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Abstract

The Sudbury Neutrino Observatory (SNO), a heavy water Cherenkov experiment,
was designed to detect solar 8B neutrinos via their elastic scattering interactions on elec-
trons, or charge current and neutral current (NC) interactions on deuterium. In the third
phase of SNO, an array of 3He proportional counters was deployed to detect neutrons
produced in NC interactions.

A simulation of the current pulses and energy spectra of the main kinds of ionization
events inside these Neutral Current Detectors (NCDs) was developed. To achieve this,
electron drift times in NCDs were evaluated with a Monte Carlo method, and constrained
by using wire alpha activity inside the counters. The pulse calculation algorithm applies
to any ionization event, and takes into account processes such as straggling, electron diffu-
sion, and propagation through the NCD hardware. A space charge model was developed
to fully explain the energy spectra of neutron and alpha events. Comparisons with data
allowed the various classes of alpha backgrounds to be identified, and gave evidence for
the spatial non–uniformity of 238U and 232Th chain nuclei in the counter walls.

The simulation was applied to determine the fractional contents of the main types
of alpha backgrounds in each NCD string. The number of neutron capture events in
the array was extracted via a statistical separation, using Monte Carlo generated alpha
background pulse shape parameter distributions and minimal energy information. The
inferred total 8B solar neutrino flux is:

ΦNC = 5.74 ± 0.77 (stat.) ± 0.39 (sys.) × 106 cm−2s−1

in agreement with Standard Solar Model predictions and previous SNO results.
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Chapter 1

Introduction

1.1 Summary of neutrino properties

Neutrinos are the neutral, colourless spin-1
2

partners of the charged leptons (e, µ, τ). Pos-

tulated by Pauli from considerations of β decay experiments [1], they were first observed

by Reines and Cowan in 1956, through inverse β decay [2, 3]. In the Standard Model

(SM), neutrinos interact exclusively via the weak interaction, in two ways: neutral cur-

rent (NC) interactions, in which Z0 bosons are exchanged, and charged current (CC)

interactions mediated by W± bosons, in which they couple with their charged partners.

Observations of Z0 decays established that there are only three active neutrino flavours:

νe, νµ and ντ [4]. νµ and ντ neutrinos were first observed in 1962 and 2000, respectively

[5, 6].

Experimental evidence [7, 8] is consistent with the hypothesis that all neutrinos have

negative helicity. This supported the idea of massless, left-handed neutrinos in the SM.

The existence of neutrino masses, however, gives rise to mixed helicity states and flavour

change, which is discussed next.

1.2 Neutrino oscillations

The time evolution of neutrinos in vacuum is determined by the Hamiltonian H = HI +

HP , where the interaction Hamiltonian HI incorporates weak interactions during particle

production, or detection, and the propagation component HP describes free motion. The

eigenstates of HI are flavour eigenstates |νf 〉, while those of HP are mass eigenstates

|νi〉. Flavour eigenstates can be thought of as superpositions of three mass states with

1
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masses m1, m2 and m3: |νf 〉 =
∑3

i=1 Ufi|νi〉. Ufi is the Pontecorvo-Maki-Nakagawa-

Sakata (PMNS) matrix, commonly expressed as U = V23 · V13 · V12, where:

V23 =





1 0 0
0 c23 s23

0 −s23 c23



 , V13 =





c13 0 s13e
iδ

0 1 0
−s13e

iδ 0 c13



 , V12 =





c12 s12 0
−s12 c12 0

0 0 1





(1.1)

In this parameterization, Ufi contains 3 mixing angles θ12, θ13, θ23 and a CP-violating

phase δ. The sines and cosines of mixing angles are denoted by c and s (e.g. s23 = sin θ23).

The probability of flavour change, after travelling a time t, is P (νf → νg) =

|〈νg(t)|νf〉|2. This expression is considerably simplified, as (1) θ13 ∼ 0 [9], and (2) the

mass splittings are such that |∆m2
13| ∼ |∆m2

23| ≫ |∆m2
21|. Decoupling of (|m1〉, |m2〉)

and (|m2〉, |m3〉) mixing then occurs, because the length scales over which flavour change

takes place can be very different in each case. To a good approximation, a two-flavour

scenario therefore applies to most experiments, and P takes the simple form:

P (νe → νµ) = sin2 2θ12 sin2 1.27∆m2
21x

E
(1.2)

for (|m1〉, |m2〉) mixing. In Eq. 1.2, x, the distance travelled, is in metres, ∆m2
21 in eV2,

and the neutrino energy E in MeV.

In 1978, Wolfenstein remarked that the CC scattering of νe with electrons in matter

should modify the propagation Hamiltonian HP to include an additional potential [10].

Correspondingly, the mass eigenstates change from |νi〉 to |νim〉. In a two-flavour picture,

the relation between |νf 〉 and |νim〉 is, again, a rotation matrix, with the matter mixing

angle θm given by [11]:

tan 2θm =
tan 2θ

1 −
√

2GFNe/(
∆m2

2E
cos 2θ)

(1.3)

where Ne is the density of electrons. θm can become very large if
√

2GFNe = ∆m2

2E
cos 2θ.

This matter-induced flavour change enhancement, known as the Mikheyev-Smirnov-Wolfenstein

(MSW) effect, plays a vital role in the flavour conversion of solar neutrinos.

There is now a wealth of evidence (from solar [12, 13], reactor [14], accelerator

[15, 16], and atmospheric neutrino [17] experiments) for neutrino oscillations. These

experiments determined the oscillation parameters to be: ∆m2
21 ∼ 8× 10−5 eV2, ∆m2

32 ∼
0.002 eV2, θ12 ∼ 33◦, and θ23 ∼ 45◦.
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Reaction Name Flux (cm−2s−1)

p p→ d e+νe pp 5.99(1.00 ± 0.01) × 1010

p e−p→ d νe pep 1.42(1.00 ± 0.02) × 108

3He p→ 4He e+ νe hep 7.93(1.00 ± 0.16) × 103

7Be e− → 7Li νe γ
7Be 4.84(1.00 ± 0.11) × 109

8B → 8Be
∗
e+νe

8B 5.69(1.00 ± 0.16) × 106

13N → 13C e+νe
13N 3.07(1.00+0.31

−0.28) × 108

15O → 15N e+νe
15O 2.33(1.00+0.33

−0.29) × 108

17F → 17Oe+νe
17F 5.84(1.00 ± 0.52) × 106

Table 1.1: The magnitude of solar neutrino fluxes, as predicted by the BS05 SSM [18].

1.3 Solar neutrinos

The Sun is an intense source of electron-type neutrinos produced in fusion reactions in

its core. The expected νe fluxes at the Earth, from the different reactions comprising

the fusion chains, can be calculated by Standard Solar Models (SSM) [18] (table 1.1).

The energy spectra of the various νe fluxes are shown in fig. 1.1 (left). SSM predictions

of solar properties agree very well with helioseismological, and other measurements [19].

However, generations of experiments [20, 21, 22, 23, 24] have reported a deficit in the flux

of solar νe compared to SSM predictions. These disagreements, commonly referred to as

the Solar Neutrino Problem (SNP), are now understood to be consequences of neutrino

flavour change.
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Figure 1.1: Left: solar neutrino spectra calculated by the BS05 SSM [18]. Right: proba-
bility of 8B solar neutrinos reaching the Earth as electron neutrinos.

The actual flavour conversion picture has to take into account the MSW effect in
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the Sun. Fig. 1.1 (right) shows the probability of a 8B solar neutrino detected on Earth

as an electron neutrino, if ∆m2 = 8 × 10−5 eV2 and θ12 = 33◦. The curve follows the

equation:

P (νe → νe) =
1

2
+

1

2
cos 2θm cos 2θ12 (1.4)

approximately [25]. For example, according to Eq. 1.3, a 10 MeV neutrino created at the

centre of the Sun experiences resonance at ∼0.23Rsun, where Rsun is the solar radius1. At

the neutrino production point, sin θm ∼ 1 and cos θm ∼ 0, i.e. the νe is created essentially

in a |ν2m〉 state. Owing to the slow decrease in Ne, the neutrino maintains the same mass

eigenstate, until it exits the surface of the Sun with a νe content of ∼2
3
. The chance of

detecting it as an electron neutrino on Earth is further suppressed by a factor of ∼2 due

to vacuum oscillations, so that P (νe → νe) ∼ 1
3
.

1.4 The SNO experiment

The Sudbury Neutrino Observatory (SNO) experiment [26], located at a depth of 2039 m

in the INCO Creighton mine in Sudbury, Canada, was designed to detect 8B solar neu-

trinos. SNO provided the first direct evidence for neutrino flavour change [12]. Together

with the KamLAND experiment [14], it confirmed the Large Mixing Angle (LMA) MSW

solution as the answer to the SNP. It is now aimed towards a precision measurement of

the mixing parameters ∆m2
21 and θ12.

SNO consists of a 12 m diameter acrylic vessel (AV) containing 1 kilotonne of D2O

(fig. 1.3), which is shielded from cavity wall backgrounds by ordinary water. An array of

9456 photomultiplier tubes (PMT) surrounds the AV to detect Cherenkov light emitted

by charged particles travelling in the D2O. Neutrinos can interact with deuterium in the

heavy water in the following ways:

νx + e− → νx + e− (ES) (1.5)

νe + d→ p+ p+ e− (CC) (1.6)

νx + d→ p + n+ νx (NC) (1.7)

1An exponential radial electron density profile Ne is assumed in the Sun in this calculation: Ne =
N0e

−10.54r/Rsun , with N0 = 245 mol/cm3 [19].
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Figure 1.2: The flux of muon, or tau neutrinos vs the flux of electron neutrinos, as measured
in the salt phase. The BS05 SSM prediction in a flavour-conversion scenario is shown by the
diagonal dashed lines. Figure from [27].

The elastic scattering reaction (ES) is around 6 times more sensitive to νe than other

flavours, and there is a strong correlation between the outgoing electron and incident

neutrino directions. The CC reaction is sensitive only to νe, with a threshold of 1.44

MeV. The energy of the outgoing electron is directly related to that of the incident

neutrino. Both CC and ES events are detected via Cherenkov light emission by the final

state electron. The NC reaction, with a threshold of 2.22 MeV, is totally flavour-blind,

and thus, provides a direct measurement of the total 8B solar neutrino flux. Therefore,

the ratio of the number of CC to NC events is closely related to the νe survival probability.

Each phase of SNO is characterized by a different method for detecting the NC

neutron. The first phase observed neutron captures on deuteron via the resulting 6.25

MeV γ-rays. These Compton scattered, producing electrons above Cherenkov threshold

that could then be observed. The second phase [27] involved the addition of two tonnes

of NaCl to the D2O, increasing the neutron detection efficiency from 14.4 % in the first

phase, to 40.7 %. The inclusion of salt also improved the Cherenkov light yield of NC

events, and allowed these to be better separated from CC events2. Flux results from the

2The distribution of PMT hits of NC events is more isotropic than CC events, due to multiple γ-ray
emissions following neutron capture on 35Cl.
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salt phase are summarized in fig. 1.2. The measured CC, ES and NC fluxes were [27]:

ΦCC = 1.68+0.06
−0.06(stat.)+0.08

−0.09(sys.) × 106 cm−2s−1 (1.8)

ΦES = 2.35+0.22
−0.22(stat.)+0.15

−0.15(sys.) × 106 cm−2s−1 (1.9)

ΦNC = 4.94+0.21
−0.21(stat.)+0.38

−0.34(sys.) × 106 cm−2s−1 (1.10)

The CC spectrum was also extracted and found to be consistent with an undistorted 8B

neutrino spectrum.

In the third and final phase, an array of 36 3He proportional counters, known as

Neutral Current Detectors (NCDs), were installed inside the AV (fig. 1.3) [28] to detect

NC neutrons, thereby measuring the NC flux in a completely different manner. The

addition of NCDs was motivated by the following:

(1) In the first and second phases, CC and NC events were separated based on their

characteristic distributions in a number of observables, e.g. reconstructed radius,

direction, energy and isotropy. Significant correlations between the CC and NC

signals resulted, because of substantial overlaps between the characteristic pdfs. In

the NCD phase, CC and NC events could be recorded differently with the PMT and

NCD arrays, respectively. The number of NC events coming from the PMT array

was decreased considerably. The CC-NC correlation could therefore be reduced

significantly, and a measurement of the NC flux could be made without knowing

the CC flux.

(2) Because a different, and essentially independent, detector system was involved, the

NC flux measurement carries very different systematic uncertainties in the third

phase. This provides a rigorous verification of results from previous phases.

This thesis is concerned with the third phase of SNO, and focusses on data from

the NCD counters; PMT data will not be discussed. A description of the NCDs is given

next.
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Chapter 2

Neutral Current Detectors

2.1 Counter properties

NCDs are 3He proportional counters made of very low-background materials. Their pur-

pose in SNO was to detect thermalized NC neutrons via the reaction

n+3He → p+ t+ 764 keV (2.1)

which has a cross-section of 5316 b. The proton (p) and triton (t) are emitted back-

to-back and isotropically, with 573 and 191 keV of kinetic energy, respectively. These

particles ionize the counter gas, producing free electrons, which drift towards the anode,

and start to multiply at a radius of ∼50 µm. Ions produced in the resulting electron

cascade slowly drift towards the cathode. In doing so, the induced charge on the anode

changes with time, thus creating a current pulse that can be read off the wire. The total

charge contained in the pulse is directly related to the total deposited energy. Therefore,

if the particle track is fully-contained in the gas, the pulse integral is a direct measure of

the initial particle energy.

NCD gas is a mixture of 85 % 3He and 15 % CF4 at 2.5 atm (measured at 297

K). In addition to boosting the gas gain1 considerably, CF4 acts as a quencher, and its

inclusion results in very good proportional counter pulse imaging properties [30]. The gas

proportions and pressure were optimized to the above values, so that: (1) the operating

voltage could be kept relatively low, (2) the tubes did not collapse under water, and (3)

the length of p-t tracks were short enough for most of them to be fully-contained2. Except

1CF4 can be ionized both by accelerated electrons and excited 3He atoms, since its first ionization
energy is lower than the 23S or 21S states of 3He.

2The fraction of all p-t tracks that are fully-contained is 0.73.

8
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for very brief spells, NCDs operated at 1950 V (corresponding to a gas gain of 219) and

a temperature of ∼10 C throughout the third phase of SNO.

The typical NCD string (fig. 2.1) was 10 m-long, and consisted of four 2 m-long

counters welded together (see table A.1 for the total lengths and number of counters in

each string). A 8 cm-long ‘dead volume’, filled with a mixture of Ar and CO2, was present

between successive counters. Counter bodies are around 2.5 cm in radius, 0.037 cm thick,

and made of very pure nickel. They were manufactured by Chemical-Vapour-Deposition

(CVD) on an aluminium mandrel. This process reduced the 238U and 232Th content in

the walls by around 6 orders of magnitude, down to the pg/gNi level. NCD wires, made

of high purity copper, are 25 µm in radius. Each anode is shielded at the counter ends

by a 6 cm-long quartz feedthrough, to avoid charge multiplication in regions of distorted

electric field.

Data was read out from the top ends of strings only, to minimize the amount of

material inserted in the heavy water. All strings were terminated by a 16 cm-long open-

ended delay line. Upon formation on the anode, current pulses separate into upward and

downward components of nearly equal magnitude. The time lag between the two parts

is directly related to the point of formation on the wire. Because it propagates through

the delay line, the downward-going pulse is delayed by at least 89 ns with respect to the

direct pulse. This allows the vertical capture positions of a fraction of neutron events to

be resolved.

The deployed NCD array consisted of 36 3He and 4 4He strings, arranged as shown in

fig. 2.2, with a 1 m inter-string spacing. The array size and configuration were optimized

to detect NC neutrons as efficiently as possible, without shadowing too much Cherenkov

light: 26.4 % of all NC neutrons were captured by NCDs, and ∼ 9 % of Cherenkov photons

were absorbed. The 4He strings were introduced to study non-neutron backgrounds. They

are the only source of high-purity α data that can be used to calibrate simulations. 4He

α pulse shapes are not expected to be different compared to those from 3He strings; the

set of 4He string pulses, however, is not representative of α backgrounds from the rest of

the array. Due to hardware defects, elevated radioactivity, counter gain mismatches and

high instrumental background rates, six 3He strings (0, 1, 8, 18, 26, and 31), and one 4He

string (20) were deemed unsuitable for analysis [31].
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Quantity Value

Gas composition 85 % 3He, 15 % CF4

Pressure at 297 K 2.5 atm
Operating temperature 283 K

Gas density 1.6178×10−3 gcm−3

Mean wall thickness 371 µm
Active volume radius, b 2.5421 cm

Anode radius, a 25 µm
Counter lengths 2, 2.5, 3 m

Typical string length 10 m
Delay line length and delay 20 cm, 89 ns

NCD cable length (to preamp) 9 to 12 m, ∼50 ns transit
Operating voltage 1950 V

Gas gain 219
Total active volume in array 778501 cm−3

Total active NCD length 396 m
Total NCD nickel mass in array 203 kg

Table 2.1: Summary of NCD properties.

Figure 2.2: The NCD array configuration in the AV (blue circle), looking down the
detector. 4He strings are shown in green. NCD diameters are not to scale. Figure from
[29].
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2.2 Electronics

Fig. 2.3 shows the NCD Data AcQuisition (DAQ) system. Each string was connected by

means of a 9–12 m-long coaxial cable (resulting in a ∼50 ns transit time) to a current

preamplifier, located in the Deck Clean Room (DCR). The preamplifier linearly converted

the NCD current pulse to a voltage signal, with a gain of 27.5 mV/µA. This signal then

entered a multiplexer (MUX), located in the SNO control room just outside the DCR.

There, it was split in two parts, each of which went through two independently triggered

readout systems:

(1) A fast data path using shaper-ADCs, which measured the total charge of pulses,

and, hence, the energy deposited by ionizing particles in the gas.

(2) A digitizing path that recorded NCD signals as 15 µs-long oscilloscope traces, to

provide the time profiles of NCD events for analysis.

The shaper-ADC path was capable of recording data at the kHz event rates typical

of supernova bursts, up to a maximum rate of 20 kHz. Each signal was integrated in a

6 µs time interval. A shaper trigger occurred if the integrated pulse charge exceeded a

certain threshold. If so, a dead time of 236 µs was imposed on all shaper channels while

the event was being recorded.

The digitizing system, on the other hand, had a maximum readout rate of 1.8

Hz, which was adequate for neutrino data-taking3. A ‘MUX trigger’ occurred when the

pulse amplitude was above threshold. The pulse itself was made to pass through a 320

ns delay line while the system was being triggered. In the event of a MUX trigger, a

vertical offset of around −15 mV was applied to the pulse before it was logarithmically

amplified, and sent to an 8-bit oscilloscope for digitization. The reason for adding the

offset was to prevent rectification of baseline noise by the log-amplifier. Pulses needed to

be log-amplified in order to accommodate the wide dynamic range (∼145) of amplitudes

on the oscilloscopes, while maintaining an acceptable signal-to-noise ratio on the lowest

amplitude events. There were two oscilloscopes, each operating at a sampling rate of

1 GHz over 15 µs. Each oscilloscope had four channels, one for each MUX. The four

multiplexers (labelled 1, 4, 5 and 11) were each connected to 10 strings. The dead times

3A total rate of about 0.15 Hz was observed during normal runs.
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associated with the MUX hardware and oscilloscopes were estimated to be ∼600 ns and

0.75 s, respectively.

Every MUX and shaper trigger was time-stamped and assigned a Global Trigger

IDentification (GTID) number. The NCD electronics was controlled by the Object-

oriented Real-time Control and Acquisition (ORCA) program, a data acquisition ap-

plication developed at the University of Washington [33].

2.3 Calibration

The NCD electronics was calibrated on a weekly basis, with known pulses from a waveform

generator injected into the preamplifier (fig. 2.3). Three separate calibration runs tested

the linearity of the shaper energy scale, quantified the shaper and MUX trigger thresholds,

and measured the parameters describing the logarithmic amplification process for each

channel. The ADC bin-to-energy conversion is carried out offline, as follows: ADC bin

values are first expressed as ‘calibrated charge’, using conversion factors (a slope and

offset) measured in linearity calibrations. Calibrated charge is then converted to energy,

by fixing the peak expected from fully-contained p-t tracks to 0.764 MeV (fig. 2.4). Before

being analyzed, oscilloscopes traces need to be linearized, i.e. the effects of the log-

amplifier have to be inverted, using parameters measured in the log-amplifier calibrations.

The neutron capture efficiency and gas gain stability of the array were monitored

periodically throughout the NCD phase. Two kinds of high-rate, point neutron sources

were used for these purposes: a canned 252Cf source, and a number of AmBe sources. A

source manipulator could position the neutron sources at any point in two vertical planes

perpendicular to each other. A uniformly distributed neutron source, which mimicked NC

neutrons, was also created by mixing activated 24Na into the heavy water. 24Na β-decays

to 24Mg with a half-life of 15 hours, emitting 2.75 MeV γ-rays in the process. These γ-rays

can photo-disintegrate deuterium, emitting neutrons. The neutron detection efficiency of

the NCD array, excluding the six pathological strings, was measured to be 21 %.

2.4 Signals

NCD events can be classified as follows:

(1) Ionization events
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Figure 2.3: The NCD electronics and DAQ system. Figure from [29].



CHAPTER 2. NEUTRAL CURRENT DETECTORS 15

The most common ionizing particles that need to be considered are: p-t pairs emitted

in neutron captures, α particles from counter wall and wire impurities, and energetic

electrons resulting from β decays and Compton scattered γ-rays. α events are the

dominant background in most strings, and come from two main sources: (1) 238U

and 232Th chain α decays (see appendix B), and (2) 210Po decays4. One can classify

α backgrounds according to their origin: (1) Surface alphas, which are 5.3 MeV 210Po

alphas, (2) Bulk alphas, originating from U/Th chain decays within NCD walls, (3)

Wire alphas, coming from the anode, and (4) End-effect alphas, which come from

regions of distorted electric field, or from the silica feedthrough. The first two α

classes are, by far, the most common. There can be significant differences between

these different types of α pulse shapes. All ionization pulses, however, display a

slow, decaying tail referred to as the ion tail. Ionization backgrounds are ∼4 times

as numerous as neutrons in the neutron energy window (0.2–0.9 MeV).

(2) Instrumental background events

Instrumental backgrounds, which constitute the majority of NCD events, are signals

that do not originate from gas ionization, e.g. above-threshold thermal noise excur-

sions, discharges, and oscillatory noise. A large number of these can be removed by

requiring that all events should trigger both the shaper-ADC and MUX-scope sys-

tems within a short time interval (∼10 µs), resulting in a correlated ‘scope-shaper

pair’. Deng and Tolich [34, 35] developed further cuts to eliminate background in-

strumentals, based on the analysis of oscilloscope traces in both time and frequency

domains. All the data analyzed in this thesis are ‘cleaned’, correlated scope-shaper

pairs that passed these quality control cuts.

According to SSM predictions, around 13 neutrons per day are expected from NC

interactions in the heavy water. Additional neutrons were produced through the photo-

disintegration of deuterium by 238U and 232Th chain γ-rays with over 2.2 MeV of energy.

Trace amounts of U and Th were present in the D2O, NCD bodies, NCD cables, and

light water region. The amounts of U and Th in the D2O were measured by radio-

4The 210Po comes from the plating of Rn daughters on the inner surface of NCD counters during
storage. The surfaces were electropolished and acid-etched to mitigate this background. 210Po alphas,
however, still constitute around 60 % of all alphas from the array.
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assays, as well as in-situ techniques5. In particular, it was found that two strings (18

and 31) had regions of pronounced radioactivity. The U/Th contents of these ‘hotspots’

have also been measured [36]. Other sources of neutrons include: (α, n) reactions in the

AV, 17,18O(α, n) interactions induced by alphas from the counter walls, and atmospheric

neutrino interactions.

Example ionization spectra and pulses from the shaper and MUX-scope paths are

shown in fig. 2.4. The top row shows energy distributions measured by the shaper-ADCs.

