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Abstract

This thesis presents an independent analysis of the data from 3He-filled proportional coun-

ters from the third phase of the Sudbury Neutrino Observatory (SNO) data. These counters

were deployed in SNO’s heavy water to independently detect neutrons produced by the neu-

tral current interaction of 8B solar neutrinos with deuterium. Previously published results

from this phase were based on a spectral analysis of the energy deposited in the proportional

counters. The work in this thesis introduces a new observable based on the time-profile of

the ionization in the counters. The inclusion of this observable in a maximum-likelihood fit

increases the potential to distinguish neutrons from backgrounds which are primarily due

to alpha-decays. The combination of this new observable with the energy deposited in the

counters results in a more accurate determination of the number of neutrons.

The analysis presented in this thesis was limited to one third of the data from the pro-

portional counters, uniformly distributed in time. This limitation was imposed to reconcile

different time-lines between the submission of this thesis, a thorough review of this work

by the SNO Collaboration and results from an independent analysis that is still underway.

Analysis of this reduced data set determined that 398 ± 29 (stat.) ± 9 (sys.) neutrons were

detected in this reduced data-set. The number compares well to the previous analysis of the

data, based only on a spectral analysis of the deposited energy, which determined that 410

± 44 (stat.) ± 9 (sys.) were detected in the same time period. The analysis presented here

has led to a substantial increase in the statistical accuracy. Assuming that the statistical

i



accuracy will increase when the full data set is analyzed, the results from this thesis would

bring the uncertainty in the 8B solar neutrino flux to 6.8% down from 8.5% in the previously

published results. The work from the thesis is intended to be included in a future analysis

of the SNO data and will result in a more accurate measurement of the total flux of solar

neutrinos from 8B as well as reduce the uncertainty in the θ12 neutrino oscillation mixing

angle.
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Statement of Originality

The work in this thesis is the original and independent work of the author. This the-

sis presents an independent analysis of a fraction of the data collected from the Sudbury

Neutrino Observatory experiment that was performed by several hundreds of talented col-

laborators over more than two decades. Participation in the analysis of such an experiment

necessarily depended on the work of many people.

The first chapter of this thesis presents an overview of the relevant literature on solar

neutrinos and a description of the SNO experiment and does not contain any original

material. Similarly, the second and third chapters provide a description of the physics of

proportional counters and a description of the NCD array and do not contain any original

material either.

The main contribution from the author begins in the fourth chapter where the pulse-

shape grid-fitter is introduced. The grid-fitter was designed and optimized by the author

with the advice of numerous members of the SNO Collaboration. It was an original idea,

presented in this thesis, to introduce the NoverA observable as a means of distinguishing

neutrons from alphas. The use of NoverA as an observable in a maximum likelihood analysis

was also proposed by the author as a way to improve on the statistical accuracy that can

be achieved using energy.

The fifth chapter introduces probability density functions (pdfs) for the energy and
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NoverA observables. The methods by which these functions were determined were an origi-

nal work of this thesis. A novel method for handling systematic uncertainties for pdfs with

low statistics is also introduced.

The sixth chapter contains little original material as it is intended as an introduction

to the extended likelihood formalism using Markov-Chain Monte-Carlo analysis. It does

however contain an outline of the novel way in which systematic uncertainties in the pdfs

are handled. The seventh chapter shows various tests of the procedures introduced in this

thesis and the eighth chapter applies these procedures to the real NCD data, which has

never been done. The last chapter concludes and does thus not include any additional

material.
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The analysis in this thesis results in a significant increase in the accuracy of the measure-

ment of the flux of solar neutrinos, compared to previous work. This chapter aims to give a

context to the work in this thesis as well as review the current knowledge in the field of solar

neutrino physics. It will start with an introduction to the field of solar neutrino physics

before introducing the Sudbury Neutrino Observatory and the results from the experiment.

The chapter will then finish with an overview of the work in this thesis and highlight its

relevance.

1.1 The Aim of this Thesis

This thesis will present an independent analysis of the data from the third phase of the

Sudbury Neutrino Observatory (SNO) experiment. The SNO experiment (described in more

detail in section 1.3) was an experiment designed to measure the flux of neutrinos coming

from the Sun and test the prediction from the standard solar model (SSM). The three phases

of the experiment not only showed that electron solar neutrinos change flavour, but also

confirmed the theoretical prediction from the SSM and provided accurate measurements

of neutrino properties, in particular the ‘mixing angle’, θ12, and mass-squared difference,

∆m2
21, both discussed later in this chapter.

