neutrino energies
as low as 0.233 MeV, and the Borexino experiment that is sensitive mostly to the
second energy line of 7Be neutrinos (Eν = 0.860 MeV). Therefore, by combining all
solar neutrino experiments, it is possible to sample a wide region of the solar neutrino
spectrum, where different mixing effects interplay.

In this thesis the combined solar neutrino analysis includes the final results from
the 3-phase combined analysis of SNO which were described in Chapter 5.

Besides the SNO results, the analysis also includes the integral rates from Home-
stake [38], a combined result of all Gallium based experiments [43], and the integral
rate of the 7Be measurement of Borexino [163]. Amongst these, the Homestake re-
sult incorporates contributions from all solar neutrino reactions with the exception
of pp neutrinos, the rate being dominated mostly by the 8B neutrinos. The Gallium
results contain contributions from all solar neutrino reactions, including pp, which is
the dominant component of the experimental observable. The Borexino result only
accounts for the second line of the 7Be shown in Figure 1.3.

Furthermore, all three reconstructed energy spectra of the ES rates published by
the Super-Kamiokande experiment (SK-I, SK-II, SK-III) are also included [51–53].
The results from SK-I consist in 44 fractional rates7, which are separated not only
in terms of total electron energy but also in terms of seven regions of zenith angle.
The result from SK-II is represented in terms of 33 fractional rates separated into a
day spectrum and a night spectrum8. Finally, the results from SK-III are provided
in terms of 42 fractional rates broken into a day spectrum and a night spectrum.

7Fractional rates means that each rate is quoted in terms of a fraction of the solar model predic-
tion in that energy range.

8With the exception of the rate at lowest energy that includes events from all orientations.
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An additional experimental measurement was also included which consisted in 5
fractional rates of in reconstructed electron energy from 8B neutrinos detected by
Borexino [57].

These inputs represent a total of 133 observables and 57 systematic uncertainties,
of which the 8B spectrum shape uncertainty affects all observables, except the 7Be

Borexino rate. The list of all observables employed in the solar neutrino analysis are
listed in appendix C.1. Besides scanning the oscillation parameters, the normalisation
of the 8B flux was allowed to float freely. Additionally, the hep flux normalisation was
also allowed to vary, but constrained by the SSM uncertainty by means of a quadratic
penalty term in the calculation of χ2, as shown in the last term of Equation 6.19.

Two flavour analysis

In Figure 6.15(a) the 2D contour of the oscillation parameters is shown over a wide
region besides LMA in the context of a two flavour analysis. For comparison, the
results obtained with SNO data alone are also shown. Unlike the results from SNO
data alone, by combining all solar neutrino data, only the LMA solution becomes
the only accepted at the 3σ level. In Figure 6.15(b), a more detailed comparison is
shown focusing only on the LMA solution.

From these results it is easily noticed that by combining all solar neutrino data an
enhanced sensitivity to the oscillation parameters is achieved. However, it is also clear
that the results are strongly dominated by the SNO data, especially for θ12. This is
expected as SNO detects both CC events, sensitive only to νe, and NC events, equally
sensitive to all flavours. In a two flavour analysis, the ratio CC/NC events roughly
corresponds to a direct measurement of the θ12 mixing angle (roughly sin2 θ12), and
therefore SNO has a leading role in the determination of this parameter9.

The additional sensitivity achieved by combining all solar neutrino data reflects
not only the increased statistics but mostly the additional neutrino energy informa-
tion provided by measurements such as Borexino and the radiochemical experiments.
The numerical results on the extracted oscillation parameters are quoted in Table 6.5.

9As 8B neutrinos have a spectrum that is not fully detected by the experiments, this is just a
rough estimate, since the survival probability has a dependence on neutrino energy. But at the
neutrino energy range where SNO is sensitive, the survival probability is almost flat.
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Figure 6.15: Confidence regions of the neutrino oscillation parameters obtained from a two
flavour analysis of all solar neutrino data. The plot on the right shows a detail of the
LMA region solutions, which is the only allowed by the solar analysis at the 3σ level. The
numerical results are quoted in Table 6.10.

Three flavour analysis

By performing a three flavour analysis, the extracted uncertainties on the parameters
becomes larger, as there is one additional degree of freedom to consider. However,
unlike in the case of SNO, the allowed region of oscillation parameters is now fully
contained to the LMA solution at the 3σ level. Figure 6.16 shows the confidence
intervals obtained in the context of a three flavour analysis for all solar neutrino
data. Figure 6.16(a) shows the projection over the plane (tan2 θ12; ∆m2

21), while
marginalising sin3 θ13. For comparison, the results from a solar two-flavour analysis
from Figure 6.15 are also shown for comparison. In Figure 6.16(b) the allowed region
in the plane

(
tan2 θ12; sin2 θ13

)
is shown, while marginalising ∆m2

21. The best fit
points in the extracted parameters and corresponding uncertainties are quoted in
Table 6.5.

Figure 6.16(a) clearly shows the effect of considering three neutrino flavours in
the analysis. As expected, there is a loss of precision on the oscillation parameters
θ12 and ∆m2

21 which is due to the additional degree of freedom. However, there is
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Figure 6.16: Confidence regions obtained from SNO data alone in the context of a two-
flavour and three flavour analyses projected over two different planes in the MSW space.

an interesting observation from these results. Although there is effectively a loss in
precision, this effect is not symmetric, i.e. the contours show a preferential direction
in the broadening. For instance, by moving from a two-flavour analysis to a three
flavour analysis the uncertainty in θ12 increases, but only for higher values of the
mixing angle. This effect reflects the interdependence of the different mixing angles,
as both affect the survival probability by means of a scaling factor. However, while
the effect of θ12 is more predominant for higher neutrino energies, the effect of θ13 is
most dominant on the low energy end. By allowing θ13 to vary freely, any tension
between the low energy measurements such as Borexino and the rate experiments is
reflected mostly in the θ13 parameter, allowing θ12 to reach higher values.

It is also important to notice a very large improvement on the limit in θ13 obtained
by the analysis of the solar data. By comparing with the previous analysis of SNO
data [70], a reduction of ≈ 30% was achieved on the upper limit at the 95% C.L.
The reason for this improvement is shared by several factors. For instance, the
improvements added to this analysis were shown to expand the sensitivity on θ13

[143]. On the other hand, by properly combining all SNO phases into a single data
set, the strong correlations between the different phases were taken into account,
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Oscillation analysis tan2 θ12 ∆m2
21 (eV 2) sin2 θ13 (×10−2) χ2/n.d.f

Two flavour analysis
SNO-only (LMA) 0.427+0.033

−0.029 5.62+1.92
−1.36 × 10−5 1.39/3

SNO-only (LOW) 0.427+0.043
−0.035 1.35+0.35

−0.14 × 10−7 1.41/3

Solar 0.427+0.028
−0.028 5.13+1.29

−0.96 × 10−5 108.07/129

Three flavour analysis
SNO 3-phase analysis

Solar 0.436+0.048
−0.036 5.13+1.49

−0.98 × 10−5 < 5.79 (95%C.L.) 107.92/128

SNO LETA analysis
Solar 0.468+0.052

−0.050 6.31+2.49
−2.58 × 10−5 < 8.10 (95%C.L.) 67.4/89

Solar+KamLAND 0.468+0.042
−0.033 7.59+0.21

−0.21 × 10−5 2.00+2.09
−1.63

< 5.7 (95%C.L.)

Table 6.5: Extracted neutrino oscillation parameters and corresponding uncertainties in the
oscillation analysis of all solar neutrino data in the two and three flavours framework.

which permitted to significantly improve the SNO results. Lastly, the inclusion of
the most recent results from SK and Borexino further improved the analysis of solar
neutrino data. Although weakly correlated, these improvements compete between
themselves over the results and therefore it is hard to appoint a single dominant
factor.