The shaper spectrum expected from NC neutrons that are produced uniformly in the AV

is on the left. A skewed neutron peak at C, with a resolution of ∼20 keV, results from

fully-contained p-t tracks. The flat spectrum from 191 keV to 573 keV consists mainly of

events in which the proton runs into the wall. The total NCD array spectrum observed

in the 385 live days [37] of data-taking is shown on the right, with a peak at E resulting

from 210Po alpha events. The bottom row shows linearized pulses: a neutron event (left),

and a high energy α event (right). The MUX trigger occurs at 1500 ns, and the pulse

itself starts at ∼1820 ns. The pre-pulse noise and the oscilloscope baseline offset have

been subtracted for clarity.

2.5 Aims and outline of this thesis

The aim of this thesis is twofold:

(1) To develop a simulation of the NCDs that can model all ionization events from the

two data paths (MUX-scope and shaper) as accurately, and efficiently as possible.

(2) To develop a technique to discriminate between neutrons and ionization backgrounds

in NCDs, and, thus, measure the total 8B solar neutrino flux.

The model should be able to predict spectra and pulses such as those displayed

in fig. 2.4, and be accurate enough to answer simple, but important questions such as:

what is the shape of the alpha background spectrum in the neutron energy window? Do

β events matter? How can pulse shapes be used in extracting the number of neutrons?

These, and other issues, will be tackled in this work.

5The contaminations of counter bodies could be estimated by studying Cherenkov light emitted by
Compton electrons resulting from the photo-disintegration of deuterons by 214Bi or 208Tl γ-rays [36].
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An important ingredient in the calculation of pulse shapes is not available experi-

mentally: the radial dependence of electron drift times within NCD counters. Chapter 3

aims to determine this function via a first-principles calculation of the motion of low en-

ergy electrons in NCD gas. This electron transport simulation also allows other required

quantities, such as avalanche properties and time resolution (due to electron diffusion),

to be determined.

The simulation of oscilloscope pulses is the subject of chapter 4. A simple pulse

calculation method, applicable to any ionizing particle event, is presented. The various

components of the computation (e.g. ion transport and trajectories, hardware model) are

discussed in detail. Comparisons with neutron calibration data are then made using pulse

shape parameter distributions. It is shown that the simulation can be used to identify

non-standard alpha events such as wire alphas. Their expected percentages are estimated.

Chapter 5 discusses the calculation of shaper-ADC spectra. It is necessary to have

a clear understanding of gain loss mechanisms, and a space charge model is developed.

Calculated energy spectra are compared with data, and it is shown that a further piece of

information is required: the spatial distribution of impurities in counter walls. Calculated

energy pdfs are used to determine the percentage content of each class of background in

every NCD string.

In chapter 6, the simulation is used to generate background pulse shape parameter

pdfs in a statistical separation of neutrons and alphas, leading to a measurement of the

total 8B solar neutrino flux. The extraction method presented in this thesis makes use,

almost exclusively, of pulse shape information.



Chapter 3

Electron Transport in NCDs

All NCD pulse shapes originating from ionization of some sort are considerably influenced

by the behaviour of electrons in the 85 % 3He and 15 % CF4 mixture. For example,

electron drift speeds govern the widths of pulses, since these are mostly determined by

the difference between arrival times of the furthest and closest primary electrons. The

diffusion of electrons results in a radially dependent smearing effect on all pulses. The ion

constant, which is a parameter characterising the tail of pulses, depends on the average

ionization radius in an electron cascade close to the anode. Furthermore, the shapes and

sizes of these avalanches partly determine the magnitude of space charge effects, which can

result in appreciable gain and shape changes. It is therefore clear that accurate electron

transport parameters are a critical ingredient in pulse shape calculations.

A Monte Carlo (MC) simulation of electron transport in NCD gas was written with

the primary aim of evaluating the mean and RMS drift times of electrons as a function of

radius in the counter. The use of the MC method to evaluate gas transport parameters

in uniform electric fields is now well established [38, 39], more robust, and involves fewer

approximations than typical Boltzmann analyses1 [40]. Besides the counter geometry and

gas state variables, only electron-gas interaction cross-sections are required to solve for

electron trajectories. Thus, simulation results are solely dependent on e−–3He and e−–

CF4 cross-sections for all processes of interest, which are fairly well documented in the

literature for the energy ranges required [39, 41, 42].

Existing packages, such as GARFIELD2, can perform drift time computations, but

1These are based on solutions of the Boltzmann equation, which describes the time evolution of
particles in fluids.

2GARFIELD is a general purpose wire chamber simulation package from CERN [44].

19
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some discrepancies were observed [43] with the drift measurements of Kopp et al. [30] in

mixtures of 3He and CF4. GARFIELD loads pre-calculated longitudinal and transverse

diffusion constants as a function of electric field from the MAGBOLTZ program, the latest

version of which adopts a MC approach [39]. Since these constants are first obtained at

constant fields, it is implicitly assumed that the electron equilibrates very rapidly with

the gas while moving in the counter. This might not be true, for example: (1) in regions

close to the anode, where the field changes very rapidly, and (2) in gases where elastic

scattering interactions are dominant over a wide energy range3. By directly propagating

electrons in a cylindrical field, one can eliminate such concerns.

Another goal of this work is to study electron multiplication in the vicinity of the

wire, to gain insight in the space charge problem. However, NCD gas is a Penning mixture,

which means that a significant fraction of all avalanche electrons are a product of CF4

ionization by, e.g. the 23S or 21S states of 3He. Measured or calculated cross-sections for

these processes are not available, and, hence, they are disregarded throughout the present

study. Since ions move very slowly relative to electrons, one can assume that avalanche

sizes are not considerably perturbed by Penning ionizations4. In other words, the charge

distributions computed with the MC presented here should at least be of qualitative value.

This chapter is arranged as follows: in §3.1, an account of the simulation method

and algorithm is given. This includes the handling of electrons in both uniform and cylin-

drical electric fields (§3.1.1), randomization of free times between interactions (§3.1.2)

and collision kinematics (§3.1.3, §3.1.4). The software implementation, validation proce-

dure and benchmark results are discussed in §3.2. Finally, the quantities of interest are

calculated and discussed in (§3.3), namely drift times and resolution (§3.3.1), as well as

avalanche parameters (§3.3.3, §3.3.4).

3For example in argon at room temperature and 1 atm, under a field of 500 Vcm−1, an electron takes
several microseconds to reach a stable drift velocity value, because the average energy loss in collisions is
very small (§3.2.1).

4A Penning ionization is the ionization of a molecule M1 by another atom, or molecule M∗

2
, in an

excited state. This excited state energy should be higher than the first ionization energy of M1.
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3.1 Simulation method

3.1.1 Difference equations

The motion of electrons in the presence of an electric field, E , without any interactions with

matter, is first solved numerically. To a very good approximation, non-relativistic physics

applies at all relevant kinetic energies E (0–50 eV). One can also safely assume that an

electron interacts with one atom at a time. In a uniform field, Cartesian coordinates with

the z-axis antiparallel to the field direction are adopted. Let (xi, yi, zi) be the position at

some time ti. Then, after a time step ∆t, the new coordinates (xi+1, yi+1, zi+1) are given

by:

zi+1 = zi + żi∆t−
eE∆t2

2me
, żi+1 = żi −

eE∆t

me

yi+1 = yi + ẏi∆t , ẏi+1 = ẏi

xi+1 = xi + ẋi∆t , ẋi+1 = ẋi

Ei+1 = Ei − eE(zi+1 − zi) , θi+1 = cos−1

(

żi+1
√

2Ei+1/me

)

(3.1)

where me is the mass of the electron, e the electron charge and θ the electron trajectory

with respect to the z-axis.

Similarly, under the influence of a cylindrical field E = V
rln(b/a)

and in the absence of

any collisions, the electron trajectory is solved by the following difference equations:

ri+1 = ri + ṙi∆t+
eE(ri)∆t

2

2me

, ṙi+1 = ṙi +
eE(ri)∆t

me

Ei+1 = Ei + eV
ln(ri+1/ri)

ln(b/a)
, φ̇i+1 =

φ̇iri

ri+1

αi+1 = cos−1





ṙi+1
√

ṙ2
i+1 + φ̇i+1



 , φi+1 = φi ±
cos−1

(

r2
i+1 + r2

i − ∆l2
)

2ri+1ri

(3.2)

where b is the radius of the counter and a the radius of the wire, V the anode voltage,

and the variables r, φ, α and ∆l are shown in fig. 3.1. θ is given as in the uniform field

case.

Energy and angular momentum conservation are enforced throughout the simula-

tion. To ensure computational accuracy, ∆t is constrained by the following conditions:(1)

The change in electric field along the distance travelled in ∆t is always less than 0.5 %
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Figure 3.1: The collision-less path of an electron moving under a cylindrical electric field
during a time step ∆t, and the variables used to describe it. The z-axis points out of the
paper.

(i.e. the field and the force acting on the electron are approximately constant), which

also simplifies the difference equations considerably. (2) In the presence of a gas, at a

specific energy or speed v, the average value of ∆t should be less than the mean free time

between interactions (i.e. v∆t is the mean free path between collisions). The procedure

for choosing a random time step satisfying the second requirement is based on a technique

commonly used in plasma physics, as discussed in the next section.

3.1.2 Null collision technique

Just as for thermalized neutrons, the stochastic choice of an electron free time ∆t is

straightforward if the mean collision frequency ν or mean free time τ were constant at

all times. In the latter case, the probability P of a collision occurring in a time interval t

is P = 1 − e−
t
τ , so that ∆t = −ν−1lnR, where R is a random number between 0 and 1.

However, if the speed (and, hence, the collision frequency) changes under the influence of

an electric field, the expression for P becomes more complicated and the direct generation

of a random set of free times is very difficult. To overcome this problem, Skullerud [45]
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devised the null collision technique, in which an artificial constant frequency ν ′ > ν is

assumed in the calculations. Therefore, the free time between interactions is randomized

in the same fashion as above, while the type of collision (real or null) is decided by another

random number. A null collision is a ‘fake’ interaction, in which the state of the electron

is completely unchanged.

In this work, a more efficient version first proposed by Lin and Bardsley [46] is

implemented, and slightly extended for gas mixtures. Unlike Skullerud’s method, in which

any ν ′ > ν is applicable, Lin and Bardsley’s formalism fixes the choice of ν ′ and saves

computation time. The total rate of collisions ν ′, is the sum of real and null collisions:

ν ′ = νReal + νNull (3.3)

If ν ′ is set to K, the maximum collision rate over the energy range of interest, this can

be rewritten in terms of cross-sections as

K

v
= σReal(E) + σNull(E) (3.4)

where σReal(E) the total real cross-section, and v the electron speed. Hence, the time

between interactions is again exponentially distributed with a mean free time τ = (NeK)−1

where Ne is the gas number density. After travelling a randomly selected time step ∆t

under the influence of a field, the collision type is now determined by the ratio

σReal(E)

σReal(E) + σNull(E)
(3.5)

For a mixture of n gases, Eq. 3.5 becomes

K

v
= f1σReal,1(E) + f2σReal,2(E) + ... + fnσReal,n(E) + σNull(E) (3.6)

where f1, f2, etc are the proportions of each component by partial pressure (or number

density). The free time is randomized as for pure gases. However, before choosing the

interaction type, the target species has to be picked randomly by taking into account the

ratios of collision rates expected from each gas component at a given energy.

In the event of a null collision, the state of the electron is left unchanged and the next

interaction is considered. On the other hand, if the collision is real, the interaction type

(elastic, ionization, excitation, etc) is selected, based on the cross-section for each process.

The velocity and energy of the electron are then modified accordingly, as described in the

next section.
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3.1.3 Kinematics of isotropic collisions

All relevant interactions of electrons in NCD gas can be grouped into four types: elastic

collisions, inelastic collisions that do not result in additional electrons (such as excitations

and vibrations), ionizations and electron attachment. The probability of photonic pro-

cesses, such as bremsstrahlung, is very small and, furthermore, elastic scattering with any

free electron is neglected5. In this section, electron kinematic variables are determined

after each type of interaction.

After an isotropic elastic scatter, the new velocity vector v′ is found in the centre of

mass frame and transformed back to the laboratory frame. Let ψ′ be the angle between v′

and the pre-collision direction n̂, and η′ the angle specifying v′ in a plane perpendicular

to n̂. ψ′ and η′ are generated using two random numbers R1 and R2 by

ψ′ = cos−1(1 − 2R1) , η′ = 2R2π (3.7)

With ψ′ at hand, the electron energy E ′ after the elastic collision is given by the

textbook equation [47]

E ′ = E

[

1 − 2meM

(me +M)2
(1 − cosψ′)

]

(3.8)

where M is the target mass. Then the corresponding angles in the the lab frame are

sinψ =
M

M +me

(

E

E ′

)
1
2

sinψ′ , η = η′ (3.9)

Backscattering occurs in the lab frame if

|v|2 < |v′|2 − |V|2 (3.10)

where V is the centre of mass velocity and v the electron velocity in the lab frame after

collision. When |V| > |v|, forward scattering is always observed in the lab frame, even if

backscattering takes place in the centre of mass frame.

Isotropic inelastic collisions are treated in the same way as elastic ones, except that

the final electron energy is given by [38]

E ′ = E

[

1 − M

M +me

( ǫ

E

)

+
2Mme

(M +me)2

(

{

1 − M +me

M

( ǫ

E

)

} 1
2

cosψ′ − 1

)]

(3.11)

5All free electrons drift towards the wire.
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with ǫ being the threshold energy for the interaction. The scattered angles in the lab

frame are now

sinψ =
M

M +me

( ǫ

E

)
1
2

[

1 − M +me

M

( ǫ

E

)

]
1
2

sinψ′ , η = η′ (3.12)

When an ionization occurs, an energy E − ǫ is shared randomly between the two

resulting electrons. If an electron becomes attached to a target, its evolution is terminated

immediately and the next electron is considered.

3.1.4 Anisotropic collisions

Due to the scarcity of differential cross-section data, anisotropic collisions are treated

using Longo and Capitelli’s [48] prescription, as suggested in [39]. In their paper, they

derive the forward scattering probability Pf in terms of the total and momentum transfer

cross-sections (σT and σMT respectively) for the process in question:

Pf =
1

2
+
σT − σMT

σT

(3.13)

Momentum transfer cross-sections are usually more readily available in the literature.

Once forward or backward scatter is chosen, the electron direction is picked at random

assuming an isotropic angular distribution in the hemisphere in question.

3.2 Implementation and benchmarking

A simplified flow diagram summarizing the code structure, and sequence of calculations

discussed in the previous sections, is shown in fig. 3.2. The electron is evolved for a free

flight time ∆t, as explained in §3.1, and it is then decided whether or not a true interaction

occurs (§3.1.2). If so, the type of collision is chosen, and the particle’s variables modified

(§3.1.3). If not, they are left unchanged, and the next time step considered. The process

is repeated until some criterion imposed by the user is met.

To test the code efficiently, motion under a constant electric field is simulated, then

compared with measurements in gases of increasing complexity: pure Ar, CH4 (at energies

below 10 eV), 4He and CF4, and mixtures of 3He and CF4. The first two gases are picked

for reasons described below, but also because of the wealth of experiments on the subject

given the widespread use of P-10 gas6. The transport parameter used in comparisons is

6P-10 gas is a mixture of 90 % Ar and 10 % CH4.
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Figure 3.2: Simplified flow diagram for the electron transport code.
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the electron drift speed as a function of field strength. Assuming statistical ergodicity7,

this quantity is conveniently extracted from the asymptotic value of z/t by following a

single electron in the simulation. Depending on the gas, this can be a time-consuming

process since it can take up to 107 collisions before steady state is reached. The electron

coordinates, direction and energy are recorded every 100 collisions. A temperature of 293

K and a pressure of 760 torr (i.e. the same gas density) are applied in all tests. It was

verified that results are not dependent on initial positions and directions. Suitable values

of K (§3.1.2) evaluated for the different gases, together with the maximum number of real

collisions probed before the simulation is stopped, are shown in table 3.1. Cross sections

were obtained from [42]. These are assumed to be identical for 4He and 3He in this work.

Gas K×1020(m3s−1) Max. collisions

Ar 3.32×107 1×107

CH4 4.73×107 1×106

4He 8.97×106 5×106

CF4 7.41×107 1×106

80:20 (3He:CF4) 1.65×107 1×106

90:10 (3He:CF4) 3.03×107 1×106

Table 3.1: Values of K applied in the null collision algorithm for each gas, and the number
of real collisions simulated until termination. Ar and 4He converge slower, because elastic
scattering is the dominant interaction below 10 eV in both gases.

3.2.1 Drift speeds at constant fields

Argon is an ideal specimen for ‘calibrating’ basic components of the MC, such as propaga-

tion and null collision algorithms, with the simplest interaction: elastic scattering. This

interaction is the dominant one below 10 eV. In analogy to CF4, the Ar cross-section has

a minimum8 at ∼0.2 eV (fig. 3.3). Fig. 3.3 (right) shows the Ar drift speed calculation

up to E = 800 Vcm−1 compared with measurements. Beyond 800 Vcm−1 the electron

energy can exceed 10 eV, and inelastic processes must be considered. The jaggedness

of the simulated curve arises because the drift speed has not yet reached a stable value

7The electron-gas system is ergodic if, at equilibrium, the distribution of drift speeds from an ensemble
of electrons at one point in time is equivalent to the drift distribution from only one electron, sampled
at different points in time.

8Commonly called ‘Ramsauer minimum’.
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when the simulation was stopped. From Eq. 3.8, the maximum fractional energy loss in

an elastic collision with an Ar atom is only ∼7×10−3 %, which means that convergence

to an equilibrium drift speed is slow.
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Figure 3.3: Left: Ar–e− cross-section (elastic) from [42]. Right: Calculated drift speed in
Ar compared with data from Pack and Phelps [49] and Bowe [50].

The implementation of more complex inelastic interactions is verified with CH4,

which has two vibrational channels below 10 eV in addition to an elastic channel that

also displays a Ramsauer dip (fig. 3.4). As opposed to Ar, convergence in this gas is much

faster and the drift speed calculation agree well with Yoshida’s data [51]. It is noted that

all collision processes were assumed to be isotropic in CH4.

In NCD counters, the maximum and minimum electric fields are about 1.1×105

Vcm−1 and 1×102 Vcm−1, respectively. Computations in 4He (fig. 3.5) are in very good

agreement with data [30, 52] in the low field region of most relevance. At 1×104 Vcm−1

there seems to be as much as 10 % disagreement, but this corresponds to a radius of

just ∼10a, which is ∼1 % of the counter radius. Therefore, the impact on drift times is

negligible. Pure CF4 results are shown in fig. 3.6, when the strongest vibrational inelastic

channel (magenta curve) is treated both isotropically and anisotropically using the pre-

scription in §3.1.4. There are sizeable changes in the drift curves, with the anisotropic

case predicting higher velocities because of a higher probability of forward scattering,

Eq. 3.13. Agreement with GARFIELD is good because the same cross-sections are used
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Figure 3.4: Left: CH4–e− cross-sections from [42]. Right: Calculated drift speed in CH4

compared with data from Yoshida [51].
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by MAGBOLTZ; both simulations appear to be consistent with data [30, 53, 54, 55, 56].

Calculations for 80:20 and 90:10 (3He:CF4) mixtures are displayed in fig. 3.7. In the

90:10 case, discrepancies of about 15 % at moderate electric fields (1400–1600 Vcm−1) are

seen between two separate measurements [30, 54]. From this figure, it is observed that

experimental uncertainties are of the order of ±7 %, although neither of the two papers

quote any errors. The MC is consistent with both data sets, but also seems to be at

variance by ∼15 % with [30] at similar field values in 80:20. No other independent drift

measurements were found in the literature for this particular gas mixture. If one assumes

crudely that experimental uncertainties in the 80:20 and 90:10 measurements from [30]

are of the same magnitude (7 %), then it appears that data and the anisotropic MC differ

by up to ∼2-σ at 2×103 Vcm−1 in fig. 3.7. However, good agreement is obtained with

GARFIELD in 80:20, as in the pure CF4 case.

3.2.2 Diffusion coefficients in 4He and CF4 at constant fields

Fick’s first law of diffusion states that the diffusive flux of electrons, je, is directly pro-

portional to the electron concentration gradient:

je = −De · ∇Ne (3.14)
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where De is the diffusion coefficient. In a plane perpendicular to E , one can define a

transverse diffusion coefficient DT . The ratio DT

µe
, where µe is the electron mobility9, is a

commonly measured electron transport parameter. In analogy to drift speed calculations,

DT can also be evaluated at equilibrium, assuming ergodicity. If electron coordinates are

sampled every n real collisions, DT is given by the mean square distance of the electron

in a plane perpendicular to the z-axis [38], which is antiparallel to the field direction:

DT =
1

Ns

Ns
∑

i=1

(xi+1 − xi)
2 + (yi+1 − yi)

2

4(ti+1 − ti)
(3.15)

In the above equation, i loops through each sample, Ns is the total number of samples

and a value of n = 100 was adopted.

Fig. 3.8 shows calculations of DT

µe
at different field values, compared with data for

the components of NCD gas. The MC reproduces the field dependence observed in the

data, and agrees with the GARFIELD DT result from [39].

3.3 Results

The series of tests discussed in §3.2.1 and §3.2.2 showed that MC calculations of drift

speeds in the benchmark pure gases are consistent with data. The divergence at high

fields in pure 4He is not expected to affect drift time calculations. Concerning He-CF4

mixtures, the MC is in good agreement with the 90:10 data, but differs from the 80:20

data by as much as 2-σ at some field values. However, there is very good agreement with

GARFIELD.

In this section, the MC is used to compute electron transport parameters for pulse

shape simulations (operating conditions are satisfied: cylindrical electric field, and a 85:15

mixture with the correct gas density). These are: the mean and RMS drift time of

electrons as a function of radius (§3.3.1), and electron avalanche properties (§3.3.3 and

§3.3.4).

3.3.1 Drift and time resolution in NCD counters

To calculate the mean drift time td and resolution σ(td) due to diffusion as a function of

radius, a large number of electrons are started at different radii (but same z position) in

9Mobility is defined as the drift speed to field ratio.
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the counter. The arrival times for each position are Gaussian distributed, as expected

from the Central Limit Theorem. The average is shown in fig. 3.9, and the standard

deviation in fig. 3.11. GARFIELD results from [61] are included for comparison.

A fourth order polynomial fit to td was implemented in pulse calculations:

td = 121.3r + 493.9r2 − 36.71r3 + 3.898r4 (3.16)

with td in ns and r in cm. To check the consistency with existing drift measurements in He-

CF4 mixtures, data from Kopp et al.10 [30] was cubic-spline interpolated to produce a drift

speed vs electric field curve for 85:15 mixtures. Assuming a crude, uniform experimental

uncertainty of ±10 % at all field values, the interpolated dr
dt

curve was then integrated to

generate 1-σ and 2-σ allowed regions in td vs r space. The two regions are shown in cyan

(1-σ) and green (2-σ) in fig. 3.9. Therefore, it appears that the MC is consistent with [30]

if the measurements are accurate within ±20 %. This is not unreasonable, considering

the discrepancy with [54], in 90:10 (§3.2.1).

As seen in fig. 3.9, the experimentally-allowed areas in td vs r space are rather broad.

These regions can be constrained by examining alpha pulses from the counters. Fig. 3.10

shows pw30, the 30 % amplitude width (defined in appendix D) of NCD pulses from the

whole array, recorded during neutrino data-taking, between 0.2 and 6 MeV (left), and in

the energy range 0.9–1.2 MeV (right). The widest recorded pulses were found to have a

mean width at 30 % pulse amplitude of ∼3500 ns. These are wire alpha particle tracks

that hit counter walls and have a radial extent of 2.54 cm. The drift curve passing through

(r = 2.54, td = 3500) is shown as a dotted line in fig. 3.9. Because no wider physics events

were observed, the td-r region above that line is excluded.