In the third phase of the experiment, an array of 36 strings of proportional counters

was deployed to count neutrons produced from solar neutrinos. Previous analysis of the

data from these counters only considered the energy deposited by each neutron capture.

The number of detected neutrons was inferred by performing a maximum-likelihood fit to

the energy spectra of the counters. Alpha emitters from radioactive contaminants in the

detector materials provided the main background to neutrons.

The work in this thesis includes additional information from the counters in order to

improve the ability to distinguish neutrons from alphas. Namely, the ionization energy as

a function of time was recorded for each event in the counters. These ‘pulse shapes’ often



CHAPTER 1. INTRODUCTION 3

depend on the nature (neutron or alpha) of the particle that led to the ionization inside

the proportional counters. An observable based on these pulse shapes is thus introduced in

this thesis and used in conjunction with the deposited energy to decrease the uncertainty

in the measured number of neutrons.

A more accurate determination of the number of neutrons detected in the third phase

of SNO has a direct impact on the precision of the neutrino oscillation parameters (in

particular, θ12) and is the main motivation for the work presented in the following chapters.

The work in this thesis was completed before the SNO collaboration had fully reviewed

and fixed the criteria for incorporating this analysis into future publications. An alternative

method for analyzing the NCD data is also underway and will be used as a cross-check of

the work presented here. Since these two methods were not fully reviewed at the time that

this thesis was submitted, it was decided that only one third of the data would be made

available for inclusion in the thesis. The restriction in the size of the data set allows for

comparisons with previously published work, while maintaining blindness on the statistical

accuracy of the new analysis.

1.2 Solar Neutrinos

The field of solar neutrino physics started in 1964 when John Bahcall [1] and Raymond Davis

Jr. [2] proposed that solar neutrinos could be detected. John Bahcall was a pioneer of the

solar model calculation of neutrino fluxes ([3, 4]) and Ray Davis was the first to conduct

a successful experiment to detect solar neutrinos [5]. Neutrino detection had only recently

been achieved at that time by Cowan and Reines [6], using anti-neutrinos produced in the

Savannah River nuclear reactor, making the prospect of detecting solar neutrinos quite a

challenge.



CHAPTER 1. INTRODUCTION 4

1.2.1 Neutrino Production in the Sun

In 1939, Bethe [7] first published a set of nuclear fusion reactions that he believed were

behind the energy production in the Sun. These ‘CNO-cycle’ reactions (shown in panel

(a) of Figure 1.1) use carbon and nitrogen as catalysts to convert the hydrogen (protons)

in the Sun into helium (alpha particles). The CNO-cycle contributes at most 2% of the

solar energy and most of the fusion reactions occur through the ‘pp-chain’ [4]. The pp-

reactions (panel (b) of Figure 1.1) also convert hydrogen into helium and takes place in

three branches.

(a) CNO cycle (b) pp-chain

Figure 1.1: Reactions in the CNO cycle (a) and pp-chains (b). Figures taken from [8]

Since the energies released in these fusion reactions are always less than the mass of a

muon (or tau), only electron-flavour neutrinos are produced. Figure 1.2 shows the energy

spectra of the neutrinos produced by the Sun in these reactions.
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Figure 1.2: Energy spectra of solar neutrinos from the BS2005(OP) solar model. The blue
dotted lines show neutrinos from the CNO cycle and the black lines are from the pp-chain.
Uncertainties in the flux predictions are also shown. Figure reproduced from [4]

1.2.2 The Solar Neutrino Problem

Ray Davis conducted the first successful experiment to detect solar neutrinos [5]. In order to

detect electron-flavour neutrinos, he exploited the inverse beta-capture reaction on chlorine:

νe +37Cl →37 Ar + e− (1.1)

by exposing a tank with 430,000 liters of C2Cl4 in the Homestake Mine (South Dakota)

1463 m underground (to shield the experiment from cosmic-ray induced backgrounds). The

reaction is sensitive to neutrinos with energies above 0.8 MeV and was thus primarily a test

of the flux of neutrinos from the 7Be and 8B reactions in the Sun. Every few months, the

argon atoms were chemically extracted from the volume and counted at his laboratory in

Brookhaven. The experiment was run from 1967 to 1995 and observed a consistent deficit

in neutrinos [9] compared to the standard solar model prediction (summarized in Figure

1.3).