6.5.4 Effect of the Solar Model in the Oscillation Analysis

The results shown in the previous sections were all obtained using the BS05(OP)
solar model and the corresponding uncertainties in its parameters. As described pre-
viously, the solar models affect the neutrino oscillation analysis in two ways: the
parameters such as electron density and radial distribution of the neutrino reactions
affect the survival probability directly, while the model predicted flux and corre-
sponding uncertainties affect the theoretical prediction of event rates. The former
has a negligible effect in the extraction of the oscillation parameters, as the differences
are greatly overtaken by the experimental uncertainties. This was already shown in
Section 6.2.1. The latter, however, can be relevant in the determination of the model
predicted observables in the case of experimental data that relies on the solar model
predicted flux. In fact, for the purposes of the neutrino oscillation analysis, most so-
lar neutrino data are affected by this, with the exception of SNO which, by detecting
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Oscillation analysis tan2 θ12 ∆m2
21 (eV 2) sin2 θ13 (×10−2) χ2/n.d.f

BS05(OP) [25] 0.436+0.048
−0.036 5.13+1.49

−0.98 × 10−5 < 5.79 (95%C.L.) 107.92/128

BPS09(GS) [26, 27] 0.447+0.049
−0.036 4.90+1.34

−0.90 × 10−5 < 5.47 (95%C.L.) 107.15/128

BPS09(AGSS09) [26, 28] 0.447+0.040
−0.041 5.13+1.50

−1.00 × 10−5 < 5.74 (95%C.L.) 108.06/128

Table 6.6: Estimated neutrino oscillation parameters from analyses using different solar
models.

neutrinos through NC, can perform a direct measurement of the solar 8B neutrino
flux and therefore do not depend on the solar model at all.

Therefore, in the context of a SNO-only analysis, as the only dependency on
the solar model comes from the parameters that directly affect the shape of the
survival probability, no visible effect was found when performing the analysis using
different solar models. It is not the case for a combined solar neutrino analysis
as the neutrino fluxes predicted by the solar model are necessary to perform the
analytical convolution in order to estimate several theoretical event rates. Performing
the oscillation analysis with different solar models can test if the solar neutrino data
shows any preference for a particular solar model. Such a preference would have a
strong impact in the comparison of the proposed solar models. In this case, one of
the most relevant comparisons would be between the high and low metallicity solar
models, as they show significant differences.

Therefore, the solar neutrino oscillation analysis was performed for three different
solar models. Of these, BPS09(GS) and BPS05(OP) are very similar as both rely in
the same heavy element abundance model (GS98 [27]) such that the only difference
is an updated calculation of the total solar neutrino fluxes. BPS09(AGSS09), on the
other hand, is a recently developed solar model, that uses the most recent calculation
of heavy element abundance (AGSS09 [28]). In Figure 6.17 the confidence regions
from a three-flavour solar analysis using three different solar models are shown, with
the extracted values and uncertainties on the oscillation parameters quoted in Table
6.6.

The results show small differences between the solar models. In fact, considering
the uncertainties, one can state that the solar neutrino data cannot make any state-
ment in terms of distinguishing the tested solar models. It is surprising to note that,
despite the consistency in the results, the BPS09(GS) solar model shows a larger
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Figure 6.17: Confidence regions obtained from solar data in the context of a three-flavour
analysis using different solar models.

deviation form the BS05(OP) solar model results than BPS09(AGSS09). Although
the reason for this difference is not completely clear, one can postulate an hypothe-
sis to justify this difference. Considering that, aside from integrated measurements
from the radiochemical experiments (sensitive to multiple neutrino sources), the only
neutrino fluxes that are effectively measured are 8B and 7Be. In the case of 8B, the
SNO measurement is independent of the solar model and therefore constrains the
fit, discarding the difference between the solar models for this flux. This leaves only
the 7Be flux, measured by Borexino. Looking at the 7Be neutrino fluxes predicted
by each solar model, which are quoted in Table 1.2, one can see that BPS09(GS)
and BPS09(AGSS09) solar models deviate from the BS05(OP) predicted flux by the
same amount, but in different directions. Therefore, one hypothesis for the small
discrepancy shown in the results might be a preference imposed by the Borexino
data.

6.5.5 Probing the Neutrino Mass Hierarchy

One interesting feature of the analytical survival probability calculation used, it that
unlike most adiabatic approximations, it did not discard the large mass splitting
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∆m2
31. Although solar neutrinos are only weakly affected by this mass splitting,

showing no difference in the survival probability inside the allowed range, one can
however attempt to probe for its sign. As solar neutrino oscillations are dominated
by matter effects, the sensitivity to the sign of ∆m2

31 is larger than the sensitivity
to its absolute value. This is illustrated in Figure 6.18 where survival probability
curves for different absolute values of (∆m2

31 ± 1σ) are shown against corresponding
curves with different signs. Usually analyses of solar neutrino data assume Normal
Hierarchy (NH) (∆m2

31 > 0), although there is no imposition for this choice. In this
section a comparison of the results under the assumption of both NH and Inverted
Hierarchy (IH) (∆m2

31 < 0) will be performed.
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Figure 6.18: Comparison between the survival probability curves obtained by the analytic
calculation for multiple values of ∆m2

31. The black lines show the survival probability ob-
tained under the assumption of Normal Hierarchy (NH) with ∆m2

31 = 2.5 × 10−3 and the
red lines the corresponding survival probabilities under the assumption of Inverted Hierar-
chy (IH) with ∆m2

31 = −2.4× 10−3. The remaining oscillation parameters were taken from
the solar best fit point quoted in Table 6.10.

From this figure it is possible to note that the effect of the uncertainties is com-
pletely negligible, whereas the effect of the sign, despite being small, is more notice-
able. It should be kept in mind that there is an intrinsic limitation to this test. The
dependence of the survival probability on ∆m2

31 is strongly tied with the value of
sin2 θ13with the effect of ∆m2

31 (both sign and absolute value) scaling with increasing
values of this mixing angle. Therefore, in Figure 6.11 the upper limit on sin2 θ13 from
the solar analysis was used, to better illustrate the effect.
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Oscillation analysis tan2 θ12 ∆m2
21 (eV 2) sin2 θ13 (×10−2) χ2/n.d.f

Normal Hierarchy (NH) 0.436+0.048
−0.036 5.13+1.49

−0.98 × 10−5 < 5.79 (95%C.L.) 107.92/128

(∆m2
31 = 2.5× 10−3 eV2)

Inverted Hierarchy (IH) 0.436+0.044
−0.036 4.90+1.51

−0.97 × 10−5 < 6.03 (95%C.L.) 107.91/128

(∆m2
31 = −2.4× 10−3 eV2)

Table 6.7: Estimated neutrino oscillation parameters from analyses under the assumption
of normal (NH) and inverted (IH) hierarchies.

In Figure 6.19 the contour plots from this analysis are shown, with the corre-
sponding numerical results are quoted in Table 6.7.
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Figure 6.19: Confidence regions obtained from solar data in the context of a three-flavour
analysis assuming NH and IH for neutrino masses.

The results of both analyses are completely consistent. However, despite having
no statistical significance it is interesting to note that the analysis under the as-
sumption of inverted hierarchy shows a slightly smaller uncertainty on tan2 θ12 and a
higher limit on sin2 θ13. However the difference in the figure of merit has no statistical
significance and therefore no conclusion can be drawn.

Nonetheless this demonstrates that despite the small effect of the sign of ∆m2
31,

it can be studied in the solar fits. This small effect is strongly constrained by the
value of sin2 θ13, which scales down the global effect of the sign of ∆m2

31.
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6.6 Global Analysis of the Oscillation Parameters

In the previous Section a neutrino oscillation analysis of both SNO and all solar
neutrino data was performed in order to obtain the most accurate limits on the mix-
ing parameters relevant to solar neutrinos. However, these results can be further
improved by considering other neutrino sources, such as reactor, atmospheric and ac-
celerator data. These results can help to further constrain the oscillation parameters
measured by the solar neutrino experiments due to the different sensitivities, both in
flavour and energy. In this section data from such sources shall be used to further
constrain the limits on the neutrino oscillation parameters.

The contributions of experimental data from non-solar neutrino sources can be
separated into two different types according to the L/Eν ratio relevant for the par-
ticular experiment, where L identifies the distance traveled by the neutrino and Eν
the neutrino energy range. Of all non-solar neutrino experiments, the most relevant
to analyse along with the solar neutrino data is KamLAND, as it is sensitive to the
same oscillation parameters.

The other types of experiments are generally not sensitive to the oscillation pa-
rameters relevant to solar neutrinos with the exception of the θ13 mixing angle. As
in the case of KamLAND, these experiments are completely uncorrelated to solar
neutrino experiments and therefore it is possible to obtain a global constraint on the
common oscillation parameter of interest by joining the respective ∆χ2 projections.
More details about each of these limits are provided in the following subsections.