Another constraint can be obtained from the 5.3 MeV 210Po alphas originating from

the inner surface of the NCD walls. The maximum radial length of 210Po alphas that

deposit between 0.9–1.2 MeV in the counter is, on average, 0.12 cm [62], corresponding

to an observed pw30 of ∼400 ns: 210Po pulses appear as the dark lower band in fig. 3.10

(right). Therefore, if one allows for a broadening of ∼100 ns by pulse reflection11, the time

difference between drift times of electrons starting at 2.54 cm and 2.42 cm cannot exceed

10Kopp et al. measured the drift speeds of electrons, as a function of electric field, in various He-CF4

mixtures (but not at 85:15).
11This is a conservative estimate, since the maximum separation between direct and reflected pulses in

the shortest NCD string is about 160 ns.
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Figure 3.9: Mean electron drift time in NCDs as a function of radius. The cyan region is
the set of possible curves, assuming that the 85:15 drift-field relation extracted from [30]
has an uncertainty of ±10 %, while green and cyan combined assumes ±20 %. Regions
above the dotted curve are disfavoured by wire α pulses, which require td(r = 2.54 cm) <
3500 ns (denoted by the dash-dotted lines; see text). The dashed curve is a weaker
constraint from low energy 210Po events, and the purple curve is the actual function
adopted in pulse simulations. GARFIELD calculations (red) kindly provided by [61].
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Figure 3.10: Left: Scatter plot showing the width of pulses at 30 % amplitude as a function
of energy. The band with a mean of 3451 ns (red dotted line) results from wire alphas.
Right: The FWHM of 210Po pulses in the range 0.9–1.2 MeV does not exceed 400 ns (red
dotted line).
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300 ns. It is, on the other hand, very likely to be less than 300 ns, because pulses are

significantly smeared and broadened by diffusion and electronics. The MC curve obtained

in the present work was scaled, such that td(r = 2.54 cm) − td(r = 2.42 cm) = 300 ns is

satisfied. This is shown as a dashed curve in fig. 3.9, and is a weaker constraint than the

dotted function. One can, thus, state that SNO data restricts td(r) curves to the region

below the dotted line in fig. 3.9.

The RMS drift time (in ns) is linearly related to the mean drift (also in ns) as follows

(fig. 3.11):

σ(td) = 0.0124td + 0.559 (3.17)

The spread in electron arrival times implies that all ionization pulses are smeared in time.

Since it is caused by the diffusion of electrons, this time resolution worsens with increasing

radius. The implementation of other time smearing effects on pulses will be discussed in

subsequent chapters.

Differences between this work and GARFIELD values in figs. 3.9 and 3.11 give an

estimate of the size of the systematic error associated with the calculations: about ±3 %

for td and ±4 % for σ(td). Comparisons, with GARFIELD, of quantities evaluated at con-

stant electric fields (figs. 3.6, 3.7 & 3.8) demonstrate very good agreement. Nevertheless,

as pointed out at the beginning of this chapter, the motion of electrons in a cylindrical

field is handled differently by the two programs. GARFIELD uses on diffusion constants

and drift speeds pre-computed at constant fields values, while a direct propagation is

attempted here. This is suspected to be the source of the discrepancy. A more complete

estimation of systematic errors, which is not attempted here, requires the cross-sections

for each process (figs. 3.5 & 3.6) to be varied within their error bars.

3.3.2 Corrected drift curve

The MC-calculated drift curve (Eq. 3.16) was initially used in pulse shape calculations.

However, comparisons of simulated pulse width pdfs with data reveal biases resulting

from MC pulses being too narrow. These differences might be due to a number of pulse-

broadening mechanisms that are not related to e− transport. Nevertheless, a scaling factor

of +10 %, obtained through studies of wire alphas, was used to scale Eq. 3.16 to account

for the discrepancies. Wire alphas calculated using this scaling factor are shown in red in

fig. 3.12, with the data (black) peaking at about 3450 ± 140 ns. Assuming pulse widths
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to be directly proportional to drift times, and given that the unscaled distribution (blue)

peaks at 3150 ns, the uncertainty on the scaling factor is ±4 %. The purple function in

fig. 3.9 is the final, corrected drift curve used in pulse simulations.
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Figure 3.12: Projection of fig. 3.10 on the vertical axis (black) showing a mean maxi-
mum wire alpha width of 3500 ns. Wire pulses calculated with the unscaled drift curve
(Eq. 3.16) result in the blue pdf. Eq. 3.16 is scaled by (+10 %) to match the peak in the
data (red pdf).

3.3.3 z resolution

Because of diffusion, an electron starting at z = z0 is collected at the wire at z0 on average

only. The z distribution at the anode is also observed to be Gaussian, with an RMS σz

that varies linearly with the starting radius (fig. 3.11). At any r, σz can be decomposed

into two components:

σ2
z(r) = σ2

av + σ2
diff (r) (3.18)

where σdiff is contributed by transverse diffusion, and carries the radial dependence en-

tirely. σav has the same value at all r, and is the mean spread of an electron avalanche

along z. A linear fit to σz(r) gives σav = 29.9 ± 0.7 µm, since σdiff = 0 at r = 0.

3.3.4 Charge distributions

Detailed simulations of electron cascades (fig. 3.13) around the wire can be carried out with

the same MC. In this section, some statistical aspects of the multiplication mechanism



CHAPTER 3. ELECTRON TRANSPORT IN NCDS 38

are briefly discussed, so that ion clouds can be generated quickly if desired. A thorough

investigation of avalanches in NCD gas requires the inclusion of Penning ionization and

photo-ionization in the program. For simplicity, these processes have been left out of the

present work.

(a) Gas gain

Single electron gas gain distributions are found to be approximately exponential,

with a mean gain Ḡ ∼ 100. The exponential shape is expected [63], and agrees

with GARFIELD [61, 64]. However, the average multiplication factor is signifi-

cantly lower than reported by NCD gain measurements (Ḡ ∼ 219) [43, 65]. In

[66], it was shown that such discrepancies can be explained by a ‘phenomenological

quantification’ of the Penning effect.

(b) Azimuthal spread

The distribution of φ angles (fig. 3.1) of ionization events in an avalanche has an

RMS of 16◦. So, ions do not surround the wire in a typical cascade.

(c) Ionization radii

The distribution of starting radii of secondary ions can be parametrized as a sum of

two exponentials, AeBr + CeDr, with A = 3.35, B = −1.86 × 105, C = −2.06, D =

−5.98 × 104. The average starting radius is found to be 33 µm, and is a good

measure of the typical radial spread of a cascade. From Eq. 3.16, one can deduce

that the mean duration of an avalanche is ∼0.1 ns.

(d) z distribution

As discussed in §3.3.3, the RMS width of an avalanche along z is about 30 µm. The

z profile of secondary ions from an electron starting at any initial position (r0, z0)

can be generated rapidly. One first picks the average z position, knowing σdiff (r0)

(fig. 3.11). Then, the number of ions is chosen randomly from an exponential dis-

tribution with Ḡ = 219. The final z position of each ion in the cascade is sampled

from a Gaussian with an RMS of σav ∼ 30 µm. Because of the exponential gain

dependence, the z profile differs significantly from one electron to another for any

given (r0, z0). Example simulated charge distributions are shown in fig. 3.14. This
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Figure 3.13: A typical electron avalanche resulting from an electron starting off at r = 2.5
cm and z = 0 cm in NCD gas, as simulated by the e− transport MC. Top: the cascade
in the radial plane; bottom: the same cascade viewed in the r-z plane. In this particular
example, the electron diffuses a distance of ∼85 µm perpendicular to the electric field,
along z. As explained in the text, avalanche electrons start at a mean radius of ∼33 µm.
The mean angular spread of the cascade in the x-y plane is ∼16◦, and the average width
along z is ∼30 µm.
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Figure 3.14: Calculated z positions of ions produced in avalanches resulting from 5, 10, 25, 50, 100, 200, 500, 1,000 and 2,500
electrons starting from the same radius and z0 = 0. Because of diffusion, convergence to a Gaussian shape is slow.
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shows charge distributions along the anode, calculated for 5, 10, 25...2,500 electrons

starting at the same position. Convergence to a simple Gaussian shape occurs only

in the limit of a very large number of incoming electrons. The very slow conver-

gence is a result of the transverse diffusion of electrons and the exponential gas gain

distribution.

It should be stressed that, when using these MC distributions, one has to assume

that they are undistorted by Penning ionizations or photo-ionization. At thermal energies,

3He ions move ∼0.2 µm during a typical discharge. Thus, it is likely that interactions

involving excited ions occur within the dimensions given here.

3.4 Summary

This chapter explored proportional counter gas physics topics relevant to the computation

of NCD pulses. A Monte Carlo simulation was used to calculate quantities that have not

been measured directly: mean drift time (Eq. 3.16) and resolution (Eq. 3.17), diffusion

along z (§3.3.3), avalanche sizes and ion distributions (§3.3.4). Several tests were carried

out to ensure that the MC works properly. The drift time results are consistent with

constraints set by SNO NCD pulses, and calculations carry a systematic error of about

±3 %. The width of pulses depends on other factors besides electron drift times. The

td-r curve calculated in this work was scaled by 10±4 % to compensate for these effects.

The results of this chapter are summarized in table 3.2.
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Quantity Symbol Value

Drift time (in ns) from r ¶ td(r) (121.3r+493.9r2−36.71r3+3.898r4)×(1.10±0.04)
Time resolution (ns) † σ(td) 0.0124td + 0.559
Mean avalanche radius rav ∼33 µm

Avalanche size along anode σav ∼30 µm
Diffusion along wire (µm) ‡ σdiff (r) σ2

diff (r) = (101r + σav)
2 − σ2

av

Avalanche azimuthal spread φav 16◦

Avalanche duration tav ∼0.1 ns
Gain distribution – exponential
Mean gas gain ♦ Ḡ ∼100 (measured: 219)

Table 3.2: Summary of calculated e− transport and avalanche properties in NCD gas. ¶: r is in cm; †: td is in ns; ‡: r is in
cm, and σav in µm; ♦: the discrepancy between the observed and measured values is explained in the text.



Chapter 4

Simulation of NCD Pulses

This chapter discusses the calculation of pulse shapes from any ionization event, as they

would appear on the oscilloscopes. The computation of current waveforms requires the

following questions to be answered: (1) What do ionizing particles do in NCD gas? (2)

How do energy losses in the gas translate into signals on the anode?, and (3) What does

the NCD hardware do to these signals?

In §4.1, a general numerical method for generating pulses is presented. All the major

issues pertinent to (1)–(3) are then laid out and discussed in detail. These include: the ion

current (§4.2), the stopping power, range, straggling, and track algorithms for protons,

tritons, α particles, and electrons in NCD counters (§4.3 and §4.4), and the NCD hardware

model (including reflections (§4.5.1), pulse propagation (§4.5.2) electronics (§4.5.3), and

noise (§4.5.4)). The performance of the pulse simulation, its limitations, and the tuning

of input variables are discussed in §4.6; improvements to the model are suggested. Non-

standard α pulses originating from NCD wires and end-caps are discussed in §4.7.

The pulse calculation code is integrated within SNOMAN1, the FORTRAN77-based,

multi-purpose SNO simulation program. Details of the software implementation are given

in appendix E.

4.1 Method

Regardless of track structure or particle type, all pulses are calculated using the same

procedure. First, the charged particle trajectory is determined, and divided into N small

segments of equal length l, each of which is approximated as a point charge. Next, the

1SNO Monte Carlo and ANalysis.

43



CHAPTER 4. SIMULATION OF NCD PULSES 44

energy and charge deposited inside each piece are computed. The total current resulting

from the whole track at time t is, thus, a sum of individual currents from all point charges

i, evaluated at t:

Itrack(t) =

N
∑

i=1

Gi · npair,i · Iion,i(t− t0) (4.1)

where npair,i = dE
dx

l
W

is the average number of electron-ion pairs in segment i. W = 34

eV is the mean energy required to produce an electron-ion pair2. Stopping powers and

the generation of trajectories for the different ionizing particles of interest are described

in §4.3 and §4.4. The effects of lateral and energy straggling are discussed in §4.3.2 and

§4.3.4, respectively. Gi, the effective amplification factor applied to i, can be calculated

as the average of single-electron gas gains: 1
npair,i

∑npair,i

j=1 gj , where gj is a random number

sampled from an exponential distribution (see §3.3.4) with mean Ḡi, and j loops through

the individual electron-ion pairs in the segment. The value of Ḡi differs from one segment

to another, because of charge shielding by ions originating from earlier avalanches. This

space-charge problem, and the calculation of appropriate values of Ḡi, will be discussed

in depth in the next chapter. t0 is the difference between the drift times (calculated in

chapter 3) of ionized electrons from the ith segment, and the segment closest to the wire.

Iion,i(t−t0) is the induced current of a positive charge of magnitude e drifting towards the

cathode. Its derivation is described in the next section. After evaluating the summation

(Eq. 4.1), Itrack subsequently needs to be convolved with the NCD hardware response.

This is described in §4.5.

Looping through discrete time bins instead of segments, Eq. 4.1 can be expressed

as a discrete convolution:

Itrack(t) =
∑

t>t0

fe(t) · Iion(t− t0) = fe ⊗ Iion (4.2)

Thus, an efficient way of evaluating Itrack(t) is to first, calculate fe(t), the distribution of

arrival times of electrons at the wire, then convolve with the ion current, Iion(t) (Eq. 4.5),

using a Fast Fourier Transform (FFT) algorithm. fe(t) can easily be computed, knowing

Gi, npair,i, and the drift time associated with each segment.

The speed of calculations depends, to a large extent, on the number of segments a

trajectory is divided in. For computational accuracy, the size of segments is, by default,

2This value of W , measured by Oblath [65], is assumed to be the same for p, t, α and e− in NCD gas,
and to be constant over the energy range of relevance (0.2–9 MeV).
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Figure 4.1: Steps in the calculation of Itrack for a p-t track that is perpendicular to the
anode. The start time has been shifted to 1 µs for clarity.

chosen to be ∼1 µm for all sections of the track, which amounts to ∼10,200 divisions

for a typical neutron pulse. The optimal segment length is governed by the bin width of

recorded scope traces. It is desirable for electrons from two adjacent segments to reach

the wire within a bin width (1 ns). The stringest requirement is set on tracks that are

perpendicular to the wire and point radially inwards (or outwards), in which case the

distance between two segments should not exceed 4.5 µm.

The various steps in the calculation of Itrack are illustrated in fig. 4.1, for a p-t track

perpendicular to the anode, with the proton moving radially inwards. The red curve is

the distribution of primary electron arrival times at the wire. The black curve is fe(t),

while the blue pulse is Itrack(t). Fluctuations on fe(t), which are a result of randomizing

the single-electron gas gains, are smoothed out after convolving with the ion tail. All

curves are normalized to the same area.

The power of the numerical approach discussed here, is that any pulse can be com-

puted, given the location and number of ionization electrons in the event. Fig. 4.2 illus-

trates representative current pulses Itrack, from the three major classes of physics events:

(1) a neutron capturing at r = 1.29 cm, with the p-t track at 67◦ with respect to the

wire, and the proton travelling outwards (top row), (2) a 5 MeV α starting at r = 2.5 cm,

travelling inwards, and almost perpendicular to the anode (middle row), and (3) a 5 MeV
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electron starting at the edge of the gas (last row). Projections of particle trajectories in

the radial plane are shown on the left column. Each event type displays characteristic

shapes that are not easily reproduced by the other species:

Neutron pulses commonly contain two widely-separated crests arising from the pro-

ton Bragg peak and the ionization profile of the triton. p-t events that are parallel to the

wire, and tracks that hit the counter walls do not share this property. In contrast, most

α pulses in the neutron energy region are narrow and single-peaked, with the exception

of distorted pulse shapes from counter ends. Low-energy 210Po α pulses are characteris-

tically narrower than bulk α events. Other classes of α pulses will be discussed later in

this chapter, in §4.7.1 and §4.7.2.

The majority of β events produce low-amplitude pulses that do not result in both a

MUX and a shaper trigger. These appear as shaper noise, and low-energy spiky pulses.

However, on very rare occasions, a sufficiently high-energy MUX-shaper correlated pair

might be produced. In these cases, it is likely that the resulting pulse has a ragged

structure, owing to elastic scatters off the nickel, e.g. as in fig. 4.2 (bottom).

4.2 Current from point charges

In the last section, it was mentioned that Itrack is evaluated as the sum of point charge

currents Iion,i from a number of charge segments. The calculation of Iion is now described

in detail.

Any particle with charge q at radius r in the counter induces a charge on the anode,

which by Green’s reciprocity theorem, is given by [67]:

∆Q = q
ln(b/r)

ln(b/a)
(4.3)

where b is the counter radius and a the anode radius. Thus, if the particle moves, the

magnitude of the induced charge changes, and a current I(t) can be read off the anode:

I(t) =
d∆Q

dt
=

q

V
Ev(E) (4.4)

where V is the anode voltage, and v is the drift velocity of the particle, which is a function

of the electric field E . For a positive ion drifting towards the cathode, assuming v(E) = µiE
with a field-independent ion mobility µi, Eq. 4.4 reduces to Wilkinson’s formula [67]:

Iion(t) = − q

2ln(b/a)

1

t+ τ
(4.5)
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Figure 4.2: First row, left: a neutron capturing at r = 1.29 cm, with the proton going outwards
and the p-t track at 67◦ with respect to the anode. Right: The resulting pulse shape; the first
narrow peak is due to the triton. Second row: a 5 MeV α particle starting at r = 2.5 cm,
and travelling inwards. Third row: A 5 MeV electron starting from the edge of the gas and
scattering thrice on the walls before being absorbed in the nickel. A small δ-ray resulting from
a Möller scatter can be seen at (−1.2,−1.5). The resulting NCD pulse has a large width owing
to the large radial span. This event does not trigger the detector.
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where the ion constant τ =
r2
0ln(b/a)

2µiV
, r0 being the starting radius of the ion. An ion

mobility of the order of 10−8 m2V−1ns−1 yields an ion constant of a few ns. Note that

when the voltage is altered, τ changes, and the tail decays faster or slower depending on

the size of r2
0(V ) with respect to V .

In the case of an electron, one can get an idea of the pulse shape to first order, by

assuming v ∝ E 1
2 (this does not hold at high fields). Eq. 4.4 then becomes:

Ie(t) =
2q

3ln(b/a)

1

t− τe
, t < τe (4.6)

where q = e and τe is the analogue of τ , for electrons. Clearly, the current starts slowly

and rises rapidly until the electron is collected.

Now consider an electron-ion pair created at radius r. Since there is an avalanche of

gain G close to the wire, the current due to the primary electron-ion pair can be neglected,

so that the pulse presumably results from ions and electrons in the cascade. If both of

these start at a mean distance r0 ∼ 33 µm from the wire (as estimated in §3.3.4), electrons

are collected in ∼0.1 ns, while ions remain almost motionless. Therefore, induced charges

at the wire, from both kinds of particles, are approximately equal and opposite (a small

difference of ∼4 % coming from the drift of electrons over 8 µm to the anode), and there

is virtually no net current until all avalanche electrons reach the anode.

To summarize, NCD pulses should result mainly from the slow-drifting ions produced

in avalanches near the wire. The formula for a single ion moving towards the wall is given

by Eq. 4.5. The inductive effect of electrons cancel out with that of ions, because electrons

and ions remain in close proximity until the cascade is over. This means that any electron

current can be safely neglected.

4.3 Protons, tritons and alphas in NCDs

4.3.1 Stopping and range of ions in NCD gas

In this work, one is primarily concerned with protons, tritons and α particles starting

off in NCDs with 191 keV, 573 keV, and 0.191–8.8 MeV, respectively. At these energies,

radiative losses are negligible and the total stopping power St is the sum of the electronic

stopping power, Se, due to inelastic interactions with electrons, and the nuclear stopping
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power, Sn, due to elastic collisions with nuclei in the gas:

St = Se + Sn (4.7)

Se is expected to be the dominant contribution, except at very low energies. For α particles

with a few MeV of kinetic energy, Se can be accurately calculated using established the-

oretical prescriptions, such as the Bethe-Bloch formula, or the photoabsorber-interaction

model from Allison and Cobb [68]. However, at lower energies one has to rely on semi-

empirical fits to existing data. In this work, the empirical fits and programs (SRIM and

TRIM3 [62]) of Ziegler, Biersack, Littmark (ZBL) and other collaborators are used. Their

approach is briefly summarized below:

ZBL give Sn (in eV/(1015 atoms/cm2)) as [69]:

Sn =
8.462Z1Z2M1Sn(ǫ)

(M1 +M2)(Z0.23
1 + Z0.23

2 )
(4.8)

ǫ, the reduced energy, is defined as

ǫ =
32.53M2E

Z1Z2(M1 +M2)(Z0.23
1 + Z0.23

2 )
(4.9)

Z1, M1 (a.m.u) and E (keV) denote the atomic number, mass, and kinetic energy of the

projectile. Z2 and M2 are the corresponding quantities of the target nucleus.

For ǫ < 30, in the presence of screening4 Sn(ǫ) takes the form

Sn(ǫ) =
ln(1 + 1.1383ǫ)

2(ǫ+ 0.01321ǫ0.21226 + 0.1959ǫ0.5)
(4.10)

For ǫ > 30, assuming pure Coulomb potential,

Sn(ǫ) =
ln(ǫ)

2ǫ
(4.11)

ZBL obtained an expression for Se empirically:

1

Se

=
1

(A1EA2 + A3EA4)
+

EA6

A5ln
(

A7

E
+ A8E

) , 25 keV ≤ E ≤ 10 MeV (4.12)

Se = E0.25 , E < 25 keV (4.13)

3Stopping and Range of Ions in Matter, and TRansport of Ions in Matter.
4ZBL use of their own screening potential, which they derived through fits to the theoretical potentials

of a large number of particle-target pairs.



CHAPTER 4. SIMULATION OF NCD PULSES 50

The constants A1 ... A8 for the passage of protons and α particles in all elements are

tabulated in [70] and [71]. Their values, for protons travelling in C, F and He, are listed

in table 4.1. The stopping power for the NCD gas mixture is obtained by applying Bragg’s

rule5, with suitable corrections [73]. The average distance travelled by an ion with energy

E0 is obtained by integrating the reciprocal of the total stopping power:

R =

∫ 0

E0

S−1
t dE (4.14)

These calculations can be performed by SRIM. Its predictions of St and R for pro-

tons, tritons and α particles are shown in fig. 4.3, as a function of energy. The range of

573 keV protons in the NCD gas mixture is 0.73 cm, while that of 191 keV tritons is 0.28

cm.

Atom A1 A2 A3 A4 A5 A6 A7 A8

He 0.489 0.0050512 0.86135 0.46741 745.38 1.04227 7988.39 0.033329
C 2.10544 0.0049079 2.08723 0.46258 1779.22 1.01472 2324.45 0.020269
F 1.30187 0.0051414 3.82737 0.28151 2829.94 1.02762 7831.3 0.02094

Table 4.1: Constants for the parameterization of Se for protons passing through He, C
and F.

4.3.2 Proton, triton and α particle tracks

A realistic simulation of proton, triton and α particle trajectories has to be implemented

to account for any pulse shape distortions that might result from large-angle scatters.

The method described in this section closely follows the one developed by ZBL for the

TRIM Monte Carlo [69].

It is not practical to simulate every single interaction along the path of the particle.

To draw tracks accurately and efficiently, the path length ∆l is chosen such that the

average deflection due to multiple scattering is sufficiently small. To achieve this, one

can equate the energy loss for a deflection of ∼5◦ in an elastic collision (from Eq. 3.8) to

∆lSn, with Sn given by Eq. 4.8. This gives ∆l in cm:

∆l =
0.02(1 +M1/M2)

2

4πNa2

ǫ2 + 0.1ǫ1.38

ln(1 + ǫ)
(4.15)

5Bragg’s rule states that the stopping power of an ion in a compound is given by a weighted sum of
individual stopping powers for the constituent elements [72].
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(solid lines) and stopping ranges R (dashed lines) of protons (red), tritons
(blue), α particles (magenta) and electrons (black) in NCD gas. Calculations for protons,
tritons and alphas are from SRIM [62]; those for electrons are from PEGS4 [74].
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where a = (0.4685 · 10−8/(Z0.23
1 + Z0.23

2 )) cm and N is the number density in atoms per

cm3. The procedure for randomizing the scattering angle (or equivalently, the impact

parameter), based on the above value of ∆l, is as follows. If p is the impact parameter,

an interaction occurs in a volume of gas equal to πp2∆l. On average, the volume of a

target is N−1. The interaction volume can be assumed to be exponentially distributed,

which means that the probability of a collision occurring with impact parameter p is

P = 1 − e−N∆lπp2
. Therefore, one can choose p randomly, given any ∆l, by:

πp2 = − ln(R)

N∆l
(4.16)

where R is a random number between 0 and 1. Given p and ǫ, the scattering angle

is determined using the recipe outlined by ZBL in [69]. Their method is essentially an

analytic solution to the classical scattering integral. The energy loss in a track section ∆l

is the sum of the energy change due to elastic deflection Eq. 3.8, and through interactions

with electrons. The average electronic energy loss is assumed to be continuous, and is

given by ∆lSe, where Se can be obtained in tabular form from SRIM, or evaluated using

Eq. 4.12.