The KamiokaNDE [10] and, later, the Super-Kamiokande [11] detectors also observed

a deficit in the number of neutrinos from the Sun. The latter two detectors looked for
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Čerenkov radiation in water from electrons scattered by solar neutrinos. Since the scat-

tered electrons point back towards the Sun, the Čerenkov detectors provided the first un-

questionable evidence that neutrinos were coming from the Sun. Water Čerenkov detectors

are primarily sensitive to electron-flavour neutrinos (by a factor of ∼6 over other flavours)

and have an energy threshold above 5 MeV so that they are almost only sensitive to neu-

trinos from the 8B decay. KamiokaNDE and Super-Kamiokande (Super-K) both observed

a significant deficit in neutrinos compared with the standard solar model prediction.

Two other ‘radio-chemical’ experiments, SAGE [12] and Gallex [13], used an inverse

electron capture reaction on 71Ga and also observed a deficit in the measured number of

electron-flavour neutrinos compared to the standard solar model prediction. The gallium

experiments were sensitive to neutrino energies down to 0.2 MeV and were thus able to

measure the neutrino flux from the p+p reaction of the pp chain.

This consistent discrepancy between the number of neutrinos measured from the ex-

periments and the number predicted by the solar model was dubbed the ‘solar neutrino

problem’ and was not conclusively resolved until 2001 when the Sudbury Neutrino Obser-

vatory published its first results [14]. Figure 1.3 shows a summary of the measured fluxes

from the solar neutrino experiments along with the corresponding prediction from the solar

model.

1.2.3 Neutrino Oscillations

A hint to the solution of the solar neutrino problem came in 1998, when the Super-K ex-

periment indicated that atmospheric neutrinos could oscillate [16, 17]. Neutrino oscillations

are a mechanism first proposed by Pontecorvo [18], in analogy to quark flavour mixing, that

allow neutrinos to change flavour.

Neutrino oscillations can occur when there are two different eigenbases to represent

neutrino quantum states. In particular, neutrinos are always produced in a ‘lepton flavour’

eigenstate |να > (as they are produced together with the corresponding heavy lepton) that



CHAPTER 1. INTRODUCTION 7

Figure 1.3: Summary of the solar neutrino problem. The theoretical prediction and results
from each class of solar neutrino experiment are shown side-by-side. The experiments are:
Cl (chlorine, the Homestake experiment), H2O (the Čerenkov experiments), Ga (the gallium
experiments) and D2O (two results from the SNO experiment described in the next section).
The theoretical predictions contain the contributions from different neutrinos depending on
the energy threshold of the type of experiment. The blue bars show the experimentally
measured fluxes of neutrinos. The last bar from SNO is the ‘SNO neutral-current’ measure-
ment (the only experiment equally sensitive to all three flavours of neutrinos) which solves
the solar neutrino problem, as it agrees with the theoretical prediction. Figure taken from
[15].
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is not necessarily a mass eigenstate of the Hamiltonian, |νi >. Unitarity requires that the

two representations be related by a unitary transformation, U :

|να > = U |νi >












νe

νµ

ντ













=













Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3
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(1.2)

where α stands for the three flavours e, µ, τ and i stands for the 3 mass eigenstates of the

Hamiltonian. The Schrödinger equation is then diagonal in the mass eigenstates of the

Hamiltonian:

−ih̄
d

dt
|ν(t) > = H|ν(t) >

−ih̄
d

dt
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(1.3)

For most experiments, neutrino oscillations can be approximated by a two flavour equivalent

scenario. In the case of solar neutrinos (see, for example, [19] and [20]), one can model the

oscillations as occurring between νe and νX , where the latter is a linear combination of the

muon and tau neutrinos. In this case, the formalism is greatly simplified and the ‘mixing

matrix’, U can be parametrized with a single angle, θ12, the ‘solar mixing angle’:






νe

νX






=







cos θ12 sin θ12

− sin θ12 cos θ12













ν1

ν2






(1.4)

It is then straightforward to calculate the ‘survival probability’, Pee, defined as the prob-

ability of detecting an electron neutrino at a distance L from a point where an electron

neutrino was created, |ν(t = 0) >= |νe >:

Pee = | < νe|ν(t) > |2

= 1 − 1

2
sin2 2θ12

(

1 − cos

(

∆m2
21

2Ech̄
L

))

(1.5)
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where ∆m2
21 = m2

2 − m2
1 is the difference in masses squared between the eigenstates of the

Hamiltonian. For an easy-to-follow, complete derivation, see [19].