6.6.1 Combining Solar Data and KamLAND

The Long Baseline Experiment (LBL) reactor experiment KamLAND [59] studies
antineutrinos produced in a series of reactors located mostly in Japan, having an
average baseline of 180 km [59]. Reactor antineutrinos have an energy range of 1
to 10 MeV and therefore KamLAND is sensitive to the same oscillation parameters
as the solar neutrino experiments, which makes this result the most interesting to
combine with a solar data. As the distances traveled by the neutrinos are known to
a much higher accuracy than solar neutrinos, this experiment is mostly sensitive to
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the parameter ∆m2
21. This sensitivity is further enhanced by the larger correlation

between the energy of the positron produced by the antineutrino interaction when
compared to the energy of the produced particles in the solar experiments.
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Figure 6.20: Confidence regions of the neutrino oscillation parameters obtained from a
two flavour analysis of all solar neutrino data combined with the two-flavour analysis of
KamLAND data. The allowed region from the combination of both data sets is shown in
orange.The numerical results are quoted in Table 6.10.

As KamLAND is sensitive to antineutrinos, in order to combine both solar and
reactor data one must assume that both neutrinos and antineutrinos must share the
same oscillation parameters, as implied by CPT invariance. By the time the previous
SNO result was published, the KamLAND experiment didn’t perform a three flavour
analysis of their data. Therefore in the context of this thesis an independent analysis
was performed [164], which was used in [70] to perform a combined analysis. A brief
description of this analysis is performed in C.3. Since then, an official three flavour
analysis was published by the KamLAND collaboration [62], and therefore this result
was used in the context of this thesis.

To perform the combined analysis the χ2 map as a function of θ12,∆m
2
21 and

θ13 published by KamLAND [165] was added directly to the χ2 map obtained from
the solar analysis. This procedure is possible since both types of experiments are
completely uncorrelated, with independent flux sources and systematic uncertainties.
Therefore the respective χ2 values constrain each other resulting in a region of allowed
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Figure 6.21: Confidence regions obtained from combining the solar neutrino analysis and
the KamLAND analysis in the context of three neutrino flavours.

oscillation parameters that best adjust the data from both solar experiments and
KamLAND.

Figure 6.20 shows the result of the global analysis on two flavours. The combined
confidence regions are shown in a shaded colour. The numerical results are quoted
in Table 6.8. From these results it is clear that the dominance of KamLAND over
∆m2

21, while the solar neutrino experiments show a dominance in the determination
of θ12. In Figure 6.21 the confidence regions obtained from the same analysis but
now considering three active neutrino flavours are shown. It is interesting to note
that by comparing the confidence regions from Figures 6.20 and 6.21 there is a better
agreement between the solar and KamLAND data if θ13 has a non-zero value with
the best fit points becoming closer for a higher value of θ13. This is further illustrated
in Figure 6.21(b), where an anti-correlation between these two types of experiments
is clearly noticed for the allowed values of θ13. Nonetheless this tension between the
experiments is still weak, providing a suggestion for non-zero θ13 with a statistical
significance of 1.8σ. To further illustrate the dominance of each type of experiment
(solar and reactor) the 1D projections of ∆χ2 for each estimated parameter are shown
in Figure 6.22 with the solar neutrino analysis, the KamLAND analysis and the final
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combined results. From the figures it is noted the dominance of solar data over
tan2 θ12, while KamLAND dominates over ∆m2

21. Neither of the experiments has
a strong bound on sin2 θ13, although a tension is visible between the corresponding
confidence intervals.
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Figure 6.22: Confidence regions for the estimated oscillation parameters obtained from com-
bining the solar neutrino analysis and the KamLAND analysis in the context of three neu-
trino flavours.

6.6.2 Further constrains from other neutrino sources

Unlike KamLAND, which is sensitive to the same neutrino oscillation parameters
as the solar neutrino experiments, other neutrino sources are insensitive to both θ12

and ∆m2
21. Therefore, by having only one mixing parameter with a non-negligible
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Oscillation analysis tan2 θ12 ∆m2
21 (eV 2) sin2 θ13 (×10−2) χ2/n.d.f

Two flavour analysis
Solar 0.427+0.028

−0.028 5.13+1.29
−0.96 × 10−5 108.07/129

Solar+KamLAND 0.427+0.027
−0.024 7.46+0.20

−0.19 × 10−5

Three flavour analysis
SNO 3-phase analysis

Solar 0.436+0.048
−0.036 5.13+1.49

−0.98 × 10−5 < 5.79 (95%C.L.) 107.92/128

Solar+KamLAND 0.446+0.030
−0.029 7.41+0.21

−0.19 × 10−5 2.51+1.76
−1.46

< 5.34 (95%C.L.)

SNO LETA analysis
Solar 0.468+0.052

−0.050 6.31+2.49
−2.58 × 10−5 < 8.10 (95%C.L.) 67.4/89

Solar+KamLAND 0.468+0.042
−0.033 7.59+0.21

−0.21 × 10−5 2.00+2.09
−1.63

< 5.7 (95%C.L.)

Table 6.8: Extracted neutrino oscillation parameters and corresponding uncertainties in the
oscillation analysis of all solar neutrino data combined with KamLAND in the two and three
flavours framework.

correlation, it is possible to apply a similar method as the one used when combining
the KamLAND results but now using only a 1D projection of ∆χ2 as a function of
θ13 from other experiments in order to further constrain this parameter.

As examples of these sources one can consider the Short Baseline Experiment
(SBL) reactor experiment Chooz [166], the atmospheric neutrino data from SK [46]
and LBL accelerator experiments MINOS [159] and T2K [49]. Of particular relevance
one can consider the latest results from T2K [167], where an independent indication
of a non-zero value of θ13 was observed with a 2.7σ significance. Being completely
uncorrelated between themselves, one can simply add the 1D projection over θ13 of
each experiment in order to obtain a global constrain on this parameter.

Figure 6.23 shows the resulting confidence intervals obtained by combining the
projection obtained in Section 6.6.1, with the contributions from all other experi-
ments, as published in [168].

By combining all these results it is interesting to note that there is now an in-
dication of 3.2σ for a non-zero value of θ13. However, it should be noted that this
procedure, although commonly used, must be considered simply as an indication, as



240 Neutrino Oscillation Analysis

0.00 0.01 0.02 0.03 0.04 0.05
sin2 θ13

0

2

4

6

8

10

∆χ
2

68.27% C.L.

95.00% C.L.

99.73% C.L.
Solar+KL
ATM+LBL+CHOOZ
GLOBAL

Figure 6.23: Unidimensional projection of ∆χ2 as a function of sin2 θ13 demonstrating the
resulting constrain in θ13 from combining all available neutrino data. The numerical results
are quoted in Table 6.10.

the details of each individual analysis can affect the final results. For a more thor-
ough analysis, all experimental data used in this subsection should be re-analysed
ensuring the consistency on any assumptions used.

6.7 A Look Into the Future: SNO+

Considering the present measurements from solar neutrino data, one can readily
observe that there isn’t much more to improve by looking at the same neutrino
sources, since the experimental uncertainties are now reaching a state where they
compete with the solar model uncertainties. Thus, the best approach to further
improve the solar neutrino picture, is by looking at other neutrino sources. In this
section, an evaluation of the future improvements will be performed by determining
the impact of a one and two year measurements of pep solar neutrinos neutrinos in
the oscillation parameters.

The SNO+ experiment [74, 169–171] is a natural successor of SNO. By the end of
SNO data taking, the heavy water was removed from the detector and returned back.
SNO+ reuses the SNO detector and is planning to use liquid scintillator (Linear
Alkyl Benzine - LAB) as the active medium. This change in the approach leads
to two immediate consequences: SNO+ will use the same detection principle as
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other liquid scintillation experiments, such as Borexino, i.e, the neutrino events are
detected through elastic scattering. As Borexino, by using liquid scintillator, SNO+
becomes sensitive to a lower energy range than SNO, making the two experiments
complementary. SNO+ has a rich physics program, aiming to detect reactor, geo,
atmospheric and solar neutrinos, and even studying neutrinoless double beta decay
with 150Nd [171]. For the purposes of this thesis the focus will be on the solar neutrino
physics potential.