Fig. 4.4 shows 3,000 calculated p-t and 1 MeV α particle tracks in NCD gas, all

starting off in the same initial direction (parallel to the vertical axis) from the origin. The

deviation of the track end points with respect to the initial line of travel is referred to as

lateral straggling. To check the track simulation, the RMS of the straggling distributions,

which are approximately Gaussian, were compared with those from TRIM. Agreement

between the two simulations is within 16 % for all particles and energy ranges concerned

(see fig. 4.5 for alphas).

All tracks are assumed to appear instantaneously in the gas. For instance, a non-

relativistic calculation yields mere flight times of ∼2 ns for the proton and ∼4 ns for the

triton. Hence, any broadening effects on pulse shapes are negligible6. It is further assumed

that all primary and secondary electron-ion pairs are created along the ion trajectory.

According to Rudd et al. [75], the kinetic energy imparted to ionized electrons in helium

by ∼1 MeV protons is likely to be less than 1 keV in helium gas. The range of 1 keV

electrons in counter gas is less than 60 µm [76], or at most only 0.5 % of the total length of

a fully-contained p-t track. Consequences on pulse shapes, apart from a minor smearing

6The narrowest ionization pulses in the neutron energy window have a FWHM in excess of 200 ns.
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Figure 4.4: Simulation of particle trajectories in NCD gas, with the method described in §4.3.2.
All particles start at the origin; a conical shape results from early scatters in particle tracks.
Left: p-t tracks, with tritons directed upwards, and protons downwards; right: 1 MeV α tracks.
1-σ deviations from straight-line travel are shown in solid red lines. These are: 0.33 mm for 573
keV protons, 0.37 mm for 191 keV tritons, and 0.23 mm for 1 MeV alphas.

effect, are negligible.

4.3.3 Straight track approximation

As seen in fig. 4.4, the majority of p-t and α events result in quasi-straight tracks. When

this is the case, a faster, semi-analytic pulse calculation can be devised. The algorithm

is briefly described in appendix C. A straight line trajectory can be described by three

variables (r0, θ, φ) (see fig. 4.6), defined as follows: r0 is the initial radius of the charged

particle (for p-t tracks, this is the neutron capture radius). φ is the angle between the

direction of travel of the ion and the radial vector pointing inwards, from the starting

point of the track, to the anode. For neutron events, φ specifies the direction of the

proton in the radial plane; the triton direction is then π − φ. The third coordinate, θ is

the angle of the track with respect to the vertical anode wire. This coordinate system is

convenient, because particle tracks can be described without making any reference to the
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Figure 4.5: Lateral straggling of alpha particles in NCD gas in µm, as calculated by TRIM and
the simulation presented here. The lateral straggling is calculated as the RMS spread of track
endpoints in a plane perpendicular to the initial direction of travel.

position of the NCD string in the array.

A neutron pulse shape is a function of four parameters (r0, θ, φ, z) with z being the

vertical position of capture on the string. Unlike neutrons, α particles originating from

inside the nickel wall can start off in the gas with a range of energy values. Therefore, an

alpha pulse shape is also a function of four parameters (E, θ, φ, z), where E is the initial

energy of the particle in the gas. A perfectly straight track at θ = 0◦ effectively results

in a point charge pulse. In general, pulses become wider with increasing θ, and for any

given (r0, θ), the width is narrowest at φ = 90◦.

4.3.4 Energy straggling of ions in NCD gas

In §4.3.2, a method for tracing particle tracks was described, where energy losses through

interactions with electrons are not randomized. The effects of these fluctuations on pulse

shapes are now discussed.

At any given speed, the energy loss distribution of a charged particle depends crit-

ically on the thickness of material it passes through. For neutron pulses, the average

number of primary electron-ion pairs accumulated at the wire within 1 ns (the scope bin

size) is ∼21, which corresponds to an energy loss of ∼714 eV. Assuming a mean excitation

energy of 50 eV for counter gas [76], this amounts to a average of ∼14 collisions. The en-
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Figure 4.6: Definition of r0, θ and φ.

ergy loss distribution that applies to this situation is unclear [77], but can be determined

using Monte Carlo methods (see, for example, [78]).

Fluctuations on pulse shapes arising from energy straggling do not matter if the

RMS baseline noise on NCD pulses is dominant. Indeed, to a large extent, they are

washed out after propagation through the NCD anode, cables and electronic filters. To

demonstrate this, a number of 573 keV proton pulses (at different track angles) were

calculated in two different ways, using the procedure outlined in §4.1: (1) The number

of primary electron-ion pairs collected within 1 ns is crudely assumed to be Poisson

distributed. The mean is calculated using SRIM stopping power tables. (2) No Poisson

fluctuation is applied. Differences between (1) and (2) are taken for all pulses, and found

to be negligible compared with typical baseline noise RMS. It was therefore decided to

neglect energy straggling in pulse calculations.

4.4 β particles

At any time, a large number of β particles wander around in NCD counters, on account

of the Compton scattering of γ-rays, and the radioactive decay of impurities, both within

and outside the detectors, e.g. 3H, 238U and 232Th chain isotopes. Any electron possessing

over 200 keV of kinetic energy has a small chance of producing a scope-shaper event pair.

The propagation of electrons and gamma rays in NCD gas is handled by the EGS47

7Electron Gamma Shower.
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package [74], with a few routines added to retrieve the particle track structure for pulse

calculations. The interactions of decay electrons with NCD gas in the energy range of in-

terest can be classified in three main categories: (1) excitations and ionizations, (2) elastic

interactions with electrons, i.e. Möller scattering, and (3) bremsstrahlung. The primary

mode of energy loss is via inelastic collisions with gas particles, which can be evaluated

using the Bethe-Bloch formula. The resulting range and stopping power curves, evaluated

with the PEGS4 program [74], are shown in fig. 4.3. The low stopping power means that,

in contrast to p, t and α particles, electron-ion pairs are not produced quasi-continuously

along the track. To take into account this effect, it is assumed that the distance between

primary electron-ion pairs, at a certain electron energy E, is exponentially distributed

with mean λ = W/〈dE
dx
〉, where W is the average energy required to create an electron-ion

pair.

The long electron mean free paths imply that β tracks in NCD gas are rather

unperturbed. Typically, a large number of scatters on the nickel walls occur, extending

the particle journey within the gas itself. Occasionally, Möller scattering produces δ-rays

that complicate the pulse structure.

4.5 Hardware model

A simplified model of the NCD electronics chain (fig. 2.3), which has been shown to

accurately represent the full DAQ system [29], is shown in fig. 4.7. This consists of: (1)

the NCD string, delay line and cable, (2) a preamplifier unit, and (3) read-out hardware

composed of a MUX, log-amplifier, two oscilloscopes, and shaper. This section discusses

how ionization pulses transform at different steps in the chain.

4.5.1 Pulse reflections

Upon its creation on the NCD wire, a current pulse divides into two halves, which prop-

agate in opposite directions. The downward-going part travels through an impedance-

matched delay line (see fig. 2.1) and is reflected at the bottom of the string. Thus the

total current IT coming out from the top of a string is the sum of the direct (ID) and

reflected (IR) components,

IT = ID + IR (4.17)
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If an event occurs at a vertical position z in the counter with the origin situated in

the middle of the gas region, the time lag δ between direct and reflected components is

given as

δ =
1

vp

[L− LD + 2z] + tD (4.18)

where the speed of propagation vp in the wire has been measured by McGee to be 0.86c

[80]. L is the length of the counter, and tD is the time delay due to the delay line (∼89

ns). LD ∼ 16 cm is the physical length of the delay line.

Further reflections can occur at other points in the chain, e.g. at the preamplifier,

due to mismatches between the NCD cable and preamplifier input impedance. Such

reflections are observed in micro-discharge events, which are very sharp current spikes

originating from the delay line. The sharpness of these pulses allows the different reflective

components to be resolved. Fig. 4.8 (red curve) is an averaged microdischarge pulse from

string 27, showing: ID (first peak), IR (making up most of the second, lower-amplitude

and broader peak), and the reflection of IR off the preamplifier travelling to the top

of the NCD string, and back through the preamplifier (third peak at ∼200 ns). The

corresponding reflection of ID is combined with IR to appear as the second peak.

A simulated micro-discharge pulse (black curve) is overlaid for comparison. The

separation between the second and third peaks matches the NCD cable round-trip time

of string 27. The two quantities that need to be adjusted in the simulation are: (1) the

fraction |ID|
|IT |

, (2) the transmitted pulse fraction at the preamplifier. These values have to

be determined empirically from NCD pulses, because the extent of impedance mismatches

are unknown. Based on studies of micro-discharge pulses from string 27, (1) and (2) have

been tuned to 0.56 and 0.85, respectively8.

It is observed in fig. 4.8 that the data has a more prominent tail. This indicates

that there might be reflections in the electronics chain that have not been simulated.

Distributions of pulse shape variables that depend strongly on the tail of pulses can be

biased as a result.

8String 27 is assumed to be representative of the array, due to the absence of micro-discharge pulses
on most strings.
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Figure 4.8: Average micro-discharge pulse from string 27 (red). The black curve is the
simulated response of the string to a sharp impulse originating within the delay line. The
second, broader peak is the reflected component at the bottom of the NCD, while the
third, smaller peak results from the second peak being reflected off the preamplifier. The
very small peak at ∼320 ns is a second preamplifier reflection.

4.5.2 Propagation along NCD wires

In fig. 4.8, the first and second peaks have their own distinct shapes, owing to different

degrees of attenuation and dispersion in the NCD wire. To first order, both the wire and

delay line can be modeled as low-pass filters9. The pulse simulation makes use of a more

detailed, lossy transmission line model developed by Oblath [65]. Inputs to this model

were determined using test bench measurements at the University of Washington. The

cables connecting the top of NCDs to the preamplifiers are also modeled as low-pass filters

with RC = 3 ns.

4.5.3 Electronics and DAQ

The electronics model (fig. 4.7) used in pulse calculations closely follows the prescriptions

of the NCD electronics calibration group10 [29, 82, 81]. In their model, the preamplifier,

which has a gain of 27.5 mV/µA, acts as a low-pass filter (RC = 3 ns) and a high-pass

filter (RC = 58 µs) in series. Shapers are simulated simply by integrating pulses in a 6

9RC values of 0.7 nsm−1 for the NCD wire and 8 ns for the delay line have been proposed [81].
10The implementation of the electronics model and the MUX and shaper triggers within the pulse

simulation code was carried out by Oblath, Deng and Prior.
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µs time window. The 320 ns delay cable in the MUX box is modeled as a low-pass filter

with RC = 13.5 ns. The log-amplifier acts on an input pulse V ′
in as follows [29]:

Vlog(t) = a · log10

∣

∣

∣

∣

1 +
V ′

in(t− ∆t)

b

∣

∣

∣

∣

+ cchan + V ADC
PreTrig (4.19)

The parameters a, b, cchan, ∆t, and V ADC
PreTrig were determined during routine electronic

calibrations, and stored in data banks. The circuitry between the log-amplifier and the

scope is again simulated as a low-pass filter with time constant 16.7 ns. The final, log-

amplified, amplitudes in each time bin are rounded off to the nearest integer to simulate

digitization. Baseline noise is added using the method described in the next section. The

various RC constants needed in this empirical model were measured by Huang, and are

summarized in table 4.2. Preamplifier RC values are listed in table A.1 for each string.

Fig. 4.9 shows the transformation of Itrack (the same pulse as in fig. 4.1) through the

different steps in the electronics chain described briefly above. IT = ID + IR is in yellow,

while the preamplified pulse is in magenta. The final, ‘observed’ log-amplified pulse is

shown in grey, after the addition of baseline noise.
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Figure 4.9: Effects of NCD electronics on Itrack for a neutron event with θ = 90◦ and
φ = 0◦.
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Electronic
Components RC (ns)

Dispersion per metre ∼0.7
Delay line 5.5 ± 0.7

low-pass filter before log-amp 13.3 ± 0.6
low-pass filter after log-amp 16.7 ± 1.8

Preamp (low pass) 3.27
Preamp (high pass) 58000

NCD cable 3

Table 4.2: Typical values of RC constants used in the electronics simulation [82].

4.5.4 Simulation of NCD baseline noise

It is essential to include noise with the appropriate RMS and frequency characteristics

on simulated NCD pulses. The electronics chain being rather complex, it is difficult to

build an accurate noise model from first principles. One such model can be devised by

adding a Gaussian noise source between each low-pass filter in the electronics chain, e.g.

at N1, N2, N3 and N4 in fig. 4.7 [79]. The contributions of each noise source are then

varied, such that a reasonable fit to the observed noise power spectrum is obtained. This

yields good agreement with typical NCD spectra up to frequencies of ∼50 MHz, but the

spectral shape at higher frequencies is not explained by the simplified electronics model

in fig. 4.7.

A rather different method was developed to generate NCD noise directly from ob-

served power spectra. This technique is based solely on simple statistical arguments, and

does not require detailed knowledge of the NCD hardware itself. Therefore, no assump-

tions need to be made about the nature, location, and magnitude of individual noise

sources.

4.5.4.1 Method

Consider the noise power spectrum Ω. At the ith frequency, Ωi is the square of the real

(Xi) and imaginary (Yi) parts of the ith Fourier amplitude,

Ωi = X2
i + Y 2

i (4.20)
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If the following conditions are satisfied: (1) Xi, Yi are independent random variables, i.e.

the phase Φi = tan−1(Yi/Xi) is randomly distributed between −π
2

and π
2
, and (2) Xi, Yi

are Gaussian distributed around zero with the same standard deviation σg, then Ωi is

exponentially distributed with mean µe given by:

µe = 2σ2
g (4.21)

Therefore, once the average noise power spectrum is determined (i.e. the values of µe

at all frequencies), one can randomly generate the real and imaginary components of all

frequency amplitudes. After Fourier-inverting the series, a noise sample sharing the same

frequency properties, and having the same RMS as the data, is obtained.

4.5.4.2 Proof of µe = 2σ2
g

Let Zi = X2
i . If the probability distribution P (Xi) is a Gaussian with mean µg = 0 and

standard deviation σg, P (Zi) is of the form

P (Zi) = P (Xi)
dXi

dZi
∝ e−Zi/2σ2

g

2
√
Zi

(4.22)

Now, if Xi and Yi are independent, P (Ωi) = P (X2
i ) + P (Y 2

i ) is proportional to the

convolution

P (Ωi) ∝
∫ ∞

0

e−Zi/2σ2
ge−(Ω′

i−Zi)/2σ2
g

√

Zi(Ω′
i − Zi)

dZi (4.23)

∝ e−Ωi/2σ2
g sin−1

(

2Zi

Ω′
i

− 1

)







∞

0

∝ e−Ωi/2σ2
g (4.24)

The integral is finite because Zi

Ωi
= cos2 Φi always lies between 0 and 1, and limZi→∞

Zi

Ω′

i
= 1.

Thus, P (Ωi) is exponentially distributed with mean 2σ2
g .

4.5.4.3 Suitability of method for NCDs

It is now demonstrated that the two conditions outlined in §4.5.4.1 are satisfied approx-

imately by NCD noise, and that µe = 2σ2
g holds. A single string was picked at random

for convenience. The present study concerns ∼2,000 linearized pulses (mostly neutrons)

from string 29, recorded during the AmBe source calibration runs 50074 and 50076. The

last 4,096 bins of each pulse are taken as a noise ‘event’.
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(a) Independence of Xi and Yi

Fig. 4.10 shows no evidence of any correlation between real (X) and imaginary parts

(Y ) of frequency amplitudes for neutron pulses from string 29. The top two figures

(A and B) illustrate the behaviour of these two variables at a single frequency

(10 MHz) for a large number of noise events. It is observed that the phase Φi

is uniformly distributed in the range (−π/2, π/2), and the correlation coefficient

between X and Y fluctuates randomly around 0 at the 80 frequencies investigated

(from 10 to 150 MHz). In this particular example, the average correlation coefficient

for all frequency values is slightly positive at 0.007, with an RMS of 0.05.

(b) Xi and Yi are Gaussian-distributed around 0, with the same standard deviation

Fig. 4.10D shows the distributions of Xi (blue histogram) and Yi (black histogram)

at a frequency of 10 MHz, fitted to Gaussian functions. The χ2 fit probabilities

are 0.05 and 0.15, respectively. The means are consistent with 0, and the standard

deviations agree within fit errors. Fig. 4.10E shows the equivalence of σp obtained

from Gaussian fits to both P (Xi) and P (Yi) over a wide range of frequencies (10–150

MHz). Thus, Xi and Yi can be sampled from the same distribution.

(c) P (Ωi) is exponential with mean 2σ2
g

Fig. 4.10F is an example of the typical exponential form of P (Ωi). Again, a frequency

of 10 MHz is used as an illustration. As a result of (a) and (b) above, the relation

µe = 2σ2
g is approximately satisfied across a wide frequency range, as shown in

fig. 4.11.

Therefore, the method described in §4.5.4.1 is applicable to NCD noise.

4.5.4.4 Stability of NCD noise

Electronics calibration runs were used to extract the average noise power spectra for each

string, from April 2005 to the end of 2006 [79]. Strings connected to the same MUX

box are found to share approximately the same power spectrum, with box 4 differing

significantly from the others because of a different baseline at the log-amplifier input

(fig. 4.12).
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It was verified, by means of Kolmogorov-Smirnov (K-S) tests, that power spectra

from strings connected to the same MUX boxes retain a consistent shape throughout

the experiment. Power spectra from each MUX in 10-day periods were compared to the

average spectra from the rest of the data-taking (see fig. 4.12, right). Fig. 4.13 (right)

shows the probability (p-value) of spectra, for each 10-day period and from each MUX,

being compatible with the average shapes, as a function of time. On a few occasions (7

%) the p-value is less than 0.05. This is consistent with expected fluctuations for the 214

data points shown in this figure.

It was also observed that the noise RMS, calculated using the last 4,000 bins of scope

traces, is stable throughout the experiment. Fig. 4.13 (left) shows the time evolution of

RMS noise on pulses from each multiplexer box inside the neutron energy window. Dotted

lines are RMS values resulting from the default power spectra used in pulse calculations.

Pulses from box 4 are noticeably less noisy, compared to those from other boxes.

Thus, the power spectra and RMS of baseline noise on NCD pulses are stable

throughout the data-taking period.
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Figure 4.12: Left: Baseline noise power spectra from the 40 NCD strings, averaged over
electronic calibration runs. Data kindly provided by A. Cox-Mobrand. Right: Noise
power spectra from pulses, grouped by MUX.

Date (month-year)
01-04 04-04 07-04 10-04 12-04 04-05 07-05 10-05 12-05

R
M

S
 b

as
el

in
e 

n
o

is
e 

(V
)

0.38

0.4

0.42

0.44

0.46

0.48

0.5

0.52

0.54

0.56

0.58

-310×

Mux box 4
Mux box 5 
Mux box 1
Mux box 11

Date (month-year)
12-04 04-05 07-05 10-05 12-05 04-06 07-06 10-06

p
 v

al
u

e

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Mux box 4
Mux box 5
Mux box 1
Mux box 11

Figure 4.13: Left: the variation of noise RMS with time, on pulses in the neutron energy
window that pass the data cleaning cuts. Right: K-S probability of noise power spectra
(evaluated for 10-day periods) being compatible with the average shape for the whole
data-taking period.



CHAPTER 4. SIMULATION OF NCD PULSES 67

4.5.4.5 Implementation

The method discussed above has been validated for linearized NCD baseline noise. This

implies that noise generated from such spectra has to be added to the simulated pulse at

point N3 in the electronics chain (see fig. 4.7). However, the pulse linearization process,

which is a simple inversion of Eq. 4.19, does not deconvolve the effects of the RC = 13.5

ns filter present after the log-amplifier. In other words, the simulated noise injected at

N3 has already been filtered. Therefore, simulated pulses are log-amplified and passed

through the 13.5 ns filter, then linearized before noise is added. The combined pulse is

subsequently log-amplified, and the filter skipped before digitization and file output.
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Figure 4.14: Left: Example simulated NCD baseline noise, using the technique developed
in this work. Right: linearized baseline noise sample from a recorded α pulse.

Fig. 4.14 shows a simulated 4 µs noise train (left) compared with a real baseline noise

sample (right) from an α pulse. It should be noted that the power spectrum sampling

technique described here breaks down, if there were a significant noise source after the

log amplifier (i.e. at N4 in fig. 4.7). Should this be the case, noise close to the crest of

high amplitude pulses would be different from baseline noise.

4.6 Data-Monte Carlo comparisons

The full NCD Monte Carlo is a rather complex simulation that takes in a large number

of input parameters, many of which were not originally known. Assessment of the pulse

Monte Carlo performance is an integral part of the code development, because systematic

differences between data and Monte Carlo mean at least one of three things:
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(1) Some physics or hardware model is lacking, or deficient.

(2) There is a coding bug.

(3) One (or more) input parameter is out of tune.

Direct, pulse-by-pulse comparisons between data and simulation are not feasible.

Instead, large samples of pulses are calculated, and a number of pulse parameter distri-

butions, such as those described in appendix D, are extracted. These are then compared

with pdfs generated from: (1) 24Na calibration source data (for neutrons), and (2) 4He

string data (for α events).

Identifying and correcting the source(s) of discrepancies between data and simulation

can be very time-consuming. A simple rule of thumb for mitigating data vs MC differences

in any pulse parameter distribution is as follows. The program is first revised for any

coding mistakes. If nothing suspicious is found, input variables that have a clear and

strong impact on the pulse parameter, are varied within reasonable bounds. If the same

disparities are still apparent, the model itself is to blame, and new features will probably

have to be introduced.

As an example, fig. 4.15 (A–F) shows Monte Carlo calculations of the neutron pulse

parameter pw50 (or FWHM), at different stages of the code development, compared to

data (in red). The effects of successive model upgrades on this parameter are shown, with

results from the final code version in F and columns 3 and 4.

4.6.1 Neutron pulse shape parameter distributions

The performance of the latest code version is illustrated in figs. 4.15 (F and columns 3

& 4) & 4.16. Most of the Monte Carlo generated neutron pulse parameters compare well

to data. All quantities demonstrate biases to some extent, although differences are more

pronounced for variables such as irt50, irt70, pw70 and pulse mean. Possible explanations

are given below:

(1) Tail of pulses

The tail of pulses is currently not well understood. Real pulses decay slower than

predicted by the simulation. As mentioned in §4.5.1 (see also fig. 4.8), some pulse

reflections might be missing in the model. Variables that involve pulse integrals over
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long time intervals, such as the pulse mean and integral rise-times (irt50, irt70),

are affected as a result. As seen in fig. 4.16, the longer the time interval, the worse

the disagreement. These discrepancies were not further investigated because most

analyses focus on the main part (i.e. the first ∼2 µs) of pulses.

(2) Noise near pulse maxima

Differences between data and MC in pw70 are likely to be caused by the noise close

to the crest of pulses not having the same RMS and frequency properties as baseline

noise11. Noise has a significant impact on pulse widths, as can be seen in fig. 4.15C.

(3) Hardware modelling

Systematic differences appear in pulse moments and widths, e.g. the Monte Carlo

m3 (pulse skewness) distribution appear distorted compared to data. These are

caused by the different electronic properties of one particular MUX (box no.4),

compared to the other boxes. MUX differences are currently not properly accounted

for in the simulation. Monte Carlo predictions, in general, lie between the typical

shapes for box 4, and the other boxes. Fig. 4.17 illustrates the disparities between

box 4 and boxes 1, 5, 11 in pulse moment and width variables.