Thus, the probability of detecting an electron neutrino oscillates with distance, if the

neutrino has mass. The frequency of the oscillations depends on the ratio ∆m2
21/E and the

amplitude is determined by the parameter θ12. If there are many neutrinos, produced with a

range of different L, with different energies, and detected with a finite energy resolution (as

is the case for all solar neutrino experiments), the oscillating part of the survival probability

effectively averages out:

P̄ee = 1 − 1

2
sin2 2θ12 (1.6)

where the average solar neutrino survival probability, P̄ee, is independent of energy.

The case for all three flavours of neutrinos is similar and results in a slightly longer

formula [19]. The key difference is that, with three flavours, the most general unitary

transformation contains three mixing angles, (θ12, θ13, θ23), and potentially, a CP-violating

complex phase (δCP ). In addition, the three flavour scenario will contain two different

mass-squared differences, ∆m2
21 and ∆m2

32. Most neutrino oscillation experiments can be

analyzed in terms of two flavours of neutrinos, depending on the energy and ‘baseline’ (L)

of the neutrinos. Solar neutrinos have been shown (see [20, 21]) to have a slight sensitivity

to the θ13 mixing angle which can be well approximated by modifying the two-neutrino

survival probability:

P 3f
ee = sin4 θ13 + cos4 θ13P

2f
ee (1.7)

where P 2f
ee is the survival probability as calculated in the two-neutrino case1. The cur-

rent experimental limits [22] show hints that sin2 θ13 ∼ 0.016 (if not zero), so that this

modification is small.

Of particular interest to the solar neutrino problem, neutrino oscillations can explain why

1One needs to make a slight modification to the P 2f
ee calculation in the case where matter is present, as

shown in [20]
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the measured flux of electron neutrinos is smaller than expected, since these can oscillate

into the other flavours and avoid detection from experiments looking for electron flavour

neutrinos. The atmospheric neutrinos that Super-K measured had energies of several GeV

and baselines of order 10 kilometers and thus corresponded to different mixing parameters

(θ23 and ∆m2
32) than solar neutrinos and, therefore, did not provide a conclusive solution

to the solar neutrino problem.

Solar neutrinos are also qualitatively different from atmospheric neutrinos since they

traverse dense matter (the Sun). Wolfenstein [23], Mikheyev and Smirnov [24] showed that

neutrino oscillations are altered by matter because of the different scattering cross-sections

for interaction with electrons between electron neutrinos and the muon and tau neutrinos.

This, so-called, ‘MSW effect’ results in an energy dependence of the average solar neutrino

survival probability, as shown in Figure 1.4. The MSW effect in the Sun effectively converts

electron neutrinos into an almost pure ν2 eigenstate when these exit the solar matter. The

survival probability undergoes a transition around 2 MeV from a value that is dominated

by vacuum oscillations (where the MSW effect is small) to a value that is driven by matter

effects.

1.3 The SNO Detector

The Sudbury Neutrino Observatory [25] was an experiment designed to resolve the solar

neutrino problem by using heavy water (D2O ) to detect all flavour of neutrinos through the

neutral current reaction. The idea of using 1,000 tonnes of heavy water in a deep mine to

solve the solar neutrino problem was first proposed by Chen and the SNO Collaboration in

1984 [26]. Construction on the experiment was finished in 1997, it was then commissioned

between 1997 and 1999 and data were collected from 1999 to 2006.

The SNO detector was located near Sudbury, Ontario, Canada in the Creighton mine

operated by Vale-Inco. The experiment benefited from 2 km of norite rock overburden
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Figure 1.4: Energy dependence of the solar neutrino survival probability shown for the
‘LMA’ (large mixing angle) choice of neutrino mixing parameters. At low energies the
survival probability is not significantly affected by matter. Around 2 MeV, the survival
probability undergoes a transition to a value that is the result of the MSW effect.

(6010 m of water equivalent) to shield the detector from cosmic ray muons. The flux of

cosmic ray muons at that depth is about 70 per day through the detector volume.

The detector consisted of 1,000 tonnes of heavy water (D2O ) contained in a 12 m diame-

ter acrylic vessel. The heavy water volume was monitored by 9438 8”-diameter Hamamatsu

r1408 photo-multiplier tubes (PMTs) held in place on an 17.8 m diameter geodesic support

structure. The PMT array provided a 54% photo-cathode coverage of the sphere solid angle.

This was all contained within a 22 m diameter cavity (at its widest), 34 m high and filled

with 7,000 tonnes of ultra-pure light water (H2O) to shield the heavy water volume from

radioactivity (from the cavity walls and the PMTs). Figure 1.5 shows an artist’s rendition

of the SNO detector.