The large rock overburden of the SNO detector creates a great shield for cosmic
rays, strongly reducing the cosmogenic background. In this context, SNO+ has the
best possibility to perform a high precision measurement of pep neutrinos. The pep
solar neutrino flux has the second best known flux, with an uncertainty of ±1.5%,
and being a mono-energetic line (Epep

ν = 1.442 MeV), its detection tests a very spe-
cific point of the solar neutrino spectrum. Furthermore, the energy of pep neutrinos
lie precisely in the intermediate region between matter dominated and vacuum dom-
inated oscillations. However pep neutrinos are not easy to detect, not only due to
their low energy, but mostly due to the fact that its major background consists in the
cosmogenic production of 11C, which has a β+ decay with a half life of T1/2 = 29.4

min and an energy deposition in the detector (both from the decay and the succes-
sive positron annihilation) between 1.02 and 1.98 MeV [172], partially covering the
window for detection of pep neutrinos. In this context SNO+ has a unique possibility
to perform the measurement, as the 6000 m.w.e. rock overburden reduce the amount
of muons interacting with the detector to ≈ 80 per day. SNO+ will also be able to
detect 8B and 7Be neutrinos. However, these have already been detected by other
experiments with good statistics (SNO has measured 8B with an uncertainty of 3.8%
[127] and Borexino measured 7Be with an uncertainty of 4.8% [163]). Therefore in
this section, the focus will be on a SNO+ measurement of pep.

Therefore a model of SNO+ was constructed based on the properties of the SNO
detector and the properties of LAB. Using this model, and the solar best fit oscillation
parameters quoted in Table 6.5, the number of events expected for at the present best
fit point and in the absence of oscillations was calculated. This value is different from
the more simplistic approach of using directly the survival probability at 1.442 MeV10

10Since pep neutrinos are mono-energetic, a zeroth order approach could be to use the survival
probability directly as an observable.
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Oscillation analysis tan2 θ12 ∆m2
21 (eV 2) sin2 θ13 (×10−2) χ2/n.d.f

Solar (current data) 0.436+0.048
−0.036 5.13+1.49

−0.98 × 10−5 < 5.79 (95%C.L.) 107.92/128

Solar + 9% SNO+ pep 0.436+0.044
−0.034 5.13+1.47

−0.96 × 10−5 < 5.27 (95%C.L.) 107.92/129

Solar + 5% SNO+ pep 0.436+0.039
−0.031 5.13+1.48

−0.95 × 10−5 < 4.67 (95%C.L.) 107.92/129

Table 6.9: Estimated neutrino oscillation parameters from analyses using different solar
models.

due to the fact that ES events can occur on two channels, one of which is sensitive
to all neutrino flavours. In this analysis, two situations were considered: a one year
measurement of pep, assuming a total uncertainty of 9%, and a two year measurement
assuming a total uncertainty of 5%. These values are almost arbitrary, although some
considerations were taken in their definition, such as live-time (80%), fiducial volume
(50%), a data taking period of one and two years and an expected rate of 11C events
at the depth of SNOLAB. Using these data, two neutrino oscillation analyses were
performed with the same inputs discussed in Section 6.5.3, plus our own estimate
for a SNO+ pep measurement. The results obtained are shown in Figure 6.24. The
obtained results in terms of oscillation parameters are quoted in Table 6.24.
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Figure 6.24: Confidence regions obtained from a solar neutrino analysis combining existing
solar data with an expectation for a SNO+ measurement of pep neutrinos assuming an
uncertainty of 5% and 9%.

These results show that SNO+ has a clear potential to further improve on the
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precision of the neutrino oscillation parameters, especially on the mixing angles. The
results show a reduction on the uncertainty of tan2 θ12 of about 1% per year of data.
In terms of sin2 θ13, the effect is even more noticeable with a reduction on the limit
of approximately 10% with each year of data. Although this analysis is based on a
series of assumptions that need to be further developed and investigated, it shows
nonetheless a great potential on SNO+ to further improve on the solar neutrino
picture. The potential to measure CNO and pp solar neutrinos, as well as reactor
neutrinos, makes SNO+ a very interesting experiment for any studies on the neutrino
properties. A potential measurement of CNO neutrinos has the possibility to make a
statement between the high and low metallicity solar models [173]. Being on the top
of the pp fusion chain, pp neutrinos have the smallest of the solar model uncertainties
and the highest flux, which by itself makes their detection a great challenge.

6.8 Summary

The parameters relevant for neutrino oscillations in the solar sector were extracted
from a series of analyses which sequentially added further information to the study
of neutrino properties. The results, shown in the previous section, demonstrated
that the precision of the experimental measurement currently achieved allow the
oscillation parameters to be determined with unprecedented precision.

Table 6.10 summarises the measurements of the neutrino oscillation parameters
obtained in the different analyses described in this thesis. The results are presented
in the form of a best fit parameter with 1σ uncertainties evaluated from marginalised
1D projections of the relevant parameter.

The precision on tan2 θ12 is primarily due to the SNO measurements, with further
improvement added by data from experiments probing the lower neutrino energy
regions, such as Borexino and the radiochemical experiments. This can be observed
clearly in Figures 6.20 and 6.21, but most importantly by the numerical results quoted
in Table 6.10.

A few observations can be made concerning tan2 θ12: comparing the current SNO
results with the previously published results [70], it was verified a decrease in the cen-
tral value of tan2 θ12 of approximately 1σ and a reduction in the uncertainty on the
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Oscillation analysis tan2 θ12 ∆m2
21 (eV 2) sin2 θ13 (×10−2) χ2/n.d.f

Two flavour analyses
SNO-only (LMA) 0.427+0.033

−0.029 5.62+1.92
−1.36 × 10−5 1.39/3

SNO-only (LOW) 0.427+0.043
−0.035 1.35+0.35

−0.14 × 10−7 1.41/3

Solar (BS05(OP),NH) 0.427+0.028
−0.028 5.13+1.29

−0.96 × 10−5 108.07/129

Solar+KamLAND 0.427+0.027
−0.024 7.46+0.20

−0.19 × 10−5

Three flavour analyses
SNO 3-phase analysis

Solar 0.436+0.048
−0.036 5.13+1.49

−0.98 × 10−5 < 5.79 (95%C.L.) 107.92/128

Solar+KamLAND 0.446+0.030
−0.029 7.41+0.21

−0.19 × 10−5 2.51+1.76
−1.46

< 5.34 (95%C.L.)
Global 2.02+0.88

−0.55

Solar analysis with other solar models
BPS09(GS) 0.447+0.049

−0.036 4.90+1.34
−0.90 × 10−5 < 5.47 (95%C.L.) 107.15/128

BPS09(AGSS09) 0.447+0.040
−0.041 5.13+1.50

−1.00 × 10−5 < 5.74 (95%C.L.) 108.06/128

Study of neutrino mass hiearchy
IH 0.436+0.044

−0.036 4.90+1.51
−0.97 × 10−5 < 6.03 (95%C.L.) 107.91/128

Table 6.10: Summary of the estimated neutrino oscillation parameters and corresponding
uncertainties for the analyses described in the previous sections.

parameter from 13.3% down to 8%. This is a very interesting measurement, which
clearly demonstrates the effect of adding the correlations between the phases. The
decrease in the mixing parameter is mostly due to the inclusion of the NCD phase
into the combined analysis, and the improvements that were added with it. The NC
measurement of the NCD phase was considerably higher than in the previous phases
[69]. By joining this phase with the first two phases, the normalisation of the total 8B

neutrino flux went up, which is also observable in the f8B parameter extracted in the
SigEx analysis, causing tan2 θ12 to decrease. The improvement on the uncertainty,
however, can be attributed to the improved oscillation analysis, where the princi-
pal improvement factor is the higher precision in the shape of the model survival
probability, which is a critical component in the oscillation analysis. By performing
a combined analysis of all solar neutrino data it was possible to further constrain
tan2 θ12. Despite the precision being dominated by SNO, the higher precision mea-
surement of the 7Be neutrinos by Borexino, with 5% uncertainty in the low energy
range of solar neutrinos also provides a significant improvement.
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Concerning the parameter ∆m2
21, although it was observed a considerable im-

provement both from SNO and solar neutrino analyses, in the context of a global
measurement this parameter is completely dominated by KamLAND’s measurements.
The improvement observed with solar data is mostly due to the increased precision
in the calculation of the survival probability, both for day and night. However, as
KamLAND has a much better precision in the determination of both the baseline
and has a higher correlation between the energy of the positron and the energy of
the incoming antineutrino, the precision attainable from solar neutrino data cannot
match.

Finally, the parameter sin2 θ13 could also be further constrained here in a com-
bined analysis of solar neutrino data. However, due to its second order effect in the
survival probability, the constrain is weak and cannot be interpreted as more than a
hint for a non-zero value. In the context of a combined analysis of solar and reactor
data from KamLAND this hint was found to have a significance of 1.64σ. However, it
was also verified that by adding constrains obtained from other experiments this hint
gained statistical significance of 3.2σ. In this case the constrain is clearly dominated
by the accelerator results of T2K and MINOS, which alone provide approximately
2.7σ significance for a non-zero θ13.