Empirical corrections can be rather straightforwardly applied to the MC pdfs of a

number of pulse shape parameters. Improvements to the pulse simulation itself, however,

will require more detailed studies of the issues discussed above.

4.6.2 Low energy α pulse shape parameter distributions

In principle, the calculation of α pulses in the neutron energy range should be as accurate

as for neutrons, i.e. one naively expects the same level of agreement as in figs. 4.15 & 4.16,

including issues (1)–(3) pointed out in the last section. However, further complications

arise for the following two reasons:

(1) A variety of α event types

Simulated pulse parameter distributions for each α event class have to be mixed in

the correct proportions in each string, before comparing with data. The relative

11This also affects the acceptance of some data reduction cuts when applied to the MC [65].
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Figure 4.16: Simulated neutron pulse parameter distributions (black) compared to 24Na calibration neutrons (red). Parameters
are defined in appendix D. Possible reasons for biases are discussed in the text.
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Figure 4.17: First row: biases on neutron pulse moment distributions arising from the
different electronic properties of the four MUX boxes. Blue: Boxes 1,5 and 11. Red: Box
4. Black: Monte Carlo. Box-by-box differences are not accounted for in the simulation,
and all four boxes in the Monte Carlo produce distributions close to the black curves.
Second row: MUX biases on pulse widths.

fractions of the main α species (210Po, 238U, 232Th) can be estimated, for example,

by fitting energy spectra.

(2) Non-uniformity of α-emitting impurities in nickel

The energy distributions of α particles entering the gas depends strongly on how

impurities are distributed in the walls. If bulk impurities are concentrated towards

inner NCD surfaces, on average, alphas exit counter walls with more energy, result-

ing in a large number of narrow pulses in the neutron energy window. Thus, one

has to characterize these impurity distributions, and estimate their mean depths d̄.

The impact of d̄ uncertainties on the shape of α pulse parameter distributions is

overwhelming. For example, fig. 4.18 shows the change in shape of the skewness and

FWHM distributions of 238U alphas appearing in the neutron energy window with d̄,

assuming an exponential impurity depth profile for convenience. An increment of just

1 µm has a significant impact on the shape of m3 at low d̄. Therefore, in order to
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reach a satisfactory level of agreement with α data, a reliable pulse calculation scheme

is not sufficient: accurate values of d̄, as well as 238U,232Th and 210Po α fractions, are

also required for each string. An alternative way of representing certain α distributions,

which does not require any knowledge of d̄, is discussed in detail in chapter 6. Data-MC

comparisons will then be made using that representation.
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Figure 4.18: Change in shape of 238U m3 (right) and pw50 (left) distributions with mean
impurity depth d̄.

4.7 Non-standard α pulses

4.7.1 Wire α events

Comparisons of simulated pulse width-energy space to data (e.g. fig. 4.23) led to the

identification of wire α events. A number of α particles originating from NCD anodes

produce pulses that have distinctly different shape parameters (e.g. skewness, kurtosis

and higher moments) compared to other known classes. In particular, the width of these

pulses at some fraction of the amplitude can be much larger than the other types, because

more charge is being collected towards the end of the pulse. One such event, observed in

the data, is displayed in fig. 4.19 (left). The back of the pulse is clearly elevated compared

to an α particle emanating from the wall (middle figure). A simulated wire α event that

reproduces this peculiar waveform is shown on the right.

Estimates of the percentage content of wire α events in each string have been made,
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Figure 4.19: A 4.58 MeV wire α candidate (left) observed on string 35 (in run 50362,
GTID 88620), compared to a typical wall α candidate (middle), and a simulated surface
210Po wire α (right).

using a simple pulse width cut. It is found that around 2 % of all alphas from the array

come from the NCD wires. Since this considerably exceeds any expected activity from 238U

and 232Th daughters within the wire material (Cu), one has to assume that these alphas

originate from the decay of impurities deposited on the anode surface. MC simulations of

pulse width-energy space strongly suggest that wire alphas are predominantly from the

decay of surface 210Po. For example, in fig. 4.23 (right) it is seen that MC 210Po wire

alpha events (in green), can be identified with the candidate wire events (above 3000 ns),

in the data (fig. 4.23, left). Bulk 238U or 232Th wire alpha events, on the other hand, do

not produce a band at 4.8 MeV.

4.7.2 End-effect α events

The electric field inside NCDs is assumed to be perfectly cylindrical, although distortions

are present at the ends of each counter. The purpose of the silica wire connectors (fig. 2.1)

is to create multiplication-free regions in areas where field distortions are the most severe.

A number of neutron and α pulses are affected by this setup. The respective fractions can

be estimated by means of a simple geometric calculation. Fig. 4.20 shows the equipotential

lines near a counter end-cap, calculated for a wire connector of length 2.69 cm [83].

The red line is the electron drift line reaching the end of the quartz connector. This is

approximated by a straight line of gradient m in the (r, z) plane for simplicity. Assuming

a p-t track length of ∼1.2 cm, all neutrons capturing in zone A will not be observed,

whereas those in D (and beyond) will be observed as normal pulse shapes. Neutrons

capturing in zones B or C can produce tracks with a number of electrons drifting onto
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Figure 4.20: Field map near counter endcaps. The vertical axis is the radial distance
(cm) from the wire, while the horizontal axis denotes z position (cm) (Picture and field
calculation courtesy of A. Poon).

m 0.0 0.6 1.2 1.8

invisible 2.68 ± 0.08 3.55 ± 0.05 4.11 ± 0.10 5.20 ± 0.11
distorted 0.46 ± 0.03 0.50 ± 0.03 0.68 ± 0.04 0.90 ± 0.05

Table 4.3: Expected percentages of invisible and distorted neutron events in the NCD
array.

the wire connector, resulting in non-standard pulse shapes.

Table 4.3 shows the expected percentage of all NC neutrons events in the whole

array that are not observed, or produce a distorted pulse. A value of m ∼ 1.2 seems to

be closest to the red line in fig. 4.20. A negligible percentage (< 1 %) of neutron pulses

are predicted to have a non-standard shape, while ∼4 % of neutrons ionize the gas, but

are not expected to produce any detectable signal (i.e. they are ‘invisible’). Uncertainties

quoted in the table are statistical only.

Rough estimates of the percentages of invisible and distorted α events were also

computed, as a function of the initial α energy in counter gas (fig. 4.21). Events are

assumed to be uniformly distributed along z, and a string of average length is adopted

in calculations. Results are expected to vary by ±5 % from string to string because of

differing lengths. It is seen that the fraction of distorted events rises with energy on



CHAPTER 4. SIMULATION OF NCD PULSES 76

Figure 4.21: Percentage of invisible (left) and distorted (right) α events in the average
NCD string, as a function of the initial energy in the gas. Impurities are assumed to be
uniformly distributed along the z direction.

m 0.0 0.6 1.2 1.8

invisible 238U 1.78 2.82 3.82 4.93
invisible 232Th 1.75 2.78 3.77 4.87
invisible 210Po 1.62 2.63 3.57 4.60
distorted 238U 0.50 0.59 0.74 0.98
distorted 232Th 0.56 0.67 0.81 1.06
distorted 210Po 0.82 0.92 1.01 1.39

Table 4.4: Estimated percentages of invisible and distorted 238U, 232Th and 210Po α events
in an NCD string of average length. Statistical uncertainties are of the same order as in
table 4.3.

account of longer particle tracks. This implies that fewer tracks are fully-contained in

regions A and B combined, resulting in a decrease in the percentage of invisible events

with energy.

After folding in appropriate energy spectra, the expected fractions of end-cap 238U,

232Th and 210Po α events are straightforwardly obtained (table 4.412). Again assuming

m ∼ 1.2, it is estimated that ∼1 % of all α events have some of their ionization electrons

collecting on the quartz. A number of these events can have very distinctive features.

Because part of the track is not observed, in some cases, the resulting pulse might look

12The calculations assume non-embedded 210Po, and uniformly distributed 232Th and 238U impurities.
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like that of a lower energy α particle starting off in the middle of the counter. This

produces very low rise-time events that cannot be produced otherwise. An example is

shown in fig. 4.20: the blue line is a high energy α starting from the quartz connector.

The first section of the track (dotted blue line) is invisible, which means that the resulting

pulse would look like a wire alpha event, but with the leading peak missing. Fig. 4.22

displays a candidate quartz connector α pulse, observed on string 16.
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Figure 4.22: An α event (GTID 16027), with an energy of 1.16 MeV, suspected to originate
from one of the silica wire connectors on string 16.

In addition, end-cap pulse shapes are expected to be significantly broadened, since

drift times are extended because of lower field strengths (examples of these pulses can be

seen in appendix H). Events might also be shifted down in energy because of reduced gas

gains in non-cylindrical fields. Such complications make these distorted events, which can

mimic neutron pulse shapes13, very difficult to simulate accurately.

4.8 Summary

This chapter described the various steps in the numerical simulation of NCD pulses: (1)

generation of particle trajectories and ionization electrons, (2) calculation of the induced

current on the anode, (3) the effects of NCD hardware, and (4) the inclusion of baseline

noise. The method for calculating the pulses applies to any ionization event. Comparisons

13Data taken with high-rate α sources led to the belief that a background-free neutron region exists in
width-energy space [84]. Over time, however, this region becomes peppered with distorted α events.



CHAPTER 4. SIMULATION OF NCD PULSES 78

with data are made, and very good agreement is achieved in the case of neutrons. These

comparisons allows one to identify wire and end-cap alphas. Distorted α events, which

constitute around 1 % of all alphas, are at present not simulated properly. The different

species of ionization events are illustrated in fig. 4.23, which shows how neutrons, and the

known classes of alpha backgrounds populate the pw40-energy parameter space, across

the entire energy range.

Figure 4.23: Scatter plots of pw40 vs energy for neutrons, and the different classes of α
events. Right is MC, and left is data. Magenta: bulk alphas; red: wall 210Po alphas;
grey: neutrons; blue: wire 238U alphas; green: wire 210Po alphas; black: bulk alphas in
the end-cap region.



Chapter 5

Simulation of NCD Energy Spectra

The computation of 3He proportional counter neutron, α and β spectra is now addressed.

This is not merely a matter of integrating simulated pulse shapes. To accurately calculate

the measured energy of any NCD ionization event, careful consideration has to be given

to the following problems:

(1) What is the energy of the particle as it enters the gas? (i.e. how much energy did

it lose before entering the gas?)

(2) How much energy is lost in the gas itself? (see §4.3.1)

(3) How does the energy deposited in the gas relate to the measured energy?

Given accurate stopping power tables, the initial particle position in the gas1, and

a robust track-tracing algorithm, the second problem can be solved fairly easily, and will

not be discussed further. This chapter focusses on the major issues governing (1) and

(3), including: the distribution of Po, U and Th impurities in NCD walls (§5.5.1, §5.5.2),

energy resolution (§5.3), and the simulation of space charge effects (§5.2), after a brief

discussion of the mean NCD gas gain (§5.1). Characteristics of NCD neutron and 210Po

alpha energy spectra, such as peak skewness and ledge-shaped features, are explained

quantitatively using the space charge model (§5.2.4). Calculated α energy spectra are

compared to data and used to estimate the background contents of NCD strings (§5.6).

Simulated β energy spectra are also presented (§5.7), with estimates of β event rates given

in §5.7.1.

1Neutrons: capture positions in NCDs are calculated with the MCNP code [85]; alphas and β particles:
these start at the edge of the gas.

79
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5.1 Gas gain

The mean NCD gas gain Ḡ is well described by the Diethorn formula:

lnḠ = C
λ ln2

2πǫ0∆V
ln

[

λ

2πǫ0aEmin

]

(5.1)

where ∆V denotes the mean ionization energy, Emin the minimum electric field to start

an avalanche, λ the anode charge density, a the anode radius and C is a constant. The

Diethorn model assumes a simple doubling process in the avalanche mechanism. Fig. 5.1

illustrates the very good agreement between the NCD gain (in green markers) and Eq. 5.1,

with a suitable value for C.

For 85:15 3He-CF4, the Diethorn parameters were measured by Hime [86] to be

∆V = 34 eV and Emin = 48750 Vcm−1. An effective avalanche radius rav can be defined

from Emin as follows2:

rav =
V

ln(b/a) ·Emin
= 57.9 µm ∼ 2a (5.2)

where the anode voltage V = 1950 V. This is of the same order as the e− transport MC

prediction, which is 33 µm (see §3.3.4).

5.2 Simulation of space charge effects

5.2.1 Motivation

Under operating conditions (1950 V), the gas gain is high enough so that the shielding

effects of ions formed in electron avalanches close to NCD anodes are non-negligible.

The local electric field is attenuated, resulting in lower amplifications and pulse shape

distortions3.

The impact of these space charge effects on energy distributions is very significant.

Some of the main consequences are:

(a) Skewed peaks

2Strictly speaking, rav, as defined in Eq. 5.2, is the maximum radius at which charge multiplication
can occur.

3One only needs to consider avalanche ions created in the same event. Since ions collect at the cathode
within ∼1.1 ms, and given the low total event rate of 0.15 Hz, previous ionization events do not have any
bearing.
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Figure 5.1: Scaled Diethorn formula (solid red curve) compared to NCD data (green
markers). Figure kindly provided by K. Rielage.
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Figure 5.2: Left: Effects of space charge on mono-energetic spectral peaks. In the presence
of space charge, a symmetric peak at E1 is shifted down to E2. The peak becomes skewed,
and a ledge at E3 appears, marking the point of maximum gain loss. For neutrons, E2

is calibrated to 764 keV and E3 ∼ 600 keV. For 210Po alphas, using an energy scale
calibrated with the neutron peak, E1 = 5.3 MeV, E2 = 4.8 MeV, and E3 ∼ 2.3 MeV.
Right: Simulation of the effects of increasing the anode voltage (or gas gain) on the shape
of the neutron energy spectrum (all peaks are scaled to 764 keV). The neutron peak is
distorted as in the figure on the left.
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All mono-energetic peaks are skewed towards lower energies (e.g. the 764 keV

neutron peak), the more so if the anode voltage is increased. Conversely, as the

gain is reduced, the peak becomes more symmetric. This is illustrated in fig. 5.2.

(b) Spectral distortions

It is observed that the energy spectrum of neutron events contains a step-like feature

at ∼600 keV (figs. 2.4 and 5.2). Similarly, the 210Po alpha energy spectrum has a

ledge at 2.3 MeV4. It is shown in §5.2.4 that these peculiarities are indicative of

the maximum gain change of fully-contained p-t and 5.3 MeV 210Po alpha tracks at

1950 V, as a result of space charge effects5.

(c) Non-linearity of energy scale

The energy scale appears non-linear, when the calibration of shaper-ADC bins is

done by using neutron energy spectra. The 210Po peak is observed to be shifted

from 5.3 MeV down to ∼4.8 MeV by 9.4 %. This occurs because the minimum gain

change due to space charge effects does not vary linearly with energy.

(d) Low-energy background spectra

Predicted energy distributions of alpha particles from the nickel demonstrate a high

number of counts at low energies, which are not observed in the data (see a rough

analytic derivation in appendix F, and also fig. 6.3 of [87]). Bulk α energy spectra

calculated with a tuned space charge model do not exhibit this feature.

Space charge effects in 210Po alphas events stand out very strongly with the pa-

rameter m5

m6

6, which separates tracks that hit the counter walls from fully-contained ones.

Fig. 5.3 (left) shows m5

m6
plotted against energy, for background events between 1 and 6

MeV. The dense band in the red box are 210Po events where the alpha particle run into

the cathode, while the band in the blue box are events that are fully-contained. The

prediction of a Monte Carlo simulation of pulse shapes, in the absence of space charge

4This was first pointed out by McGee.
5Wall effects produce plateaus in pulse height distributions [63], and one can be tempted to think that

the ∼600 keV step in the neutron spectrum is a corollary. It will be demonstrated in §5.2.4 that this is
not the case.

6m5 and m6 are the 5th and 6th moments of the pulse, respectively. Formal definitions of pulse
parameters are given in appendix D. The value of m5

m6

is large at high θ, where space charge effects are
sizable.
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effects, is shown in fig. 5.3 (middle). The corresponding simulation that includes space

charge effects, is shown on the right. The appearance of fully-contained events (where

5.3 MeV worth of charge is deposited), in the energy range 2.3–5 MeV, offers compelling

evidence for a gain loss mechanism.

Figure 5.3: m5
m6

for background events above 1 MeV. Left: data, with 210Po events forming
the dense bands. Middle: Monte Carlo simulation of 210Po alpha pulse shapes, without
space charge effects. Fully-contained tracks are shown in blue, while those incident on the
walls are in red. Right: simulation, with space charge effects included.

Thus, the inclusion of space charge effects is essential to properly model pulses and

their integrated charges.

5.2.2 Simulation method

A two-parameter model that accounts quantitatively for the phenomena (a)–(d) discussed

in the previous section was developed and integrated within the pulse simulation. This

model builds on the Diethorn formulation, which is a good description of the NCD gas

gain (§5.1).

Consider a cluster of ions of total charge q formed in an electron cascade close to the

wire, located at a mean radius r̄. The charge induced by these ions on the anode modify

the wire charge density locally. From Eq. 5.1, the change in gas gain δG resulting from a

change in wire charge density δλ(r̄) is

δG ∝ Ḡ

(

lnḠ+
Cλln2

∆V 2πǫ0

)

δλ(r̄)

λ
(5.3)

∝ ḠlnḠ
ln[b/a]

2πǫ0V

(

1 +
1

ln[rav/a]

)

δλ(r̄) (5.4)



CHAPTER 5. SIMULATION OF NCD ENERGY SPECTRA 84

with rav defined in §5.1. δλ is obtained by dividing Eq. 4.3 by a characteristic shower

width W, which, for simplicity, is assumed to be constant:

δλ(r) =
q

W
ln(b/r̄)

ln(b/a)
(5.5)

Electrons originating from some segment of a particle track also see the density changes

δλj, brought about by ions formed in previous electron cascades. Each of these ion clusters

moves slowly towards the cathode while the primary electrons are being collected. In the

presence of many ion clusters, the total change in the anode charge density at time t,

suffered by the ith track segment is therefore:

δλi =
e

W

i−1
∑

j=1

ln[b/r̄j(t)]

ln[b/a]
Gjnpair,j +

e

W
ln[b/r̄]

ln[b/a]
npair,i (5.6)

where npair,j is the number of electron-ion pairs formed in the jth segment, and j loops

over all the previous ion clusters, which have moved to different radii r̄j(t) at time t. r̄j(t)

is solved by integrating the relation
drj

dt
= µiE :

r̄2
j (t) =

2µiV t

ln[b/a]
+ r2

av (5.7)

where µi is the ion mobility and E denotes the electric field.

A charge segment cannot impact significantly on the gain of another segment if their

avalanches are far apart. An electron shower centered at a position z0 on the wire is only

affected by segments collecting within the limits z0 −W < z < z0 + W. For those which

do, the common distance between cascades is calculated and the induced charge density

weighted by an overlap factor ξ. As an example, a group of electrons collecting at z1 < z0,

with z1 + W/2 > z0 − W/2 has an overlap factor of (W + z1 − z0)/W. Eq. 5.6 should

then be rewritten as:

δλi =
e

W

i−1
∑

j=1

ln[b/r̄j(t)]

ln[b/a]
Gjnpair,jξj +

e

W
ln[b/r̄]

ln[b/a]
npair,i (5.8)

The mean gas gain of the ith track segment is, therefore:

Ḡi = Ḡ− δGi (5.9)

with the measured mean gain Ḡ = 219. δGi is evaluated with Eq. 5.3, using Eq. 5.8 as

input. As mentioned in §4.1, the actual charge multiplication factor, Gi, applied to the
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ith segment is obtained by randomizing the single-electron gas gains using an exponential

distribution7 with mean Ḡi.

It is implicitly assumed that ions produced in avalanches induce a image charge of

uniform density along the wire. Furthermore, it is assumed that W does not vary with

radius. These are crude, but economical and efficient approximations. More realistic

charge distributions, such as those discussed in §3.3.4, can be implemented, but at great

computational cost and additional complexity.

In this simple numerical model, the two variables that need to be optimized are: (1)

the constant of proportionality in Eq. 5.3, which will hereafter be referred to as η, and

(2) the avalanche width W. These two quantities share a strong inverse correlation. The

optimization of η and W is described in the next section. Other required physics input

parameters, such as G, µi, ∆V and rav, have been constrained independently (see table

5.1).

variable symbol value Ref.

Mean gas gain Ḡ 219 [43]
Ion mobility µi 1 × 10−8 cm2ns−1V−1 [65]

Mean ionization energy ∆V 34 eV [86]
Avalanche radius rav 58 µm §5.1

Table 5.1: Space charge model fixed input values.

5.2.3 Model optimization

The parameters W and η are scaled according to these three observations, which are

strongly dependent on space charge effects:

(1) The 210Po peak position relative to the neutron peak

(2) The position of the space charge feature in 210Po spectra relative to the 210Po peak

(3) The shape of the neutron spectrum

To account for (1)–(3), different values of W and η had to be used for neutrons and

210Po alphas, which implies that at least one of the two parameters varies with energy.

7In accordance with the charge distribution simulations presented in §3.3.4.
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Figure 5.4: Simulation of shaper energy as a function of actual energy loss for neutrons
(red), and 210Po alphas (black). The values of A, B, C and D are known from the data
(see text). The space charge parameters W and η are scaled such that A/C = 6.4, B = 2.3
MeV and D ∼ 600 keV.

Here, η is fixed, while all the energy dependence is assigned to W. The following set of

values, found through a grid search, satisfy (1)–(3):

W = 154E + 782 , η = 1.5 (5.10)

with E in MeV. The result of this optimization process is illustrated in fig. 5.4, which is a

scatter plot showing a simulation of the ‘recorded’ energy of neutron (red band) and 210Po

(black band) events, as a function of the actual energy lost by the particles in NCD gas.

The dotted lines, A, B, C and D are the 210Po peak (4.83±0.16 MeV), 210Po space charge

ledge (2.3±0.1 MeV), neutron peak (0.761±0.02 MeV), and neutron shoulder (0.60±0.02

MeV) positions observed in the data.

Systematic uncertainties on W and η can be estimated by looking at how much the

‘recorded’ energies of neutron and 210Po events undergoing maximum gain shift (i.e. at a

track angle of θ = 90◦), vary with these parameters. A change in W of ±100 produces 1-σ

energy shifts in B and C (extracted from the data as ±0.1 and ±0.02 MeV, respectively).
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An increment of ±0.1 in η has the same effect. These translate to uncertainties of ±31

and ±120 in the gradient and offset of Eq. 5.10.

5.2.4 Model predictions

Some implications of the space charge model, in relation with observations (a)–(c) in

§5.2.1, are now discussed. It is first necessary to understand the dependence of space

charge effects on track parameters. To quantify space charge effects on a current pulse,

one can use the fractional loss

∆Q =
Q−Q′

Q
> 0 (5.11)

where Q is the total charge of the pulse without space charge, and Q′ the total charge

with space charge.

It is found that, for both neutrons and alphas, the dominant parameter is the angle

of the track with respect to the anode, θ. The effects of other track variables, such as the

azimuthal angle φ, and the neutron capture radius r0, are merely a perturbation around

∆Q(θ). In the model, this θ dependence originates from imposing a limited region of

influence, (z0 − W < z < z0 + W), to all avalanches along the wire. At high θ, as the

track becomes more perpendicular to the anode, there is a high degree of overlap along

z between all cascades, so that δλ is increased greatly, especially for electrons that reach

the wire at later times. The weak (r0, φ) dependence is driven by the slow motion of ions:

∆Q is highest for (r0, φ) values that minimize the collection times of electrons. Thus, if φ

is close to 90◦, the track becomes a chord in the radial plane, which means that ions are

clustered together radially, maximizing ln[b/r̄j(t)] in Eq. 5.6.