Analyses of other effects such as solar models and neutrino mass hierarchy were
also carried out and, although in both cases the results don’t have enough statistical
significance to perform a statement, different effects were studied. In the comparison
between solar models it was seen that the solar data is not able to distinguish between
them, although their properties slightly change the limits on the oscillation parame-
ters. When testing the neutrino mass hierarchies, a small effect on the mixing angles
was observer, with the results under the assumption of IH yielding a slightly lower
upper bound on tan2 θ12 and a higher limit on sin2 θ13. This result is understandable
if one takes into account the effect of the sign of ∆m2

31 in the calculation of the solar
neutrino survival probability. Under the assumption of IH the survival probability
shows a rise at high neutrino energies. The difference in the allowed ranges of the
mixing angles suggest that this increase causes a change in the tension between the
mixing angles reducing the uncertainty of tan2 θ12 and increasing the upper limit on
sin2 θ13.
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Considering the motivations quoted in Section 1.6, the results shown in this chap-
ter bring some very interesting information. For instance, the suggestion that the
third mixing angle might not be zero is becoming more and more favoured, which will
open the door for the study of CP violation in the lepton sector. Despite obtaining
only an upper limit from the solar neutrino analysis, this limit was reduced, when
comparing with the previous data, which increased the tension with the KamLAND
results. This led to an increase in the significance of the non-zero θ13 hint from these
two types of experiments and ultimately to a significance of more than 3σ from all
neutrino data.

When interpreting the results from the point of view of the various symmetry
models, these results also bring new information. For instance, considering the shift
observed in the θ12 mixing angle, one of the most popular models - Tri-Bimaximal
Mixing - is now becoming more disfavoured being now almost 2σ away from the
present best fit point. Of course, the statistical significance is still low and therefore
this cannot be taken as more than a hint. Nonetheless, considering the expectations
in the mixing angles shown in Figure 1.15 for both θ12 and θ13 several models are
now becoming disfavoured. Of course many more models exist, but these results are
a strong motivation for searching for new solutions at the GUT scales.

Finally, casting an eye into the future, a simple sensitivity test was performed to
determine the possible improvement of a potential pep measurement by the SNO+
experiment. Two scenarios were assumed, consistent with both a one and two years
of solar neutrino data taking. Under the considered assumptions it was shown that
SNO+ has a potential to further improve over the oscillation parameters, having
a significant effect both in tan2 θ12 and sin2 θ13. This potential is not completely
surprising, considering that pep solar neutrinos are mono-energetic and their energy
places them in an energy region with a strong physics potential to investigate the
transition between vacuum and matter induced neutrino oscillations.



Chapter 7

Conclusion

The search for understanding the properties of the neutrino is going on for almost
80 years, and yet it is a story that is far from its completion. Starting by simply
testing the hypothesis of the existence of the neutrino, as some of its properties
were unravelled along with the development of more advanced and precise detection
and measurement techniques, further questions were raised. Even now, although
much has been understood on the study of these light neutral leptons, there are yet
several questions that wait to be answered, such as their role, nature and mass. It
is therefore not surprising the amount and variety of experiments proposed by the
scientific community to determine the properties of this elusive particle.

In this context, the SNO experiment provided a major contribution to both neu-
trino and astroparticle physics by clearly demonstrating the existence of solar neu-
trino oscillation phenomenon, explaining the problem of rate deficits observed by
other experiments. The SNO experiment, and all other solar neutrino experiments,
have since then turned their focus towards a precise characterisation of both the
neutrino oscillation phenomenon and the measurement of the total flux of all active
neutrino flavours, and thus testing the SSM.

This thesis contributed towards this goal in two ways: by improving the optical
characterisation of the detector, which was described in Chapters 3 and 4, and by
directly improving the oscillation analysis of neutrino data, described in Chapter 6.

The contribution to the optical calibration allowed to identify and further improve
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the knowledge of the optical properties of the detector, which was demonstrated
to have a direct impact in the energy reconstruction of the neutrino events. This
contribution involved not only the direct participation in the calibration activities,
but also in the analysis of the data to extract the best analytical description of the
detector optics.

Although its origin could not be irrefutably found, the investigation of the de-
tector asymmetries demonstrated its existence at the level of the optical calibration,
which was then treated by the implementation of an additional systematic error in
the optical parameters, and the implementation of a correction in the energy recon-
struction algorithms. The development of additional optical cuts were demonstrated
to have a direct impact on the optical characterisation of the detector, significantly
improving the estimation of the media attenuation coefficients, and reducing their
overall uncertainty.

A large part of the optical calibration developments concerned the third and last
phase of SNO. The introduction of the NCDs posed a major challenge to the op-
tical calibration, introducing new optical effects and strongly affecting the photon
collection statistics of the PMTs. The studies performed on the optical effects caused
by the NCDs allowed to retain a comparable precision in the oscillation parameters
with respect with the previous phases, despite the added difficulties in the PMT data
analysis caused by the shadows and reflections. Although not directly used in the
processing of the neutrino data, a new method for correcting the reflections caused
by the proportional counters was added to validate the previously implemented tech-
nique, and even improve it.

All the optical calibration activities were successful in the improvement of the
optical characterisation of the detector and most of them were integrated in the
analysis workflow having a direct impact on the analysis of the third phase of the
experiment, and the two combined analyses that followed. Besides the direct impact
in the SNO analyses, these activities were also of key importance to the development
of the SNO+ experiment, which shall use the same detector as SNO, replacing the
heavy water by liquid scintillator. Although the optics with liquid scintillator are
different, the information collected by the SNO experiment serves as a starting point
in the characterisation of the detector, especially in the development of the Monte
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Carlo simulation and analysis algorithms, such as the optical calibration. Further-
more, in its commissioning phase, the SNO+ experiment shall use the detector filled
with light water, for which the optical calibration algorithms from SNO can be used
with minimal adaptations.

Besides the extense work on the optics, a contribution to the extraction of the
SNO signals was performed by determining the best parameterisation of the survival
probability that should be used to describe the spectral distortion consistent with
neutrino oscillations (Chapter 5). This study, although only a part of a larger analysis
yielded results consistent with other independent checks and helped in the decision
on how to best describe the data from SNO, avoiding the problems imposed by the
different energy responses of the individual SNO data phases.

Using a three active flavour model of neutrino oscillations, a precision analysis
was performed on SNO data, yielding the best precise measurement to date of the
mixing angle θ12, for the first time reducing the uncertainty below 10% in the context
of two effective neutrino flavours analysis. Although the basic analysis algorithm was
retained from prior work, a whole new set of improvements allowed to considerably
improve the extraction of the oscillation parameters relevant for solar neutrinos.

A major part of this improvement was due to the implementation of a new survival
probability calculation. Although it was limited to a subset of the MSW parameter
space and it was based in a well known adiabatic approximation, the improvements
both in speed of the calculation and precision of the oscillation parameters was greatly
improved over the static nature of the previous calculation. Additional improvements
in both the treatment of some systematic uncertainties, the cross-section calculations
and a better description of the Earth further enhanced the analysis.

The results obtained from a combined analysis of all solar neutrino data also
yielded a significant improvement in the precision of the extracted oscillation param-
eters over previous analyses. The limit on θ13 was the lowest ever achieved with solar
data. By combining the solar analysis results with the external data from both Kam-
LAND as well as with all neutrino data from other sources, a significant milestone
was found reaching a 3.2σ significance for a non-zero θ13 that is dominated mostly
by the LBL experimental data. However it was also found that the results obtained
with both solar, and later by adding in the limit from KamLAND, are also consistent
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with the LBL results. This indication of a non-zero value opens the door to new
tests, like probing the effects of CP-violation in the lepton sector.

All these results now leave a paved way to a new generation of experiments and
analyses, to further understand the physics of neutrinos.