Fig. 5.5 (left) is a scatter plot showing the typical dependence of ∆Q as a function

of θ for neutrons, for the trial values W = 500 µm and η = 1. An approximate, analytic

expression for ∆Q(θ) can easily be derived. Assuming perfectly straight particle paths, the

projection of a track on the wire is proportional to cos θ. ∆Q increases when avalanches

overlap more with each other, that is, if cos θ decreases. Ignoring the small variations

with other track parameters, one can therefore state:

∆Q(θ) ≈ 1

p1 cos(p2θ)
(5.12)

where the parameters p1 and p2 are constants. The red curve in fig. 5.5 shows Eq. 5.12

with suitable p1, p2 values. This relation implies that mono-energetic peaks should be
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Figure 5.5: Left: the fractional charge loss ∆Q as a function of θ for fully-contained
neutrons tracks. Black dots are from a Monte Carlo simulation of pulse shapes with the
model discussed in §5.2.2. The tight black band indicates that variations of ∆Q with
respect to r0 and φ are small compared to θ. The red line is an analytic approximation
(Eq. 5.12) that only assumes θ dependence. Right: calculated neutron spectra with
(red), and without the space charge model (blue), compared with data (black). All peak
positions are scaled to 0.764 MeV. The same trial parameters W and η as in the curve on
the left were used in the model. It is clear that the wall effect does not account for the
shoulder-like feature at ∼600 keV in the data.

skewed. One can demonstrate this explicitly by deriving an approximate functional form

for mono-energetic peaks in the presence of space charge. The following should be true:

P (∆Q(θ))d(∆Q(θ)) = P (θ)dθ (5.13)

where, for instance, P (θ)dθ is the probability of getting a pulse between θ and θ + dθ.

Assuming isotropicity8 (i.e. P (θ) = cos(θ)), and differentiating Eq. 5.12, one arrives at

the following expression for the gain change distribution:

P (∆Q) =
1

p1p2∆Q2

sin(cos−1( 1
p1∆Q

)/p2)

sin(cos−1( 1
p1∆Q

))
(5.14)

To get the neutron peak function in keV, one substitutes ∆Q by 764(1 − ∆Q). Eq. 5.14

is a skewed function that can be used to fit neutron peaks after convolving a Gaussian to

account for energy resolution.

The minimum fractional charge loss ∆Qmin for the particular set of (unoptimized)

parameters used in generating fig. 5.5 is 1/p1 ∼ 3 %, and occurs at θ = 0◦, when the

8The angular distribution of events with fully-contained p-t tracks is not strictly isotropic.
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Figure 5.6: Left: the fractional charge loss ∆Q as a function of θ for fully-contained 5.3
MeV alphas, using a Monte Carlo simulation of pulse shapes with the model discussed in
§5.2.2. Right: calculated 5.3 MeV alpha spectra with (red), and without the space charge
model (blue). The same trial parameters W and η as in the left figure were used in the
model. The leftward shift of the 210Po peak is clearly seen.

track is parallel to the anode. The maximum loss occurs at (θ = 90◦, φ ∼ 90◦), and is

∼25 %. This means that one expects to see a threshold in the neutron energy spectra at

(0.97× 0.75× 764) ∼ 560 keV, below which there should be no fully-contained p-t tracks.

This is the origin of the step-like feature mentioned in §5.2.1, and can clearly be seen

in fig. 5.5 (right). Also shown for comparison in this figure, is a Monte Carlo generated

spectrum without space charge effects (blue). The plateau from ∼573 keV upwards is

caused by ‘wall effect’ tracks with the proton going inwards, and does not explain the

feature at 600 keV in the data, as first pointed out in §5.2.1.

Fig. 5.6 (left) is the corresponding plot of ∆Q as a function of θ for fully-contained

5.3 MeV alphas. For the values of W and η used here, the minimum and maximum

fractional charge losses are ∼9 % and ∼75 %. As seen in fig. 5.6 (right), this results in

the 210Po peak to appear at 0.91 × 5.3 = 4.8 MeV. One would also expect a threshold

at ∼0.25 × 5.3 = 1.3 MeV, below which there are no fully-contained 210Po tracks. This

results in a feature at ∼1.5 MeV, which is the analogue of the shoulder-like shape at 600

keV in fig. 5.5. In the data, the threshold is observed at 2.3 MeV, while the downward

peak shift is around 6.5 % (fig. 5.3). The search for a suitable set of values (W, η) that

reproduces these observations was described in the last section.
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To summarize, the origins of the spectral features (a)–(c) in §5.2.1 have been ex-

plained by the simple space charge model described in §5.2.2.

5.3 Energy resolution

The total energy resolution σT (E) of NCDs at a given energy E can be expressed as:

σT = σe + σp(E) (5.15)

where σe is the contribution from electronics, which is assumed to be a constant at all

energies, and σp(E) is the energy-dependent component contributed by fluctuations in

physics processes in the counters. Values of σe were extracted by Prior [88], for each

string, from electronic calibration runs.

Following [63], σp = C
√
E, with the constant C dependent on the statistical details

of the ionization and charge multiplication processes, e.g. quantities such as the Fano

factor9. Rather than performing a first-principles calculation of C, it is preferable to

determine C empirically. By measuring σT and σe at the neutron peak, one can infer σp,

and fix C. The width of the 210Po peak can therefore be predicted. For alpha particles, the

resolution is further worsened by passage through nickel, as discussed in the next section.

Counter-by-counter gain variations also broaden mono-energetic features considerably in

certain strings. These fluctuations have been estimated using neutron sources deployed

at different z positions along each string [80], and are included in the simulation.

5.4 Straggling of α particles in nickel

α spectra might be smeared considerably because of energy straggling in the NCD walls.

Comfort et al. [89] and Sykes et al. [90] measured the variance of energy distributions of

α particles after passing through thin nickel and copper foils, using 8.78 MeV and 5.486

MeV sources, respectively. In this work, their FWHM values are expressed as a function of

the mean fractional energy loss, and fitted to a polynomial curve (fig. 5.7). The resulting

RMS energy straggling (in MeV) is:

σ(E) =
0.001

2
√

2ln(2)
(−27.74 + 28.59E − 3.202E2 + 0.2064E3 − 7.561×10−3E4 +

1.642×10−4E5 − 2.082×10−6E6 + 1.417×10−8E7 − 3.985×10−11E8) (5.16)

9The Fano factor quantifies the deviation of ionization fluctuations from pure Poisson statistics [63].



CHAPTER 5. SIMULATION OF NCD ENERGY SPECTRA 91

Mean energy loss in Ni (%)
20 30 40 50 60 70 80 90 100

F
W

H
M

 (
K

eV
)

100

200

300

400

500

Sykes et al. (1972) (Cu)
Comfort et al. (1966) (Ni)
TRIM2006 simulation
Bohr MC

 particles in NiαEnergy straggling of 

Figure 5.7: Energy straggling of α particles in nickel. The blue line is a polynomial fit to
the Comfort and Sykes data, used in pulse calculations.

where E is in MeV. The energy straggling can be as large as 500 keV for a 5 MeV α

particle losing 4.5 MeV in the walls. For embedded daughters, the distribution of α

particle energies coming out of the nickel is rather flat. Thus, straggling in nickel should

not impact on the shape of bulk α energy distributions significantly. On the other hand,

sharp spectral features are toned down, e.g. if 5.3 MeV 210Po α particles are not exactly

on the NCD wall surfaces, but travel through a thin layer of nickel before exiting into the

gas.

A robust theory of energy loss fluctuations of light ions in matter at low energies

(below 1 MeV) does not yet exist [77]. Fig. 5.7 shows the TRIM 2006 and Bohr straggling

[91] predictions for nickel, which both fall below the measured values. The lack of a

reliable theoretical prediction justifies the use of the empirical equation, Eq. 5.16, in

energy spectrum calculations.
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Figure 5.8: Left: alpha spectrum from a high purity 210Po alpha sample (black markers)
taken in the SNO control room, compared to the MC 210Po simulation at a mean depth
of 0.1 µm (in magenta). Optimized space charge parameters are applied. The plot on
the right shows the decrease in counts at low energies (data is in brown markers). This
decrease is dependent on the mean depth of 210Po nuclei inside the wall.

5.5 Alpha energy spectra

5.5.1 210Po spectrum

A high purity 210Po alpha sample is available from test bench data taken in the SNO

control room, providing an excellent test of the space charge model in particular. This

data10 comes from a single, undeployed NCD counter. Although the experimental setup

involved shorter cables and did not contain any delay line, the charge spectrum itself

should closely resemble 210Po spectra from strings in the NCD array.

It was found that calculated 210Po energy pdfs compare better with the data when

MC alphas pass through a thin nickel layer. This suggests that 210Pb and 210Po isotopes

are not located exactly on inner counter surfaces, but slightly embedded. The mechanism

by which this occurred is unclear. Several possibilities, which will not be investigated in

this work, have been proposed: diffusion of Rn into NCD surface cracks; side effects of

electropolishing; 210Pb or 210Po migration, and nuclear recoil.

An exponential distribution is a convenient and economical one-parameter function

to describe embedded 210Po. The parameter in question is, of course, the mean impurity

10Data taken by McGee.
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depth d̄. In the limits d̄ → 10 µm11 and d̄ → 0, the uniform and pure surface cases are

recovered, respectively. Fig. 5.8 (left) shows the 210Po sample compared with a spectrum

generated for 210Po nuclei whose spatial profile in the wall is exponential, 1
d̄
e−(x−b)/d̄, with

a mean depth d̄ = 0.1 µm. The optimized values of η and W (§5.2.3) are used. The

number of counts decreases at low energies, the more so with increasing d̄ (right), because

fewer alphas come out at large azimuthal angles. This means that they are less likely

to hit the wall as soon as they emerge. The surface case (d̄ = 0) produces a spectrum

(shown in black) that does not display a decline in counts at low energies, to the same

extent as the data. Moreover, the 4.8 MeV peak for d̄ = 0 was observed to be too narrow.

If impurities are embedded, the 5.3 MeV alphas straggle in nickel before emerging in the

gas. This worsens the energy resolution, as mentioned previously in §5.4.

The best value of d̄ for the NCD array cannot be extracted from the test bench

210Po alpha sample alone. One can optimize d̄ if a pure 210Po sample from the NCD array

were available, which is unfortunately not the case. For simplicity, a value of d̄ = 0.1 µm

will be hereafter assumed in all strings.

5.5.2 Bulk spectra

Comparisons of MC generated neutron and 210Po spectra with data give confidence that

mono-energetic lines are being adequately computed at 0.764 and 5.3 MeV. If the extrap-

olation in fig. 5.4 holds, energy spectra should be correctly predicted at all other energies.

This is a fundamental assumption in the calculation of bulk alpha spectra, where a con-

tinuous distribution of initial alpha energies in the gas has to be dealt with. To calculate

this initial energy distribution, one has to find:

(1) The starting alpha energies in nickel (see appendix B).

(2) The energy loss in the walls.

The second problem is more difficult to address. The energy deposited in the walls depends

not only on the stopping power, straggling, directions and paths of alphas, but also on

the spatial distribution of impurities.

It is now argued that 238U and 232Th chain isotopes are not uniformly distributed

in NCD walls. The following observations were made:

11The range of 210Po alphas in nickel is ∼10 µm.
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Figure 5.9: Selection of bulk α events (blue box) in pw50 vs Energy space. Red: MC
210Po alphas; black: data.

(a) Drift times of electrons in NCD tubes are stable, as demonstrated by pulse width

distributions in neutron calibration data. A 1000 ns < pw50 < 2300 ns cut on alpha

pulses eliminates the majority of wall and large-width wire 210Po events in the energy

range E < 4 MeV (see fig. 5.9); neutrons are removed by imposing E > 1.2 MeV.

By applying these cuts and looking at the projection onto the horizontal axis, it

is possible to make string-by-string comparisons of high purity bulk α energy pdfs.

It is observed that the peaks of these distributions are not consistent across the

array (see the top four figures in fig. 5.10 for strings 10, 12, 30 and 37). These

discrepancies could not be explained by combining MC generated 238U and 232Th

pdfs, computed using the method discussed in previous sections, and assuming (a)

radioactive equilibrium, (b) a uniform spatial distribution in the nickel.

(b) String-by-string energy fits, without any FWHM cuts, show that the best-fit bulk

energy pdfs calculated using a flat spatial distribution in the walls do not compare

well to the data. The bottom left of fig. 5.10 shows the sum of all the string fits

compared to the array spectrum. It is seen that the MC overestimates the number

of alpha events in the neutron energy region. Clearly, if bulk spectra in NCD strings

were, on average, peaked at higher energy than in the MC, better agreement would

be obtained.

(c) 220Rn and 216Po events in the 232Th chain can be identified owing to the short time
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delay between them (fig. B.2). The extracted energy pdfs of 6.8 MeV 216Po and

6.3 MeV 220Rn alpha candidate events from NCD walls are not consistent with

simulation, if a uniform spatial distribution is assumed for these isotopes. The

selection of 220Rn and 216Po coincidence events is described in appendix G. Fig. 5.10

(bottom right) shows the MC 216Po spectrum (red) compared with the extracted

216Po spectrum (black). The candidate 220Rn spectrum is also shown in blue, and

peaks at lower energy, as one would expect. The peaks in the data on the right

edge of the spectra suggest that 220Rn and 216Po nuclei might be more concentrated

towards the inner surface of NCD walls.

Therefore, bulk spectra vary from string to string, in a way that is not accountable

by 232Th and 238U pdfs calculated assuming spatial uniformity. Indeed, the peaks of bulk

distributions appear to be shifted to higher energies relative to the MC. The possibility

of radioactive equilibrium causing (a)–(c) was briefly examined, using the scenario de-

scribed in [87]: Ra isotopes are preferentially removed by the CVD process during NCD

manufacture, breaking the chains in two components. The lower parts12 of both 238U and

232Th chains peak at higher energies than the upper parts, and it is speculated that com-

binations of four pdfs (232Thlow,
232Thup,

238Ulow,
238Uup) might explain the varying shifts

in bulk spectra. Yet, it was found that differences between the full chain pdfs and the

lower parts for both 232Th and 238U are marginal. Chain disequilibrium does not perturb

the bulk pdfs sufficiently to explain the variations described in (a). This, however, does

not exclude the possibility of the chains being in disequilibrium indeed.

A natural explanation for observations (a)–(c) is that 238U and 232Th impurities are

not uniformly distributed in the nickel walls, but instead, more concentrated towards the

inner surface13. If this is the case, on average, alphas pass through less nickel, resulting

in more energy deposited in the gas. The spatial profile could differ from string to string,

causing the observed differences in the shapes of bulk pdfs.

The actual impurity distribution is unknown. It was suggested to decouple 238U

and 232Th α backgrounds into surface, and uniformly distributed bulk components [92].

The surface components would then be described by exponential distributions, as in the

12The isotopes in each chain are listed in table 6.1 of [87].
13For instance, a thin layer of Al2O3, from the aluminium mandrel used in the nickel CVD process,

could be present.
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Figure 5.10: Evidence for non-uniformity of bulk impurities. Top four figures: Energy spectra
of four NCD strings with a cut 1000 ns < FWHM < 2300 ns. The region with calibrated charge
< 50 should be free of 210Po events, and is a good indication of the shape of bulk spectra. Also
shown are the MC best-fit predictions (blue: Po, red: U, green: Th, magenta: total), assuming
impurities are uniformly distributed in the walls. It is clear that the peaks of bulk distributions
shift from string to string. Bottom left: Sum of energy fits to NCD strings, assuming uniformly
distributed impurities. Bottom right: 232Th double coincidence spectra (black: 216Po, blue:
220Rn), compared with the MC generated 216Po spectrum in red.
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Figure 5.11: Dependence of the 238U (top left) and 232Th (top right) spectral shapes on
mean impurity depths, assuming exponential distributions for the spatial profiles. The
expected number of events in the neutron region decreases, and the peak of bulk distribu-
tions shift towards higher energies as impurities become more concentrated towards the
inner wall. Bottom left: shapes of low energy 238U spectra at various values of d̄. Bottom
right: low energy 232Th spectra at various values of d̄.
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210Po case. However, this means that at least two more variables need to be introduced

to describe NCD alpha spectra. For simplicity, in this work, a single exponential depth

distribution is assumed for each decay chain. Fig. 5.11 shows how 238U (left) and 232Th

(right) pdfs change as a function of the mean depth d̄. As expected, these become more

peaked towards higher energies with decreasing d̄.

Predicted shapes of 238U and 232Th spectra as a function of d̄, below 2 MeV, are

shown in the bottom panels of fig. 5.11. The full energy curves are normalized to the total

number of events under the black line (uniform case) from 0 to 9 MeV. The expected rate

in the neutron region goes down with decreasing d̄, because alphas exit the nickel at higher

energies on average.

5.6 Background content of NCD strings

In this section, MC generated energy α spectra are used to determine the fractional 210Po,

238U and 232Th contents of each string. The mean U and Th impurity concentrations of

NCD nickel are then derived.

Binned maximum likelihood fits to string energy distributions were performed. A

calibrated charge interval of 14–80 was used, corresponding to an energy range of 1.2–

6.5 MeV. Calibrated charge was preferentially chosen as the fit variable, because of some

problems with the energy scale on some strings after a hardware upgrade in February 2006.

The MC charge scaling [65] and energy resolution are not perfect, and thus, corrections

were first applied to align simulated and observed 210Po α peaks on each string.

The fit statistic is defined as [93]:

χ2
d̄ = 2

N
∑

i=0

Diln

(

Di

Mi,d̄

)

+Mi,d̄ −Di

Mi,d̄ = nuUi,d̄ + npoPi + (1 − nu − npo)Ti,d̄ (5.17)

where N is the number of bins (60), Di is the data, and Mi,d̄ is the MC prediction at a

mean U/Th depth d̄. Mi,d̄ consists of 210Po (Pi,d̄),
238U (Ui,d̄), and 232Th (Ti,d̄) pdfs, which

are similar in shape to those found in figs. 5.8, 5.11 (top left) and 5.11 (top right). A

mean 210Po depth of 0.1 µm is assumed in all strings. There are only two fit parameters:

the 238U and 210Po fractions, nu and npo. To find the optimum U and Th impurity depth

in a given string, the fit is repeated at 9 discrete intervals of d̄: 2, 3, 4, 5, 6, 8, 10, 15, 20 µm.
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The mean depths of U and Th chain impurities are assumed to be equal in all strings. A

depth of 20 µm is almost identical to the uniform case, because all 238U and 232Th alphas

beyond 22 µm either range out in the nickel, or exit in the heavy water. A cubic curve is

fitted to the χ2
d̄

vs d̄ space, and the value minimizing the curve is picked. Uncertainties

on the estimated depth are found by searching for values of d̄ increasing χ2
d̄

by one unit.

Results are shown in the 6th column of table 5.2. The mean 238U and 232Th depth across

the whole array was found to be ∼7 µm.

Columns 3, 4 and 5 of table 5.2 give the derived fractional 238U, 232Th and 210Po

contents in each string. The fitted proportions of 238U and 232Th alphas are highly corre-

lated, and roughly equal. Bulk and surface fractions in some strings can be mis-estimated

in the presence of counter gain mismatches. Such cases result in rather bad χ2, e.g.

strings 35 and 10. Given a total NCD length of 396 m, and 60,519 alphas observed in

385 live days [37] above calibrated charge 1414, the 238U and 232Th fractions translate to

concentrations of 6.6 × 10−12 gTh/gNi and 2.1 × 10−12 gU/gNi in the 22 µm nickel layer

adjacent to the live NCD region. This is comparable to results from in-situ radio-assay

techniques: 3.4 × 10−12 gTh/gNi and 1.8 × 10−12 gU/gNi [36]. The inferred flux of 210Po

and bulk alphas from the strings included in this analysis are, roughly, 1.5 m−2day−1 and

1 m−2day−1, respectively. The number of β events from bulk impurities is estimated in

the next section.

Column 7 shows wire alpha fractions, obtained by counting the number of events

with a FWHM of more than 2300 ns on each string. In each case, the percentage is

expressed relative to the number of alpha events observed above calibrated charge 14.

According to the MC, assuming surface wire activity only, 49.6 % of wire events are wider

than 2300 ns. All other alpha types have a narrower FWHM. The strings with the dirtiest

anodes were identified to be 1, 4 and 35. It is estimated that, of all alphas observed in the

array, about 2 % are wire alphas, amounting to an average flux of about 50 surface 210Po

alphas per m2 of Cu per day. This is significantly higher than the estimated flux of 210Po

alphas from inner NCD surfaces, which were electropolished and chemically treated.

The sum of fitted spectra from each string can be seen in fig. 5.12 (magenta curve),

with data shown in black. The constituent 238U, 232Th and 210Po spectra are shown in

red, green and blue, respectively. Fig. 5.12 can be compared with the uniform impurity

14Excluding strings 18, and the 4He strings.
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string χ2/dof 238U 232Th 210Po d̄ (µm) Wire % Note

0 69.82/57 0.18±0.04 0.08±0.04 0.74±0.01 9±5 1.3 ¶
1 49.03/57 0.00±0.07 0.64±0.08 0.36±0.03 5±2 5.4 ¶
2 76.23/57 0.11±0.04 0.12±0.05 0.77±0.02 8±5 1.1
3 72.88/57 0.29±0.03 0.23±0.03 0.48±0.01 2±1 2.1 ♦

4 46.25/57 0.20±0.05 0.31±0.06 0.48±0.02 8±3 10.0
5 60.31/57 0.29±0.08 0.27±0.09 0.43±0.04 2±1 1.9
6 48.31/57 0.27±0.01 0.10±0.05 0.63±0.05 2±12 2.9
7 68.94/57 0.14±0.09 0.25±0.10 0.61±0.03 2±2 1.7
8 61.25/57 0.34±0.04 0.00±0.06 0.66±0.07 2±1 1.7 ¶
9 78.93/57 0.15±0.02 0.00±0.03 0.85±0.04 12±5 0.5
10 287.18/57 0.49±0.01 0.01±0.01 0.50±0.01 10±3 2.1 ‡,♦
11 64.66/57 0.37±0.09 0.08±0.10 0.55±0.04 2±4 3.0
12 102.82/57 0.25±0.01 0.03±0.02 0.72±0.01 9±2 1.6
13 37.32/57 0.30±0.03 0.00±0.02 0.70±0.04 10±4 1.6
14 49.59/57 0.22±0.10 0.21±0.10 0.57±0.02 5±4 0.9
15 62.35/57 0.15±0.11 0.21±0.12 0.64±0.04 8±5 0.3
16 57.03/57 0.24±0.05 0.12±0.06 0.64±0.03 9±3 2.6
17 78.08/57 0.38±0.02 0.00±0.02 0.62±0.03 6±4 0.1
18 N/A N/A N/A N/A N/A 2.7 §,¶
19 72.82/57 0.19±0.03 0.00±0.02 0.81±0.04 20±7 2.0
20 N/A N/A N/A N/A N/A 2.5 §,♦
21 92.74/57 0.00±0.58 0.35±0.58 0.65±0.03 9±4 1.1
22 89.51/57 0.32±0.03 0.13±0.04 0.54±0.02 6±4 1.4
23 133.63/57 0.25±0.03 0.00±0.02 0.75±0.02 5±3 2.0
24 68.34/57 0.45±0.05 0.01±0.06 0.54±0.03 8±2 2.1
25 109.97/57 0.39±0.03 0.00±0.02 0.61±0.04 10±2 0.4
26 53.22/57 0.03±0.08 0.42±0.08 0.55±0.02 20±10 1.8 ¶
27 52.01/57 0.11±0.12 0.27±0.12 0.62±0.04 10±6 2.6
28 72.43/57 0.25±0.14 0.53±0.16 0.22±0.08 3±3 3.6
29 56.15/57 0.33±0.02 0.00±0.02 0.67±0.03 10±4 4.0
30 82.44/57 0.08±0.07 0.76±0.07 0.16±0.02 3±2 2.8 ♦

31 115.48/57 0.17±0.02 0.05±0.02 0.78±0.02 8±2 3.9 ¶
32 100.77/57 0.26±0.05 0.03±0.05 0.71±0.02 6±3 2.0
33 53.88/57 0.12±0.03 0.33±0.02 0.55±0.04 2±4 4.0
34 68.31/57 0.27±0.06 0.03±0.06 0.70±0.03 10±3 3.1
35 215.61/57 0.00±0.03 0.66±0.01 0.34±0.02 20±5 5.0 ‡
36 56.23/57 0.32±0.04 0.00±0.05 0.68±0.06 10±3 1.6
37 68.69/57 0.00±0.61 0.67±0.61 0.34±0.01 5±2 4.5
38 83.28/57 0.31±0.03 0.02±0.03 0.67±0.01 20±1 2.2
39 70.91/57 0.14±0.06 0.4±0.06 0.48±0.01 7±3 2.6

All - 0.21±0.03 0.18±0.03 0.61±0.01 6.6 1.8 *

Table 5.2: Estimated string fractions and depths from maximum likelihood fits to the energy
spectra of each string, using data taken from the start of the NCD phase to February 2006.
The wire alpha fractions come from inspecting pulse width distributions. ‡: string resolution
worsened significantly by counter gain differences. §: Multiple 210Po peaks. ¶: String excluded
from analysis. *: Excluding 4He strings and string 18. ♦: 4He string.
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case at the bottom left of fig. 5.10: there is a clear improvement in the fit quality. Varying

the bulk impurity depths barely changes the extracted 210Po and bulk fractions. However,

there are significant differences in the predicted alpha rates in the neutron energy region.