Appendix A

Acronyms

SM Standard Model of particle physics

SSM Solar Standard Model

SK Super-Kamiokande

K2K KEK to Kamioka

T2K Tokai to Kamioka

LS Liquid Scintillator

CKM Cabibbo-Kobayashi-Maskawa

PMNS Pontecorvo-Maki-Nakagawa-Sakata

MSW Mikheev-Smirnov-Wolfenstein

CNO Carbon-Nitrogen-Oxygen cycle

SNU Solar Neutrino Unit

SNO Sudbury Neutrino Observatory

D2O heavy water

H2O light water

PMT photomultiplier tube

NCD neutral current detector
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CC charged current

NC neutral current

ES elastic scattering

LMA Large Mixing Angle

m.w.e. meter water equivalent

TBM Tri-Bimaximal Mixing

GUT Grand Unified Theory

AV acrylic vessel

UV Ultra-Violet

DCR deck clean room

PSUP PMT support structure

OWL outward looking

FEC Front End Card

DAQ data acquisition system

ECA Electronic Calibration

D-T deuterium-tritium

PE photo-electron

SNOMAN SNO Monte Carlo and ANalysis software

OCA optical calibration

MC Monte Carlo

LB laserball

QE quantum efficiency

PMTR PMT angular response

OccRatio Occupancy-Ratio

Occupancy Occupancy-Efficiency

PCA PMT Calibration
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MPE multi photoelectron correction

SigEx signal extraction

3-phase three phase combined analysis

LETA low energy threshold analysis

PDF probability density function

PSA pulse shape analysis

Pee electron neutrino survival probability

PREM Preliminary Reference Earth Model

PEM-C Continental Parametric Earth Model

HE High Energy

CL Confidence Level

LBL Long Baseline Experiment

SBL Short Baseline Experiment

RMS root mean square

NH Normal Hierarchy

IH Inverted Hierarchy





Appendix B

More on Optical Calibration

B.1 Optical Calibration Systematics

The systematic uncertainties in the optical calibration were originally defined in [83]
(systematics common to all phases) and [108] (NCD phase systematics). The com-
plete list of systematic uncertainties is described in table 4.3 being briefly described
below.

The systematics common to all phases were the following:

Radial Scale Shift (1): The source positions were moved radially by 1% towards
the PMTs. This accounted for uncertainties in the detector size in time units,
which could be caused by changes to the PMT calibration time slopes and
also accounted for changes in assumed quantities such as group velocities and
wavelength. A weight factor of f1 = 0.2 was applied to reduce the effective shift
to 0.2%. This systematic affected mostly the water attenuations, resulting in
a change of 10% in the D2O attenuation and 20% in H2O attenuation. The
observed effect in the PMTR was less than 1%.

Radial Position Shift (2): All runs were displaced radially by 5 cm outwards.
Like the previous systematic, this shift affected mostly the water attenuations.
Since the uncertainty in the source radial position is of 2cm, this systematic
had a weighting factor of f2 = 0.2 to reduce the effective shift to 1 cm shift. A
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changes in the D2O and H2O attenuations was about 15% and 25%, respectively
while the effect in the PMTR was below 1%.

Radial Position Smear (3): All runs were displaced radially by an amount sam-
pled from a gaussian with σ = 5 cm. Unlike the previous systematics, this
smear could be either positive or negative. Like the previous systematics the
effect was observed mostly in the water attenuations. For the same reasons as
before, this systematic was also scaled by a factor f3 = 0.2, which resulted in a
change in the water attenuations of 5%.

Source z position (4): All runs were displaced vertically by 5 cm. This systematic
accounted for vertical shifts in the detector coordinates and differences between
the nominal and fitted LB positions. This systematic was weighted by f4 = 0.4

which resulted in an effective shift of 2 cm. The mean position shift between
the manipulator and fitted source positions is ∼ 1± 1.4 in each coordinate[83].
This systematic only had a significant effect in the H2O attenuation, where a
change of 2.5% was observed.

Source x position (5): Like the shift along z, this systematic consisted in apply-
ing a shift of 5 cm outwards along the source x coordinate. The weight was
reduced to f5 = 0.2, in order to take into account correlations with the previous
systematics. The effect in the media attenuations and PMTR was smaller than
the statistical uncertainties.

Source size (6): The distance from the laserball to each PMT was decreased by 3
cm, to account for its finite size. The weighting factor of f6 = 0.5 accounted
for the fact that the uncertainty in the knowledge of the actual optical centre
of the laserball is ∼ 1 cm.

Laserball distribution variations (7 and 8): The effect of the laserball intensity
was obtained by squaring the relative intensity obtained in the nominal fit, in
order to increase the residual differences. The effect of the uniformity was ob-
tained by forcing the laserball distribution to be flat in all directions. Although
the laserball distribution is an output parameter, these changes were used to
quantify the effects of the laserball distribution on the other output parame-
ters of the optical model. Because the laserball distribution is an output of
the optical model, and thus its effect is partially accounted in the statistical
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uncertainties, a weighting factor of f7,8 = 0.05 was applied. In both cases, these
changes only affected the water attenuations by less than 5%, while the effect
in the PMTR was negligible.

PMT-PMT variability (9): The PMT variability was ignored by setting σPMT =

0 in χ2 calculation of the optical fit described in equations 3.6 and 3.10. As the
PMT variability was determined with an uncertainty of ∼ 20%, a weighting
factor of f9 = 0.2 was applied. This resulted in a change of 1% in the D2O

attenuation, 5% in the H2O attenuation and less than 2% in PMTR.

χ2 cuts (10 and 11): While the nominal fit results were obtained after applying a
χ2 cut of χ2 < 25, successive iterations were performed with cuts of χ2 < 16

and χ2 < 9, to better understand how the PMT selection affected the results.
The weights are set to f11,12 = 1.0, as this systematic does not account for
physical uncertainties. Each systematic resulted in changes up to 2% in both
water attenuations and PMTR.

PMT z asymmetry (12): As discussed in section 4.4.2, this was addressed by fit-
ting simultaneously for two PMTRs. A scale factor of f13 = 0.5 was applied to
account for the larger statistical uncertainties resulting from the extraction of
two independent PMTRs, specially in NCD phase where the statistics reduc-
tion due to the geometrical cuts was considerably larger. An overall effect of
3% was obtained only in the PMTR.

The systematics specific to the NCD phase were:

PMT Efficiencies (13): A scale of 10% was applied to the PMT efficiencies. As
spread in the PMT efficiencies is half of the shift applied, a weighting factor of
f12 = 0.5 was applied. This systematic was particularly important in the NCD
phase as the PMT efficiencies are directly used with the Occupancy method.
The effect in the D2O attenuations were on the order of 6%, while and effect
of 1% was observed in the PMTR, specially at hight angles. Due to strong
correlations between the H2O attenuations and the PMTR at hight angles, the
effect of this systematic in the H2O attenuations cannot be directly estimated.

NCD tolerance parameter (14): A change of half of the nominal value of (∆L =

5cm) was applied to show the effect of increased statistics. A weighting factor
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of f14 = 0.5 was applied to account for the uncertainty in the NCD positions.
This systematic affected mostly the D2O attenuation by an amount of ∼ 3%.

NCD Reflections (15): This systematic aimed to evaluate the effect of the NCD
reflections in the optical parameters. The systematic was evaluated by effec-
tively removing the NCD reflection correction, leaving only the MPE correction.
In order to full evaluate the effect of the correction a weight of f15 = 1.0 was
applied. The effect on the optical parameters was negligible, with observed
changes smaller than the statistical uncertainties.

NCD Reflection probability(16): This systematic was only applied in case of
using the analytical NCD reflection correction described in section 4.3.4. In
this case the reflection probability was multiplied by a factor of 10 to account
for uncertainties in the solid angles, time windows and NCD reflectivity. A
weight factor of f16 = 0.2 was applied assuming that the errors associated
with this shift could not be grater than an equivalent increase in the NCD
reflectivity of 100%. This systematic affected only the D2O attenuation, as
expected, resulting in a change of 5%.

NCD Reflectivity (17): This systematic was only applied in case of using the
Monte Carlo reflection correction discussed in section 4.3.4. In order to evalu-
ate this systematic a new set of Monte Carlo simulations was generated with
the NCD reflectivity tuned to be the double of the nominal value for each wave-
length. A weighting factor of f17 = 1.0 was applied to observe the full extent of
the effect of the NCD reflectivity in the optical parameters. The results were
consistent with the NCD reflection probability systematic, observing a change
of 5% in the D2O attenuation.



Appendix C

Additional Information on Neutrino
Oscillation Analysis

C.1 Inputs of the combined Solar Neutrino Analysis

For the Solar neutrino oscillation analysis besides the inputs for the SNO experiment
which were already described in chapter 5, the inputs from other solar neutrino
experiments are also used. In table C.1 a list of such inputs are listed. The inputs
from Borexino 8B are published as a plot in [57] but the actual bin values and
uncertainties were provided by the collaboration upon request.

Table C.1: Inputs for the Solar neutrino analysis in 3-phase paper.