Accurate values of d̄ are therefore necessary to predict the low-energy α background

shape, and to derive the number of background α events in the neutron energy window

with confidence.

The neutron peak is clearly seen at calibrated charge ∼9. With a robust α back-

ground model in hand, neutrons can be statistically separated from alphas by fitting the

NCD array spectrum in the neutron energy window. To perform such a fit, the shaper en-

ergy distribution expected of NC neutrons can be accurately obtained from 24Na source

calibrations, while the net alpha background pdf can be calculated using the present

simulation. Further details of such energy fits can be found in [32, 103, 104].

5.7 β energy spectrum

5.7.1 Estimation of the β event rate

Fig. 5.13 shows the calculated probability of observing a ‘clean’ correlated scope-shaper

β-decay event pair in the neutron region, as a function of the kinetic energy of electrons

(between 0.2 and 3 MeV) coming out of the walls. There is a minimum at around ∼1

MeV corresponding to the location of the minimum in the dE
dx

curve (fig. 4.3). The yield

increases below and above 1 MeV because more energy is deposited in the gas. The

MC indicates that, for most purposes15, a probability of 1 × 10−4 can be conservatively

assumed. If impurities are uniformly distributed, the fractions of all 238U and 232Th decay

βs penetrating the gas with over 200 keV K.E. are calculated by EGS4 to be 0.058 and

0.067. Assuming secular equilibrium, half lives of 1.4× 1010 (232Th) and 4.47× 109 (238U

) years, concentrations of 3.4 × 10−12 gTh/gNi and 1.8 × 10−12 gU/gNi [36], and a total

mass of ∼2× 105 g of nickel in the array, the number of β events that would be observed

in the 385 live days of the NCD phase are, approximately:

1.05 · 3.4×10−12 · 6.02×1023 · 2×105 · ln2

232 · 1.4×1010
· 0.067 · 1×10−4 = 0.5 (5.18)

for the 232Th chain, and 0.8 for the 238U chain.

15The probability of 238U and 232Th decay chain βs having more than 3 MeV K.E. is negligible
(fig. 5.15).
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Figure 5.13: Calculated percentage yield of β events in the neutron energy region, as a
function of kinetic energy. All particles start isotropically from a radius of 2.5 cm.

It therefore appears that β events constitute a negligible background. However, it is

still useful to be able to calculate β energy spectra, in the event that a number of strong,

localized sources of β particles are present on the inner surfaces of NCDs.

5.7.2 Simulation method

A semi-analytic method, based on the parameterization of MC results, was developed to

calculate β spectra efficiently. It can be assumed that most electrons with more than

0.2 MeV of kinetic energy come from outside the gas, and leave the nickel isotropically.

The strategy is to first find an analytic form for the measured shaper energy distributions

of mono-energetic electrons leaving the nickel16 with an isotropic angular distribution.

Given this parameterization, and the energy distribution of βs exiting the walls, the

approximate spectral shape under a wide range of scenarios can then be computed at

little computational expense, because all pulse shape calculations are by-passed.

16EGS4 was used for propagating electrons before computing their pulse shapes. The simulation
parameter ECUT [74] inputted to EGS4 has to be lowered from its default value to below 0.2 MeV for
all materials the NCDs are made up of.
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In the kinetic energy range 0.7 < Es < 3 MeV, the spectrum, after data reduction,

was found to be well described (see fig. 5.14, right) by a lognormal function (Eq. 5.19).

The spectral shape is rather stable for Es between 0.7 and 3 MeV. The weak dependence

of the mean µl and standard deviation σl of the lognormal distribution on Es is shown in

table 5.3. When Es < 0.7 MeV, the spectrum contains a cut-off and a peak at ∼Es, since

the particle cannot deposit more energy than what it started off with. In this case the

spectrum can be described by the sum of a lognormal distribution truncated at E = Es,

and a Gaussian distribution centered at Es. A skewed function such as Eq. 5.14, which

takes into account space charge effects, is perhaps more appropriate, but is not adopted

here, for simplicity. The width of the Gaussian is the counter resolution described in §5.3,

while the relative normalizations of the lognormal and Gaussian functions are found by

counting the number of events where Es is fully deposited in the gas (table 5.3).

To summarize, the following parameterization for the NCD spectrum of mono-

energetic and isotropic β particles of kinetic energy Es can be adopted:

fβ(E) =
C

Eσl

√
2π

e
−

(ln(E)−µl)
2

2σ2
l 0.7 < Es < 3MeV

fβ(E) =
A

Eσl

√
2π

e
−

(ln(E)−µl)
2

2σ2
l +

B

σ
√

2π
e−

(E−Es)2

2σ2 , E < Es ∩ Es < 0.7MeV (5.19)

fβ(E) =
B

σ
√

2π
e−

(E−Es)2

2σ2 E > Es ∩ Es < 0.7MeV

A, B and C are normalization constants. The ratios B/A at different values of Es, are

given in table 5.317.

Es(MeV) 0.25 0.35 0.4 0.45 0.5 1 1.5 2 2.5

B/A 8.99 2.06 1.07 0.75 0.32 0 0 0 0
µl −1.045 −1.045 −1.041 −1.04 −1.035 −1.023 −1.016 −0.996 −0.985
σl 0.249 0.247 0.246 0.246 0.245 0.238 0.231 0.224 0.219

Table 5.3: B/A, µl and σl as a function of electron kinetic energy Es, evaluated using
the electron pulse shape simulation, for β spectrum parametrization. Values of µl and σl

below 1 MeV have been extrapolated from above.

As an example, suppose one wants to calculate the NCD spectra of 238U and 232Th

17These values are valid for spectra generated with SNOMAN v5.03.
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decay electrons, under the assumption that all impurities are uniformly distributed within

the nickel. Fig. 5.15 (left) shows the K.E. distributions of 238U and 232Th electrons

(appendix B, table 5.4) leaving the walls, as predicted by EGS4. Folding in Eqs. 5.19

yields the energy spectra on the right. In analogy to α backgrounds, differences between

238U and 232Th shapes are very small. An interesting feature of bulk β spectra is the peak

at ∼0.35 MeV, which is a consequence of applying data cleaning cuts.
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Figure 5.14: Parameterization of the Monte Carlo generated NCD spectrum of 1 MeV
(left) and 0.5 MeV (right) K.E. electrons with Eqs. 5.19. Particles with less than ∼0.8
MeV K.E. can deposit all their energy in the gas, producing a cut-off in the spectrum.
After data reduction, this cut-off appears as a peak.

chain 232Th 238U
isotope 208Tl 211Bi 212Pb 228Ac 210Tl 214Pb 210Bi 214Bi 234mPa

% 12.3 16.3 0.3 8.6 1.8 3.5 5.1 6.6 17.7
fraction 0.36 1 1 1 0.00021 0.9998 1 1 1

Table 5.4: Percentages of decays from β-emitting 238U and 232Th daughters, that result
in an electron penetrating NCD gas with more than 200 keV K.E. Assuming equilibrium,
the bottom row is the fraction of all 232Th and 238U decays containing a β from the
daughter. Q-values and rough decay schemes can be found in appendix B. A uniform
impurity distribution in the walls is assumed.
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Figure 5.15: Left: Kinetic energies of NCD wall 238U and 232Th decay chain electrons
penetrating the gas, assuming the impurities to be uniformly distributed. Right: the
resulting shaper spectrum, with data cleaning cuts applied. The black curve is an analytic
form for the spectrum of non-neutron-non-alpha events from string 26 (J3) [94]. The
calculation used Eqs. 5.19.

5.8 Summary

This chapter focussed on the simulation of the energy spectra of ionization events, as mea-

sured by the shaper-ADCs. An accurate knowledge of alpha backgrounds is an essential

component of the NC flux extraction.

Mono-energetic spectral peaks suggest the presence of at least one gain loss mech-

anism. A two-parameter space charge model that explains the shape of mono-energetic

peaks (skewness, ledge-shaped features and non-linearities) was described. The model

parameters were optimized by studying neutron calibration and 210Po alpha data.

The simulation of wall backgrounds requires careful consideration of energy losses in

the nickel. It was demonstrated that observed 210Po alpha spectra are consistent with the

210Po being slightly embedded inside the nickel. It was also shown that 238U and 232Th

daughters are not uniformly distributed inside NCD walls. Exponential depth profiles

were proposed for 210Po and U/Th chain nuclei.

Using the background model, 238U, 232Th and 210Po α fractions in each string were

estimated by performing energy fits. Impurity depths in each string were obtained in the

process. Wire alpha fractions were also estimated by means of a pulse width cut.
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A fast method for calculating the spectrum of β particle events was introduced. The

expected number of β events in the NCD phase was estimated and found to be negligible.



Chapter 6

Separation of Neutrons and Alphas

A central problem in extracting the NC flux in the NCD phase is the determination of the

number of neutron events, i.e. discriminating neutrons from the dominant background,

alphas. This chapter describes a separation technique that uses, almost exclusively, MUX-

scope traces. The main difficulties that need to be overcome are:

(1) A pure background sample does not exist, because the NC neutron signal could not

be ‘switched off’. 4He string α data are statistically limited, and not representative

of the rest of the array. External sources could not be used to replicate the NCD

array background.

(2) The MC is biased, as described in §4.6.1. Furthermore, the reliability of MC-

generated α samples depends heavily on estimated impurity depth values (§4.6.2).

(3) A fraction of alpha events are indistinguishable from neutrons. Some of these pulses

are not well-understood.

To tackle (1), the NCD simulation is applied to generate α pulse shape parameter

distributions for use in a statistical separation of neutrons and alphas. The selected pulse

parameter is R10,40 = pw10
pw40

, which is the ratio of pulse widths at 10 % and 40 % of the

amplitude. It is essentially a measure of how tapered a pulse can be. Discrimination

results from the sizeable fraction of neutrons that are wide and less tapered than alphas.

Besides its simplicity and good separation power, the choice of R10,40 in this analysis is

strongly motivated by the following reasons, which address issue (2) above:

(a) In the appropriate basis, there are no model uncertainties on R10,40 pdfs due to bulk

impurity depths errors. This is demonstrated in the next section.

108
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(b) Corrections due to instrumental systematics can be evaluated and relatively straight-

forward to apply.

These corrections are described in §6.2. Issue (3) is discussed further in §6.2.3. The

corrected R10,40 pdfs are vetted against available α data in §6.2.4, and then used to extract

the number of neutron events in the NCD phase (§6.3). This allows the NC flux to be

deduced in §6.4.

6.1 Representation of alphas below 1 MeV

The most natural way to account for an observed alpha pulse shape parameter distribu-

tion is to simulate its 210Po, 238U and 232Th components before mixing them in the right

proportions. However, as first pointed out in §4.6.2 (see also fig. 4.18), the shapes of distri-

butions change so rapidly with the impurity depth d̄ (which is not known accurately) that

a satisfactory description of α data is difficult to achieve. In this section, an alternative

representation of alpha pdfs is proposed to mitigate the effects of d̄ uncertainties. Instead

of representing alpha data as a combination of three main impurity classes, which share

similar waveforms, one might use a number of α groups with different generic shapes, to

create a more ‘orthogonal’ basis. In the neutron energy region, at least two such groups

can be identified:

I Sharp, narrow, and high amplitude pulses. These are high energy alphas that need

to hit the wall shortly after they come out, in order to deposit less than 1 MeV in

the gas.

II Broader, low amplitude, triangular-shaped pulses. These alphas exit the nickel with

less than 1 MeV K.E. and stop in the gas.

These two groups are illustrated in fig. 6.1. The fractions of each type, xI and xII,

are strongly dependent on how impurities are distributed. If isotopes are clustered close

to the wall, there is a high concentration of surface-type pulses I and xII ∼ 0. If d̄ is

large, bulk α pulses are mostly of type II. In the {I, II} alpha basis, pulse shape pdfs from

embedded 210Po, 238U and 232Th chain nuclei can be thought of as a mixture of type I

and II alphas. In each case, xI and xII are determined by d̄. Therefore, the value of d̄ is

‘converted’ into the ratio xI:xII in the {I, II} basis.
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Figure 6.1: String 10 data, showing type I and II alphas in pulse width vs energy space.

Narrow surface 210Po α events with pw50 < 350 ns, and 238U pulses with pw50 > 350

ns1, are chosen as templates for I and II, respectively. Using Monte Carlo simulations, it

can be demonstrated that pulse moment2 and R10,40 distributions from any exponential

depth profile can be decomposed accurately into I and II. Other shape parameters (e.g.

mean and RMS) are less stable with respect to d̄. This is shown explicitly for 238U α

events in table 6.1, where pulse shape parameter pdfs (mean, RMS, m3, m4...m8 and

R10,40) at various depths d̄ are broken into type I and II pdfs. K-S probabilities of the

decompositions, assuming the values of xI and xII in the second column, are displayed for

each variable in columns 3 to 11.

Fig. 6.2 shows distributions of the mean, RMS, and moments m3, m4...m8 of pulses

in the energy range 0.2–1 MeV from MUX 1, 5 and 11, hand-fitted to neutrons3 (red),

type I (magenta) and type II alphas (green). It is much harder to reach the same level

of agreement in pulse moment distributions if the {238U, 232Th, 210Po} basis is adopted,

because accurate values of d̄ are needed for each string in order to construct a proper

mixture.

Let us summarize by stressing the two main benefits of using the {I, II} α represen-

tation described above:

(1) One avoids the need for pre-determined d̄, and 238U, 232Th and 210Po fractions for

1The justification for the cut is that narrow bulk pulses mimic 210Po pulses.
2Moments mi are defined in appendix D.
3The neutron pdf is obtained from 24Na calibration source data.
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Figure 6.2: MUX 1, 5 and 11 neutrino data (blue) in the energy region 0.2–1 MeV,
decoupled into neutrons (red), type I (magenta) and type II alphas (green). The relative
fractions were roughly eyeballed to be 0.3, 0.6 and 0.1. According to table 6.1, mean and
RMS pdfs are not accurately described in the {I, II} basis at all depth scales. Therefore,
fits of lesser quality result in the top two plots.
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depth ratio K-S probability

d̄(µm) I:II mean RMS m3 m4 m5 m6 m7 m8 pw10
pw40

2 0.67:0.33 0. 0. 0.33 0.62 0.47 0.44 0.14 0.13 0.71
3 0.41:0.59 0. 0. 0.2 0.47 0.23 0.43 0.21 0.23 0.89
4 0.26:0.74 0. 0.002 0.12 0.68 0.34 0.69 0.37 0.91 0.26
5 0.26:0.74 0. 0. 0.71 0.30 0.70 0.37 0.69 0.33 0.18
6 0.17:0.83 0.004 0.20 0.23 0.75 0.26 0.54 0.24 0.59 0.99
8 0.13:0.87 0.001 0.02 0.24 0.68 0.57 0.60 0.62 0.75 0.30
10 0.13:0.87 0.04 0.21 0.41 0.51 0.26 0.22 0.23 0.26 0.96
15 0.05:0.95 0.9 0.97 0.4 0.92 0.59 0.91 0.57 0.74 0.99
20 0.05:0.95 0.96 0.88 0.95 0.93 0.81 0.92 0.89 0.86 0.49

Table 6.1: The pdfs of certain pulse shape parameters are equivalently described in bases
{238U, 232Th, 210Po }, or {I, II}. In this example, 238U pdfs at different d̄ are decomposed
into type I and II pdfs. 1st column: mean depth of 238U sample. 2nd column: approximate
type I and II fractions comprising the sample. Subsequent columns: K-S probability
of pulse parameter pdfs (mean, RMS, m3, m4...m8 and R10,40) from the Monte Carlo
generated 238U sample being compatible with pdfs from the I-II mixture. The highlighted
variable is selected for n-α separation.

each string when describing some alpha parameter distributions. The generation of

Monte Carlo pdfs and analysis of data is simplified.

(2) Effects of depth profile systematic errors on some pulse shape parameter distribu-

tions are substantially mitigated, as a result of (1).

The main disadvantage is that {I, II} is not the physical basis, i.e. no meaning can

be assigned to type I and II pulses, except that one class is, in general, narrower than the

other. Moreover, not all variables can be decomposed at every value of d̄. An optimal

choice of type I and II templates, which makes this possible, might exist. With the type

I and II prototypes used in this work, ‘good’ variables in the {I, II} basis are relative

quantities of some sort, e.g. ratios of widths and centralized moments.

6.2 Alpha R10,40 parameter distributions

The pulse simulation is not perfect, implying that MC calculated pdfs are inevitably biased

(e.g. as in §4.6.1 for neutrons). The major sources of discrepancies in R10,40 parameter

pdfs have to be identified, and corrections derived. These are described below.
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6.2.1 Instrumental systematics

One advantage of using R10,40 is that systematic corrections to account for incomplete

hardware modelling are rather straightforward to implement. The two dominant sources

of systematic biases that need to be considered here are:

(1) MUX corrections

Fig. 6.3 (left) shows the energy dependence of the mean value of R10,40 for pulses

with pw50 < 350 ns, from strings connected to MUX 4 (red, excluding the 4He

string 10), compared with the remaining boxes (black). String 10, shown in blue, is

also connected to box 4, and is consistent with the red curve. This suggests that it

is reasonable to use data from 3He strings, to correct for electronic biases in boxes

1, 5 and 11. The Monte Carlo type I alphas are shown in green. At any energy E,

a mean shift of ∆R10,40 = f4(E) − fMC(E) and ∆R10,40 = f1,5,11(E) − fMC(E) can

be applied to the Monte Carlo calculated R10,40, to predict expected values from

the associated MUX. The f(E) are cubic curves fitted to the data points in fig. 6.3,

with coefficients given in table 6.2. Uncertainties on ∆R10,40 can be derived, and

are of the order of ±0.01 for boxes 1, 5 and 11, and ±0.04 for box 4. Systematic

corrections to Monte Carlo-generated type II alpha pdfs are found in the same way.

In general, differences between boxes are less substantial than in the type I case.

(2) Width smearing corrections

Type I alpha R10,40 distributions are rather narrow. Therefore, any mechanism that

induces counter-to-counter variations in pw10 or pw40 has an impact on the width of

R10,40. Some of these processes, which are not included in the simulation are: (a) the

amplitude of the reflected pulse component at the preamplifier, which depends on

the degree of impedance mismatches, (b) dispersion in varying NCD cable lengths

and electronic circuits, and (c) fluctuations in counter-by-counter gas properties.

Therefore, simulated R10,40 distributions need to be smeared before analysis. The

additional variance is estimated from a number of sources, which are summarized

in table 6.3.
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Figure 6.3: Biases on the mean value of R10,40, due to MUX hardware differences. Left:
type I pulses (pw50 < 350) ns. Right: type II pulses (pw50 > 350) ns. The curves are
parametrized in table 6.2.

a0 a1 a2 a3

fMC 1.495 1.311 -0.760 0.160
I f4 1.566 1.754 -1.603 0.493

f1,5,11 1.374 2.666 -2.231 0.625
fMC 1.777 0.221 -0.171 0

II f4 1.753 -0.212 -0.348 0
f1,5,11 1.823 -0.285 0.265 0

Table 6.2: Parametrization of the mean value of R10,40 as a function of E for type I and
II alphas. In the Monte Carlo, all MUX boxes share roughly the same curve.

√

σ2
data − σ2

MC
24Na data MUX 4 (†) 0.081

24Na data MUX 1,5,11 (†) 0.135
string 10 data (†) 0.101
string 10 data (‡) 0.059
MUX 4 data (‡) 0.106

MUX 1,5,11 data (‡) 0.093
Average (MUX 4) 0.09±0.02

Average (MUX 1,5,11) 0.11±0.02

Table 6.3: Variances of simulated R10,40 pdfs are lower than observed. Corrections are
derived for each box by using 24Na calibration data and neutrino data above 1 MeV. †:
neutron energy range (0.2–1 MeV); ‡: 1–1.2 MeV. String 10 is connected to box 4.
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Source Value Ref.

e− drift time scaling 10 ± 4 % §3.3.1
Ion mobility 1.082 ± 0.027 × 10−8 ns−1V−1 [65]

Space charge offset 154 ± 31 §5.2.3
Space charge gradient 782 ± 120 §5.2.3

Bulk and 210Po impurity depths d̄ negligible in {I,II} basis §5.6

Table 6.4: Summary of physics model input parameter uncertainties.
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Figure 6.4: The impact of physics model uncertainties on R10,40 distributions. Left: type
I αs; right: type II αs. The red bands are statistical errors, while the green bands are
the total error (i.e. the sum of all systematic deviations from the various physics model
uncertainties, plus statistical errors).
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6.2.2 Physics model uncertainties

Pulse input parameters that have an impact on R10,40 are listed in table 6.4, with their

estimated errors. These uncertainties need to be propagated onto the extracted number of

neutrons. Monte Carlo samples have been generated for this purpose, with 1-σ excursions

on each input parameter. The impact of physics model uncertainties on the shape of type

I and II pdfs are shown as green bands in fig. 6.4.

6.2.3 Wire, end-cap and other neutron-like alphas

A fraction of end-cap and wire connector events are indistinguishable from neutrons with

large pulse widths. They distort type II R10,40 pdfs noticeably by introducing a low tail

that can be fitted as neutrons. As mentioned in §4.7.2, it is very hard to simulate these

pulses correctly, and although a geometric estimate of their net abundance was made, one

cannot determine accurately how many of them are in the neutron window.

A simple cut was developed to exclude a number of these events from the analysis.

End-cap events typically have much longer rise-times than normal alphas. Pulses that lie

outside the box

0 <
t50

t10
< 1.2 , 0 <

t60

t40
< 1.1 (6.1)

are discarded. The t parameters are amplitude fraction times (see appendix D), e.g. t50
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denotes the time bin on the leading edge of the pulse that corresponds to 50 % of the

amplitude. Hence, ratios of amplitude fraction times are a good measure of how fast

pulses rise. Fig. 6.5 (left) shows the scatter plot of t50
t10

vs t60
t40

for string 10, with the

selected region on the lower left-hand corner. Strings with high rejection counts (4, 16

and 35) are discarded from the present analysis. In §5.6, these have also been identified

as having abnormally active anodes. The neutron rejection of the end-cap cut can be

determined from 24Na calibration data and was found to be 0.187±0.007.

6.2.4 Comparisons with α data

Low energy α data from the NCD array is statistically limited. In particular, pure α

samples in the neutron window are available only from 4He strings, one of which has pro-

nounced gain mismatches between individual counters. To test the corrections suggested

in previous sections, the only usable data sets are: (1) data from 4He strings 3, 10 and

30 in the 0.2–1.1 MeV energy range, and (2) backgrounds from 3He strings, in a narrow

energy range just above the neutron peak.

The first row of fig. 6.6 shows corrected Monte Carlo R10,40 distributions, in the

{I, II} basis, fitted to string 10 alpha data in the neutron energy window (left), and

energy range 0.9–1.1 MeV (right). This tests the systematic corrections for MUX 4.