Experiment Measurement Reference

Ga Rate (SNU) 66.1± 3.1 [43]
Cl Rate (SNU) 2.56± 0.23 [38]
Borexino 7Be Rate 46.0± 2.2 cpd/100tons [163]

Borexino 8B Spectrum Counts/2MeV/345.3 days [57]
[3.0; 5.0] 29± 8.5

[5.0; 7.0] 26± 5.5

[7.0; 9.0] 14± 3.8

[9.0; 11.0] 5± 2.2
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[11.0; 13.0] 1± 1

SK-I Zenith Spectrum (MeV) Rate (SSM) [50]
[5.0; 5.5] 0.467± 10.04

[5.5; 6.5](day) 0.453± 0.020

[5.5; 6.5](M1) 0.442± 0.053

[5.5; 6.5](M2) 0.379± 0.049

[5.5; 6.5](M3) 0.472± 0.045

[5.5; 6.5](M4) 0.522± 0.045

[5.5; 6.5](M5) 0.503± 0.049

[5.5; 6.5](Core) 0.426± 0.052

[6.5; 8.0](day) 0.474± 0.012

[6.5; 8.0](M1) 0.530± 0.034

[6.5; 8.0](M2) 0.506± 0.030

[6.5; 8.0](M3) 0.438± 0.026

[6.5; 8.0](M4) 0.478± 0.026

[6.5; 8.0](M5) 0.451± 0.028

[6.5; 8.0](Core) 0.439± 0.031

[8.0; 9.5](day) 0.448± 0.013

[8.0; 9.5](M1) 0.463± 0.036

[8.0; 9.5](M2) 0.470± 0.033

[8.0; 9.5](M3) 0.462± 0.029

[8.0; 9.5](M4) 0.509± 0.029

[8.0; 9.5](M5) 0.461± 0.032

[8.0; 9.5](Core) 0.451± 0.035

[9.5; 11.5](day) 0.453± 0.015

[9.5; 11.5](M1) 0.449± 0.040

[9.5; 11.5](M2) 0.502± 0.038

[9.5; 11.5](M3) 0.451± 0.032

[9.5; 11.5](M4) 0.473± 0.032

[9.5; 11.5](M5) 0.477± 0.035

[9.5; 11.5](Core) 0.483± 0.040

[11.5; 13.5](day) 0.477± 0.025

[11.5; 13.5](M1) 0.509± 0.067

[11.5; 13.5](M2) 0.351± 0.055
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[11.5; 13.5](M3) 0.391± 0.049

[11.5; 13.5](M4) 0.498± 0.053

[11.5; 13.5](M5) 0.434± 0.056

[11.5; 13.5](Core) 0.521± 0.064

[13.5; 16.0](day) 0.511± 0.054

[13.5; 16.0](M1) 0.570± 0.150

[13.5; 16.0](M2) 0.831± 0.167

[13.5; 16.0](M3) 0.694± 0.131

[13.5; 16.0](M4) 0.665± 0.127

[13.5; 16.0](M5) 0.441± 0.118

[13.5; 16.0](Core) 0.469± 0.131

[16.0; 20.0] 0.555± 0.146

SK-II day-night Spectrum (MeV) Events/kton/year [51]
[7.0; 7.5] (average) 43.7± 5.1

[7.5; 8.0] (day) 36.4± 5.1

[7.5; 8.0] (night) 43.6± 5.2

[8.0; 8.5] (day) 34.4± 3.5

[8.0; 8.5] (night) 35.5± 3.5

[8.5; 9.0] (day) 27.0± 2.8

[8.5; 9.0] (night) 33.0± 2.8

[9.0; 9.5] (day) 23.9± 2.3

[9.0; 9.5] (night) 25.0± 2.3

[9.5; 10.0] (day) 20.7± 2.0

[9.5; 10.0] (night) 23.3± 2.0

[10.0; 10.5] (day) 15.4± 1.7

[10.0; 10.5] (night) 17.6± 1.7

[10.5; 11.0] (day) 13.5± 1.5

[10.5; 11.0] (night) 14.2± 1.5

[11.0; 11.5] (day) 11.3± 0.9

[11.0; 11.5] (night) 9.4± 1.2

[11.5; 12.0] (day) 7.11± 1.00

[11.5; 12.0] (night) 8.96± 1.035

[12.0; 12.5] (day) 6.82± 0.94

[12.0; 12.5] (night) 5.79± 0.86
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[12.5; 13.0] (day) 4.18± 0.73

[12.5; 13.0] (night) 3.97± 0.70

[13.0; 13.5] (day) 2.95± 0.62

[13.0; 13.5] (night) 3.66± 0.61

[13.5; 14.0] (day) 2.95± 0.57

[13.5; 14.0] (night) 1.59± 0.44

[14.0; 15.0] (day) 2.99± 0.60

[14.0; 15.0] (night) 2.58± 0.53

[15.0; 16.0] (day) 1.37± 0.42

[15.0; 16.0] (night) 2.08± 0.45

[16.0; 20.0] (day) 1.11± 0.37

[16.0; 20.0] (night) 1.60± 0.40

SK-III day-night Spectrum (MeV) Events/kton/year [53]
[5.0; 5.5] (day) 94.600± 15.400

[5.0; 5.5] (night) 73.500± 13.400

[5.5; 6.0] (day) 75.200± 9.600

[5.5; 6.0] (night) 61.500± 8.250

[6.0; 6.5] (day) 55.900± 6.800

[6.0; 6.5] (night) 71.000± 6.900

[6.5; 7.0] (day) 51.300± 3.800

[6.5; 7.0] (night) 59.100± 3.800

[7.0; 7.5] (day) 55.900± 3.600

[7.0; 7.5] (night) 52.300± 3.450

[7.5; 8.0] (day) 39.900± 3.100

[7.5; 8.0] (night) 41.200± 3.000

[8.0; 8.5] (day) 37.500± 2.700

[8.0; 8.5] (night) 35.900± 2.550

[8.5; 9.0] (day) 28.700± 2.300

[8.5; 9.0] (night) 32.900± 2.350

[9.0; 9.5] (day) 20.000± 1.850

[9.0; 9.5] (night) 25.200± 2.000

[9.5; 10.0] (day) 18.000± 1.700

[9.5; 10.0] (night) 20.800± 1.750

[10.0; 10.5] (day) 15.200± 1.450
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[10.0; 10.5] (night) 13.800± 1.400

[10.5; 11.0] (day) 15.200± 1.400

[10.5; 11.0] (night) 13.000± 1.250

[11.0; 11.5] (day) 9.670± 1.140

[11.0; 11.5] (night) 9.560± 1.060

[11.5; 12.0] (day) 5.330± 0.850

[11.5; 12.0] (night) 6.170± 0.895

[12.0; 12.5] (day) 4.200± 0.745

[12.0; 12.5] (night) 5.770± 0.800

[12.5; 13.0] (day) 2.740± 0.565

[12.5; 13.0] (night) 3.470± 0.610

[13.0; 13.5] (day) 1.630± 0.425

[13.0; 13.5] (night) 2.300± 0.500

[13.5; 14.0] (day) 1.170± 0.340

[13.5; 14.0] (night) 1.530± 0.420

[14.0; 15.0] (day) 2.080± 0.470

[14.0; 15.0] (night) 2.350± 0.485

[15.0; 16.0] (day) 0.394± 0.231

[15.0; 16.0] (night) 1.266± 0.346

[16.0; 20.0] (day) 0.252± 0.183

[16.0; 20.0] (night) 0.000± 0.276

SNO 3-Phase Pee Polynomial parameterisation [131]
f8B 0.9235± 0.0348

c0 0.3174± 0.0185

c1 0.0039± 0.0080

c2 −0.0010± 0.0033

a0 0.0464± 0.0335

a1 −0.0163± 0.0272
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C.2 Parameters of the Standard Solar Models

Tables C.2, C.3 and C.4 list the partial derivatives of the solar models studied in this
thesis. The propagation of the solar model uncertainties is described in Section 6.3.4.
The first column gives the name of the parameters, p, the second the uncertainty on
the parameter, and the remaining columns the partial derivatives αki for each neutrino
flux.