The fit procedure is as described in §6.3.1, except for the energy cut, which is modified

accordingly. The second row (left) shows corresponding fits for string 3 and 30, which are

connected to boxes 1 and 5. Note that the fitted type II fraction in both cases decreases

in the neutron window. The last row are fits to strings connected to boxes 1, 5, and 11

(right), and box 4 (left) in the energy ranges 0.9–1 MeV.

Agreement between data and MC in the neutron energy range is very good. The

MC is assumed to be in a position to produce R10,40 pdfs for the extraction of neutrons,

which is tackled in the next section.

6.3 Extraction of neutrons

6.3.1 Fit procedure

3He data from the 385 live days of the NCD phase is fitted to 24Na calibration neutrons

and Monte Carlo R10,40 pdfs using a binned maximum likelihood method. It is assumed
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Figure 6.6: Comparisons of MC R10,40 distributions with α data. Instrumental corrections
and end-cap/quartz alpha cuts have been applied to data and MC. First row: fits to string 10
distributions to Monte Carlo type I (blue) and II (red) alpha pdfs. Left: 0.2–0.9 MeV; right:
0.9–1.1 MeV. Second row, left: strings 3 and 30 alphas in the energy range 0.2–0.9 MeV. Right:
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(0.9–1.1 MeV). Right: MUX 4 (0.9–1.1 MeV). 4He strings and strings 0, 1, 8, 18, 26 and 31 are
excluded in the last row.
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that there are no background instrumentals4, and that the number of β events is negligible

(as estimated in §5.7.1). Only correlated scope-shaper pairs are considered, and the data

cleaning cuts of Deng and Tolich [34, 35] are applied. The following additional cuts are

applied to both data and MC:

(1) 0.4 < E < 0.9 MeV

(2) 0 < t50
t10

< 1.2 and 0 < t60
t40

< 1.1

(3) 4He and strings 0, 1, 8, 18, 26 and 31 are excluded5, as recommended by [31]. Strings

4, 16 and 35 are also removed (§6.2.3).

Cut (1) discards pulses below 0.4 MeV, where α backgrounds are overwhelming, while (2)

removes non-standard α events that, at the time of writing, are not correctly simulated

(§6.2.3).

The fit statistic is defined as [93]:

χ2 = 2
∑

i

Diln

(

Di

Mi

)

+Mi −Di

Mi = xI α
I
i + xII α

II
i + xn Ni (6.2)

where D, M , α and N denote data and total expectation, alpha and neutron histograms,

respectively. The x denote relative fractions. Estimates for xI and xII in the range 0.9–1.1

MeV (fig. 6.6) are used as starting values in the fit. There are only two fit parameters:

xI and xII, with the neutron fraction constrained by xI + xII + xn = 1.

The data is split in two groups, which are independent of each other: one smaller

sample, containing events from strings connected to box 4, and a larger set for boxes 1, 5

and 11. This segregation is necessary, because the two groups require their own systematic

corrections, and thus, different pdfs for 24Na neutrons and type I, II alphas.

6.3.2 Results

Results of the fit, with physics model parameters at their central values, can be seen in

fig. 6.7. It appears that α backgrounds are dominated by type I pulses. The extracted

4After applying data cleaning cuts, no evidence of non-neutron and non-alpha events have been found
in any strings except 0, 8 and 26 [94], which are removed from the analysis.

50, 8, & 26: for instrumental backgrounds; 1: for electrical disconnections [29]; 31: for electrical
disconnections and radioactive hotspot; 18: for counter gain mismatches and radioactive hotspot.
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neutron fraction in the selected MUX 4 data is 0.15±0.05, and 0.34±0.04 for boxes 1, 5 and

11 combined. The different systematic error contributions to the neutron fraction, from

model parameters and correction variables, are listed in table 6.5. These were estimated

by extracting neutron fractions with independent 1-σ excursions on each source. Since

R10,40 involves pulse widths, the drift time uncertainty is the largest model systematic.

Source MUX 4 MUX 1,5,11

∆R10,40 ±0.0037 ±0.0064
Width smearing ±0.0217 ±0.0025

e− drift time ±0.0151 ±0.0155
Ion mobility ±0.0022 ±0.0082

Space charge offset ±0.0096 ±0.0003
Space charge gradient ±0.0072 ±0.0055

Total ±0.029 ±0.020

Table 6.5: Systematic error estimates on extracted neutron fractions.

The 385 live days of the NCD phase produced 1,417,811 raw triggers, resulting in

91,631 correlated scope-shaper pairs passing all data cleaning cuts. Of these, 786 and

2,267 events from MUX 4 and MUX 1, 5, 11 passed the cuts (1)–(3). Given the neutron

acceptance of cut (2) (0.813), the total number of neutrons detected in selected strings is

found to be 1093±122(stat.)±63(sys.). The total systematic error is roughly 6 %.

6.4 The neutral current flux

The number of NC events per day, RNC , is given by:

RNC =
f · ntotal − nBG

ǫNCD · ǫcut · T
(6.3)

where T = 385.17±0.14 is the total number of live days [37]. ntotal is the neutron number

extracted in the previous section, and nBG = 185.6± 24.6 is the total number of detected

background neutrons, as determined by other authors. The various contributions to nBG

are listed in table 6.6. ǫNCD is the neutron detection efficiency of the array (excluding

strings 0, 1, 8, 18, 26, 31), determined by the neutron calibration group to be 0.211±0.007

[95]. ǫcut = 0.862±0.004 is a correction due to trigger thresholds, data cleaning cuts, and

the requirement that scope-shaper pairs should be correlated [34, 96]. f = 1.118 ± 0.013
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is a correction factor, derived from 24Na calibration data, to take into account the fact

that 3 additional strings (4, 16 and 35) are excluded from this analysis.

Source Detected neutrons Ref.

U/Th in D2O 28.7±4.7 [97]
U/Th in NCD bodies 27.6±9.6 [36]

string 18 hotspot 31.6±3.7 [98]
string 31 hotspot 32.8±5.2 [98]

H2O and AV neutrons 40.9±20.6 [97, 99]
U/Th in NCD cables 8.0±4.0 [100]

Atmospheric 13.6±2.7 [101]
Other 2.3±0.3 [101]
Total 185.6±24.6

Table 6.6: Neutron backgrounds in the NCD array.

Using these numbers, one gets RNC = 14.8±2.0 (stat.)±1.0 (sys.) day−1. Assuming

the 8B neutrino spectrum measured by Ortiz et al. [102], this translates into an NC flux

of:

ΦNC = 5.74 ± 0.77 (stat.) ± 0.39 (sys.) × 106 cm−2s−1 (6.4)

in agreement with the BS05 SSM, which predicts a total solar 8B neutrino flux of 5.69 ×
106 cm−2s−1 [18].

Jamieson [103], Loach [32] and Goon [104] extracted the NC flux by fitting the shaper

energy spectrum (0.4–1.4 MeV) from the NCD array to the following pdfs: (1) a neutron

energy spectrum, from 24Na source calibration, (2) instrumental background pdfs derived

from the problematic strings 0, 8 and 26, and (3) a net α background pdf generated by

Monroe [61], using the simulation presented in this thesis. Their results are, respectively:

5.54+0.33
−0.31 (stat.)+0.36

−0.34 (sys.) × 106 cm−2s−1, 5.44+0.329
−0.327 (stat.)+0.318

−0.301 (sys.) × 106 cm−2s−1, and

5.39 ± 0.36 (stat.) ± 0.22 (sys.) × 106 cm−2s−1, which are all consistent with Eq. 6.4.

6.4.1 Discussion

The neutron extraction method presented here makes use, almost exclusively, of the shape

of MUX-scope pulses. Energy information is used only to place the cut (1) in §6.3.1,

and to correct for charge-dependent instrumental systematics. Therefore, the NC flux

obtained above is an independent verification of results based on shaper energy fits [103,
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Figure 6.8: The NC flux result of this work, compared with previous SNO measurements
from the first two phases [12, 27], and the shaper energy fit results of Jamieson, Loach
and Goon [103, 32, 104]. Statistical errors are in light blue, while the total error is shown
in dark blue. The dotted line is the BS05 SSM prediction [18].

32, 104], and also of previous SNO NC flux measurements [12, 27] (fig. 6.8). The statistical

uncertainty on the extracted flux (Eq. 6.4) is higher than what is typically obtained from

an energy fit, because the neutron-alpha separation power of R10,40 is relatively worse.

As mentioned in §4.7, at least ∼1 % of all alpha pulses are not properly simulated.

Efforts were made to identify, and remove these events from the analysis data set (§6.2.3).

However, some neutron-like alphas may survive this cut, and be included in the extracted

neutron number. A derivation of the neutron number that is based uniquely on an energy

fit is more opaque to this problem, because the spectrum of end-cap α events should be

rather flat, and is, thus, ‘absorbed’ into the spectra of other alpha types. An accurate

estimate of the neutron-like alpha contamination is difficult without a reliable end-effect

pulse simulation, which is beyond the scope of this thesis.



Chapter 7

Summary and Conclusions

A simulation of the SNO 3He proportional counters was developed. This thesis discusses

all aspects of the model, and uses it to extract the total 8B solar neutrino flux. The work

covered in previous chapters is briefly summarized here:

An electron transport simulation was developed to evaluate the radial dependence

of drift times inside NCDs. CF4 is one of the harder gases to simulate. Therefore, the

code was first benchmarked against drift speed measurements for a number of common

proportional counter gases, and good agreement was found. The drift speed calculations

for 85:15 3He:CF4, however, had to be scaled by +10 % to comply with wire alpha studies.

The effect of electron diffusion on the time resolution of pulses was evaluated. The electron

transport code was also used to simulate electron avalanches near NCD anodes in order

to investigate their properties.

A simulation of p-t and α particle trajectories was carried out using the ZBL method.

This implements the effects of lateral straggling on pulses in a natural way. The conse-

quences of the energy straggling of protons, tritons and alphas in the gas were investigated

and found to be negligible. The straggling of α particles in the walls, however, can have

significant effects on the shape of energy spectra. It was therefore parametrized and

implemented in pulse calculations.

NCD pulses were calculated using a numerical method that applies to every kind of

ionizing particle. Effects of NCD hardware on pulse shapes, such as preamplifier reflections

and noise, were implemented. The simulation was tuned and validated by comparing with

data taken during neutron calibrations. These comparisons led to the identification of non-

standard alpha events such as wire and end-cap events. They were estimated to comprise

124
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∼2 % and ∼1 % of all alphas, respectively.

A detailed alpha background spectrum model was built. A simple space charge

model was integrated within the pulse simulation to explain quantitatively certain features

of mono-energetic spectra. Evidence for both the embedding of 210Po (or Pb) nuclei and

the non-uniformity of U/Th daughters are provided. Good agreement between simulated

α spectra and data is obtained when the non-uniformity of impurities is accounted for.

This allowed the mean impurity depths and 238U, 232Th and 210Po α background fractions

in each string to be estimated by means of energy fits. β energy spectra are also calculated.

The expected number of β events in the NCD phase is estimated and found to be negligible.

MC generated alpha width ratio (R10,40) pdfs were used to perform a ‘shape-only’

separation of NCD neutrons and alphas. The R10,40 pdfs were first validated through

comparisons to 4He and 3He data, after making corrections to existing biases. A change

of pdf basis rendered impurity depth uncertainties, which are otherwise the dominant sys-

tematic error source in the α model, negligible. The systematic error on extracted neutron

fractions using this method was estimated to be ∼6 %. The NC flux was determined to be

ΦNC = 5.74±0.77 (stat.)±0.39 (sys.)×106 cm−2s−1. This is an independent confirmation

of NC flux numbers derived via energy spectrum fits, and of the result published in [105].



Appendix A

String-by-string differences

String-by-string differences in simulation inputs were implemented in cases where mea-

surements exist. These include: counter-by-counter gain variations, log-amplifier param-

eters (measured periodically during calibration runs), baseline noise variations, trigger

threshold variations, counter-by-counter wall thicknesses, preamplifier RC constants, and

shaper resolution. Table A.1 lists the lengths, number of counters, MUX box number, and

preamplifier RC constants associated with each string. Strings are otherwise assumed to

be identical to each other in the model. Quantities that fluctuate from string to string,

and which have been assumed to be uniform include: gas mix, electron drift times, space

charge parameters, and reflection coefficients.
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string name length (m) counters MUX cable delay (ns) RCpreamp (ns)

0 N4 11.19 4 11 94 3.11
1 M8 10.70 4 1 105 3.28
2 K8 10.21 4 5 114 3.35
3 I7 9.20 4 1 123 3.04
4 J8 9.70 4 4 119 3.28
5 L2 10.70 4 5 107 3.04
6 J7 9.62 4 1 117 3.04
7 M7 10.69 4 4 105 3.04
8 K7 10.21 4 11 113 3.11
9 I8 9.20 3 5 123 3.28
10 I6 9.20 4 4 123 3.04
11 K6 10.20 4 1 114 3.11
12 M6 10.64 4 5 107 3.04
13 J6 9.70 4 11 119 3.41
14 N3 11.20 4 1 93 3.04
15 L3 10.70 4 4 108 3.61
16 J5 9.66 4 5 117 3.14
17 M5 10.70 4 11 106 3.31
18 K5 10.20 4 4 114 3.41
19 I5 9.20 3 1 124 3.4
20 I3 9.20 4 11 124 3.61
21 K4 10.20 4 5 114 3.04
22 M4 10.70 4 1 105 3.41
23 J4 9.70 4 4 119 3.04
24 L4 10.67 4 11 112 3.41
25 N2 11.20 4 4 93 3.11
26 J3 9.71 4 1 119 3.41
27 M3 10.69 4 5 105 3.46
28 K3 10.21 4 11 113 3.14
29 I4 9.20 3 4 124 3.04
30 I2 9.20 4 5 123 3.14
31 K2 10.21 4 1 113 3.3
32 J2 9.68 4 11 119 3.3
33 M2 10.70 4 4 104 3.69
34 L1 10.70 4 1 106 3.46
35 J1 9.70 4 5 119 3.21
36 I1 9.19 3 11 124 3.61
37 K1 10.20 4 4 113 3.14
38 M1 10.67 4 11 105 3.55
39 N1 11.20 4 11 96 3.61

Table A.1: String names, lengths, number of counters, associated MUX box, cable delay times
and preamp RC values.
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238U and 232Th chains

URANIUM - RADIUM A = 4n + 2 U 238Th 234

Pa 234*

U 234Th 230Ra 226Rn 222Po 218Pb 214

Tl 210 Bi 214

Po 214Pb 210

Bi 210

Po 210Pb 206

At 218

1600(1) a

24.10 d 4.468.10 a

1.17 m
6.7   h

7.538 . 10 a3.8235(3) d3.10(1) m26.8(9) m

1.30(3) m 19.9(4) m

164.3(20) s22.3(2) a

5.013 d

138.376 dstable

2.455 .10 a

1.5 s

9

4 5

µ

β

β β

β

β

β

β β

β

α
α β

α

β

99.980% 0.020%

0.021% 99.979%

BR% %

Pb 210 Q Bi 210 Q

Tl 210 Q

Th 234 Q

Pa 234 Q Pa234m Q

Q

Pb 214 Q

Bi 214 Q
3.272 18.2  %
1.894   7.43%
1.542 17.8  %
1.508 17.02%
1.425   8.18%
1.068   5.72%

0.064 16%

0.017 84%
1.162

4.391 20%
4.210 30%
2.419 10%
2.029 10%
1.864 24%
1.609   7%

1.024   6.3%

0.729 42.2%

0.672 48.9%

0.199 70.3%

0.107 19.2%

0.106   7.6%

0.642   19.4%
0.502     7.0%
0.4721 12.4%
0.4716 33   %
0.413     8   % 2.269  98.2%

4.784 94.45%
4.601   5.55%

5.490 99.92  %
4.987   0.078%

6.002 99.999%
5.181   0.001%

7.687 99.999%
6.902   0.010%

5.304 100     %
4.516   0.001%

5.516 39.2%

5.452 53.9%
5.273   5.8%

4.198 79.0%
4.151 20.9%

4.775 71.38%
4.722 28.42%

4.687 76.3%
4.621 23.4%

6.693 90   %
6.653   6.4%

MeV  RI%

MeV  RI%
E T1/2

Z

A

Figure B.1: α and β particles from the 238U decay chain [106].
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Semi-analytic pulse calculation

The following algorithm can be used to calculate NCD pulses in the absence of large-angle

scattering:

(1) For a given straight track, find the points that are closest and furthest to the wire,

and evaluate the shortest and longest drift times from Eq. 3.16. This gives the pulse

duration.

(2) Loop over the duration of the pulse in 1 ns steps, and get the corresponding radial

position r of each step by inverting the expression for td, Eq. 3.16. During each

step, one calculates:

(a) The point x along the track corresponding to a radial position r with the

quadratic relation1:

x =
2r0 sin θ cosφ±

√
∆

2 sin2 θ
(C.1)

where the quadratic discriminant ∆ is given by

∆ = 4r2
0 sin2 θ cos2 φ− 4 sin2 θ(r2

0 − r2) (C.2)

The track parameters r0, θ, φ are defined in §4.3.3.

(b) The energy deposited by the particle, using the SRIM range-energy relations.

This is divided by W to obtain the number of primary electron-ion pairs.

(3) Steps (1) and (2) give the number of primary electrons, as a function of time.

Convolve this function with the ion tail, Eq. 4.5.

1This follows from a simple geometric derivation that will not be given here.
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(4) Add the hardware response (§4.5).

FFT methods can be used for steps (3) and (4). This pulse algorithm, coded as a stan-

dalone package, was used to verify the (default) numerical implementation, Eq. 4.1. In the

absence of large-angle scattering, excellent agreement was obtained at all pulse parameters

investigated, both for neutron and α events.



Appendix D

Pulse shape parameters

The following pulse shape parameters are used in this work:

(1) Amplitude

This is denoted by A in fig. D.1. Pulse amplitudes are measured from the baseline.

(2) Pulse widths pw10, pw20...

Pulse widths are measured at some fraction of the amplitude. For example, fig. D.1

shows the width at 30 % of the amplitude. This is denoted by pw30. The 50 %

amplitude width, pw50, is also referred to as Full Width at Half Maximum (FWHM).

(3) Amplitude fraction times t10, t20...

An amplitude fraction time is defined as the time corresponding to that fraction of

the amplitude, preceding the dominant peak in the pulse. For example, t30 is the

time bin at which the pulse is at 30 % of the amplitude (see fig. D.1).

(3) Integral rise times irt50, irt60...

Integral rise time is defined as the time it takes for charge in the current pulse to

build up to some fraction of QT , which is the total charge contained between t10

and 15000 ns. Here, irt50 is the integral rise time corresponding to 50 % of QT , etc.

(4) Moments mi, i = 1, 2...8

The ith normalized central moment of a pulse P is defined as:

mi =

pw10+t10
∑

j=t10

Pj
(j − µ)i

σi
(D.1)
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where j runs from t10 to pw10 + t10. Pj is the pulse amplitude of the jth bin. The

sum is truncated at pw10+ t10, to avoid taking into consideration differences in the

tail of pulses, which is a source of discrepancies between data and MC (see §4.6.1).

The pulse mean µ and RMS σ are also calculated with this restriction.

The 3rd (m3) and 4th (m4) moments are also referred to as skewness and kurtosis.

(5) R10,40

This quantity is defined as the ratio of the 10 % and 40 % pulse widths: pw10
pw40

.

Figure D.1: Definitions of pulse widths and amplitude rise times



Appendix E

Software implementation

(1) The proportional counter pulse simulation code is integrated within SNOMAN,

the FORTRAN77-based, multi-purpose SNO simulation program. In addition to

utility routines (e.g. for random number sampling and interpolation), SNOMAN

provides the necessary geometric framework for all aspects of the SNO detector.

The following packages are used by the pulse simulation code within SNOMAN:

(1) MCNP [85], to propagate neutrons within NCDs, (2) FFTW [107], to handle

Fourier transforms, and (3) EGS4 [74], to propagate electrons and γ-rays. Memory

management is handled by ZEBRA, a CERN program library [108].

A standalone FORTRAN77 semi-analytic pulse simulation code has also been writ-

ten to test the SNOMAN implementation. This package is less complete than the

version that is shipped with SNOMAN.

(2) The electron transport code described in chapter 3 is a standalone C++ program

compiled with ROOT libraries [109]. All cross-section data were obtained from [42].

Both of the standalone programs mentioned above are available from the author upon

request.

133



Appendix F

Low energy bulk α spectra

Assuming that 232Th and 238U impurities are uniformly distributed in the nickel wall, and

that alphas start off isotropically, then for particles that come out in the gas with energy

E < 0.5 MeV, x = R − d is also uniformly distributed. This has been verified explicitly

with a toy Monte Carlo. R is the maximum possible range, which depends on the starting

energy in the nickel and d is the actual distance travelled by the particle in the wall.

The starting energy in the gas is found by integrating the Bragg curve curve (i.e. dE
dx

as a function of x) for alphas in nickel between x = R− d and x = R. A rough functional

form for the bulk energy spectrum P (E) at E < 0.5 MeV can be calculated knowing that

the probability P (x) = C = constant and dE
dx

≈ αx where α < 0. The Bragg curve is

approximated by a straight line since the peak occurs at ∼1 MeV. One then has

P (E) = P (x)
dx

dE
≈ C

αx
(F.1)

Integrating dE
dx

with respect to x to get x(E), and substituting, one gets

P (E) ∝ 1√
E +B

(F.2)

where B is another constant. This function increases as E → 0, but the low energy upturn

is not observed in the data.
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Appendix G

Coincidence events

The 220Rn and 216Po α coincidence events from the 232Th chain provide an opportunity

to examine the energy spectra of mono-energetic α lines originating from the inside of the

nickel wall. The criteria for selecting these events were: (1) Pulses should originate from

the same string and occur within 1 s of each other, (2) Pulses pass all data reduction cuts,

(3) The pulse width is less than 2300 ns, (4) Events from some problematic strings are

neglected (0, 8, 18, 20 and 26).

Fig. G.1 (left) shows the time between events distribution of selected pulses. The

decay constant corresponds to a half life of 129 ± 9 ms for 216Po decay. Fig. G.1 (right)

shows the string distribution of candidate events.
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Figure G.1: Left: distribution of time differences between the first and second events in
232Th double coincidence events. The extracted half life is 129±9 ms. The half life of
216Po decaying to alphas is ∼145 ms. Right: string distribution of event candidates.
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Appendix H

List of neutron-like alpha pulses

pulse run GTID string E R10,40 FWHM

1 50450 4725643 7 1.09 1.24 1631
2 51653 2188 16 1.04 1.30 2422
3 51653 82646 4 1. 1.20 1420
4 51748 3373839 15 1.03 1.24 1299
5 51760 1508786 29 1.13 1.15 1541
6 53890 510474 35 1.14 1.15 1541
7 54823 1371268 39 1.17 1.26 1864
8 54871 5425975 37 1.12 1.29 1251
9 55650 264276 4 1.06 1.26 1464
10 55702 1195423 39 0.93 1.12 1308
11 58296 10173447 16 1.16 1.27 2686
12 58452 3322213 16 1.01 1.25 2070
13 58493 408480 16 1.17 1.24 2460
14 58494 864466 29 1.16 1.22 1398
15 58507 1089093 16 1.19 1.25 2583
16 59292 1320101 4 1.13 1.15 2416
17 60207 1045740 16 0.93 1.24 560
18 60358 370997 16 1.04 1.17 1746
19 61128 2631555 4 1.15 1.28 1556
20 61208 1120158 4 1.08 1.19 2258
21 61847 893372 35 1.05 1.18 679
22 63501 581945 17 1.01 1.29 1168
23 63616 1625489 21 1.01 1.28 1584
24 63944 1493901 35 1.05 1.27 1565

Table H.1: A list of some neutron-like alpha pulses with R10,40 < 1.3 in neutrino data.
Strings 4, 16 and 35 are excluded from the analysis. These 24 events can be viewed in
fig. H.1.
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Figure H.1: The 24 neutron-like wide alpha pulse shapes with R10,40 < 1.3 in the range 0.9–1.2 MeV listed in table H.1. The
numbering runs from top left hand corner (1) rightwards. Some of these events are not removed by the end-cap cut.
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