p ∆p pp pep hep 7Be 8B 13N 15O 17F
S11 1 0.001 -0.001 -0 -0.004 -0.01 -0.01 -0.011 -0.011
S33 1 0.002 0.003 -0.024 -0.023 -0.021 0.001 0.001 0.001
S34 1 -0.005 -0.007 -0.007 0.08 0.075 -0.004 -0.004 -0.004
S114 1 -0.002 -0.002 -0.001 0 0.001 0.079 0.095 0.001
S17 1 0 0 0 0 0.038 0 0 0
L� 1 0.003 0.003 0 0.014 0.028 0.021 0.024 0.026
Age 1 -0 0 -0 0.003 0.006 0.004 0.006 0.006
Op. 1 0.003 0.005 0.011 -0.028 -0.052 -0.033 -0.041 -0.043
Diff. 1 0.003 0.004 0.007 -0.018 -0.04 -0.051 -0.055 -0.057
Be7e 1 0 0 0 0 -0.02 0 0 0
Shep 1 0 0 0.151 0 0 0 0 0
C 0.297 -0.014 -0.025 -0.015 -0.002 0.03 0.845 0.826 0.033
N 0.32 -0.003 -0.006 -0.004 0.002 0.011 0.181 0.209 0.01
O 0.387 -0.006 -0.011 -0.023 0.052 0.121 0.079 0.093 1.102
Ne 0.539 -0.005 -0.005 -0.017 0.049 0.096 0.057 0.068 0.076
Mg 0.115 -0.005 -0.005 -0.018 0.051 0.096 0.06 0.07 0.078
Si 0.115 -0.011 -0.014 -0.037 0.104 0.194 0.128 0.15 0.164
S 0.092 -0.008 -0.017 -0.028 0.074 0.137 0.094 0.109 0.12
Ar 0.496 -0.002 -0.006 -0.007 0.018 0.034 0.024 0.028 0.031
Fe 0.115 -0.023 -0.065 -0.069 0.209 0.515 0.342 0.401 0.444

Table C.2: Systematic uncertainties of the BS05(OP) SSM in the form of partial derivatives.
An uncertainty ∆p = 1 means the derivative already includes the weight of the uncertainty.
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p ∆p pp pep hep 7Be 8B 13N 15O 17F
S11 0.004 0.119 -0.194 -0.099 -1.052 -2.683 -2.139 -2.895 -3.066
S33 0.06 0.033 0.048 -0.454 -0.428 -0.406 0.03 0.024 0.022
S34 0.032 -0.065 -0.094 -0.081 0.858 0.813 -0.06 -0.051 -0.047
S114 0.08 -0.007 -0.011 -0.006 -0.002 0.007 0.749 1.001 0.007
S17 0.038 0 0 0 0 1 0 0 0
L� 0.004 0.78 1.007 0.142 3.562 7.165 4.664 6.116 6.61
Age 0.0044 -0.074 0.008 -0.129 0.755 1.341 0.939 1.358 1.467
Op. 0.025 -0.099 -0.3 -0.398 1.267 2.702 1.433 2.06 2.27
Diff. 0.15 -0.012 -0.018 -0.04 0.131 0.278 0.352 0.398 0.422
Be7e 0.02 0 0 0 0 -1 0 0 0
Shep 0.151 0 0 1 0 0 0 0 0
C 0.134 -0.006 -0.012 -0.008 -0.001 0.02 0.841 0.794 0.023
N 0.145 -0.002 -0.003 -0.002 0.001 0.006 0.155 0.206 0.006
O 0.13 -0.005 -0.01 -0.024 0.056 0.125 0.069 0.096 1.105
Ne 0.142 -0.004 -0.004 -0.018 0.05 0.099 0.052 0.072 0.079
Mg 0.141 -0.005 -0.004 -0.017 0.052 0.098 0.051 0.072 0.079
Si 0.139 -0.009 -0.012 -0.036 0.106 0.195 0.111 0.151 0.165
S 0.152 -0.005 -0.012 -0.026 0.07 0.13 0.079 0.105 0.114
Ar 0.179 -0.001 -0.004 -0.006 0.016 0.03 0.019 0.025 0.027
Fe 0.143 -0.02 -0.063 -0.071 0.219 0.53 0.307 0.415 0.457

Table C.3: Systematic uncertainties of the BPS09(GS) SSM in the form of partial deriva-
tives.

p ∆p pp pep hep 7Be 8B 13N 15O 17F
S11 0.004 0.09 -0.236 -0.112 -1.07 -2.73 -2.09 -2.95 -3.14
S33 0.06 0.029 0.043 -0.459 -0.441 -0.427 0.025 0.018 0.015
S34 0.032 -0.059 -0.086 -0.072 0.878 0.846 -0.053 -0.041 -0.037
S114 0.08 -0.004 -0.007 -0.004 -0.001 0.005 0.711 1 0.005
S17 0.038 0 0 0 0 1 0 0 0
L� 0.004 0.808 1.04 0.174 3.56 7.13 4.4 6 6.51
Age 0.0044 -0.067 0.017 -0.118 0.786 1.38 0.855 1.34 1.45
Op. 0.025 -0.099 -0.3 -0.398 1.27 2.7 1.43 2.06 2.27
Diff. 0.15 -0.011 -0.016 -0.037 0.136 0.28 0.34 0.394 0.417
Be7e 0.02 0 0 0 0 -1 0 0 0
Shep 0.151 0 0 1 0 0 0 0 0
C 0.133 -0.005 -0.009 -0.007 0.004 0.025 0.861 0.81 0.024
N 0.147 -0.001 -0.002 -0.002 0.002 0.007 0.148 0.207 0.005
O 0.129 -0.005 -0.006 -0.02 0.053 0.111 0.047 0.075 1.08
Ne 0.145 -0.004 -0.003 -0.014 0.044 0.083 0.035 0.055 0.061
Mg 0.142 -0.004 -0.002 -0.017 0.057 0.106 0.051 0.076 0.084
Si 0.139 -0.009 -0.012 -0.036 0.116 0.211 0.109 0.158 0.174
S 0.153 -0.006 -0.014 -0.028 0.083 0.151 0.083 0.117 0.128
Ar 0.188 -0.001 -0.003 -0.005 0.014 0.027 0.015 0.021 0.023
Fe 0.144 -0.016 -0.054 -0.064 0.217 0.51 0.262 0.386 0.428

Table C.4: Systematic uncertainties of the BPS09(Asplund:2009fu) SSM in the form of
partial derivatives.
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C.3 KamLAND

At the time the results from [70] were obtained, no three flavour analysis of Kam-
LAND data was publicly available. Therefore, an independent analysis was per-
formed in the context of this thesis with the publicly available data. The details of
the analysis are described in [164]. A brief explanation shall be presented here.

The analysis follows the same lines as the method used in the analysis of other
solar neutrino experiments besides SNO, described in section 6.3.1, that consists in an
analytical convolution of the produced neutrino spectrum, cross sections and detector
response, by performing the appropriate modifications to these elements.

The KamLAND Collaboration provided the data from figure 1 of [59], which in-
cludes both the reconstructed energy spectrum of reactor anti-neutrino events, and
the corresponding expected spectrum without oscillations. Following a similar proce-
dure as the one described in section 6.3.1, the analysis was performed by constructing
an expected reconstructed energy spectrum for each point in a grid of oscillation pa-
rameters and obtaining a figure of merit by comparing the expected spectrum to the
one reconstructed by KamLAND.

Unlike the Sun where there is a single source and spectrum for a given reaction, the
neutrino flux at KamLAND is contributed by 75 reactors at distances below 1000 km.
Each of these reactors have their own fuel composition, which is not publicly known.
Furthermore, each reactor has different thermal powers and operating periods, which
translates into different anti-neutrino fluxes over time.

The neutrino spectrum at the detector without oscillations was then determined
based on the average duty cycle and thermal power of the reactors collected from
[174], and the average fuel composition quoted by KamLAND in [59]. It is important
to note that the normalisation of the spectrum, i.e., the total flux of neutrinos is of
no importance. Only the shape of the reconstructed spectrum contains information
concerning the neutrino oscillations and therefore the un-oscillated spectra predicted
by KamLAND and calculated in this analysis were important milestones to verify
the accuracy of the expected observables.

The KamLAND survival probabilities of ν̄e were calculated using a simplified
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version of the vacuum survival probability of equation 1.12, taking into account the
characteristics of KamLAND[18]:

P (νe → νe) = sin4 θ13 + cos4θ13P
2ν(νe → νe) (C.1)

with
P 2ν(νe → νe) = 1− sin2 2θ12 sin2 ∆m2

21L

4E
(C.2)

At the average baseline of KamLAND, the matter effects are negligible and there-
fore these equations were shown to be very fast and accurate. An energy resolution of
6.5%/

√
E was applied in the response function, and two systematic uncertainties were

propagated: the reactor rates (4%), and the energy scale (2%).
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