1.3.1 Neutrino Reactions in SNO

SNO detected neutrinos by searching for Čerenkov radiation from electrons. The electrons

were produced as the result of three reactions involving neutrinos that took place in the
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Figure 1.5: An artist’s rendition of the SNO detector. The 12m diameter acrylic vessel
contains 1,000 tonnes of heavy water and is supported from the ‘deck’ with Vectran ropes.
The entire cavity containing the 17.8 m diameter photo-multiplier support structure is filled
with 7,000 tonnes of light water.
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heavy water. The charged-current reaction (CC) is sensitive only to electron flavour neu-

trinos, νe, with a threshold energy of 1.4 MeV.

νe + d → p + p + e− (1.8)

where d is the deuterium nucleus, p are protons and e− is an electron whose energy is

highly correlated with that of the incoming neutrino. Measuring the rate of CC reactions

is thus a direct measure of the electron neutrino flux. In addition, by measuring the energy

spectrum of the Čerenkov electrons, one can infer the spectrum of the incoming electron-

flavour neutrinos.

Heavy water also allows one to detect active neutrinos of all three flavours, νx, as they

all have an equal cross-section for a neutral-current interaction (NC) with deuterium:

νx + d → p + n (1.9)

where a neutron, n, is released, providing the incoming neutrino has an energy above

2.2 MeV. Section 1.3.2 explains how the neutrons were then detected. This NC reaction is

a direct measure of the flux of active neutrinos, independent of whether neutrinos oscillate,

since it is equally sensitive to all three active flavours. Furthermore, if neutrino oscillations

occur, the ratio of the CC/NC rates is a measure of the average solar survival probability

and is almost directly proportional to sin2 2θ12 for solar neutrinos.

Finally, SNO was also sensitive to an elastic scattering reaction (ES) of neutrinos with

electrons:

νx + e− → νx + e− (1.10)

which is sensitive to all flavour of neutrinos, although the cross-section for electron neutrinos

is ∼6 times greater than it is for the other active flavours. The direction of the out-going

electron is correlated to that of the neutrino and, essentially, points back to the Sun. The

ES reaction in SNO has low statistics when compared with the Super-K [11] experiment.
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1.3.2 The Three Phases of SNO

The SNO experiment was conducted in three phases in order to detect the neutrons from the

NC reaction in three different ways. In the first phase (the ‘D2O phase’) of the experiment

[14, 27, 28, 29, 30], Compton-scattered electrons from 6.25 MeV.γ-rays from the neutron

captures on deuterium were used to detect neutrons. Čerenkov events from the NC signal

were thus indistinguishable from the CC events, as both resulted in the observation of a

Čerenkov electron. Thus, the only way to separate NC and CC events was to use a statistical

separation based on the expected energy spectra of the two classes of events, which meant

that the energy spectrum of the incoming neutrinos could not be measured independently.

In the second phase of the experiment [31, 32], 2000 kg of salt (NaCl) were dissolved

into the heavy water. This allowed the neutrons to capture on 35Cl with a much higher

cross-section (44 b vs 0.5 mb on deuterium)[33], releasing more energy (8.6 MeV) and, on

average, several γ-rays , producing a more isotropic pattern of hits on the PMTs. This

resulted in a much higher detection efficiency for neutrons (40.7% vs 14.4% in the first

phase), as well as providing an energy-independent way of separating NC and CC signals

using the isotropy of the light hitting the PMT sphere. Data from the second phase (the

‘salt phase’) were then used to measure the energy spectrum of incoming neutrinos. This is

of value for testing neutrino oscillation scenarios, in particular to test the MSW distortion

of the survival probability from Figure 1.4.

Finally, in the third phase (the ‘NCD phase’) of the experiment, 36 strings of propor-

tional counters filled with 3He (‘Neutral Current Detectors’) were deployed in the heavy

water to detect neutrons through the reaction:

n +3He →3 H + p + 764 keV (1.11)

Analysis of the data from these ‘Neutral Current Detectors’ (NCDs) is the primary concern

of the work presented in this thesis and will be discussed at length in the next chapters.
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1.4 Results from SNO

This section covers the published results from SNO to date (June 2009). The work in this

thesis aims at improving the measurement of the neutrino fluxes from the third phase of

the experiment.

1.4.1 The D2O Phase and resolution of the Solar Neutrino Problem

SNO’s first results [14] covered data from Nov. 2, 1999 to Jan. 15, 2001 corresponding to

241 live days of data. The time, charge and location of the PMTs were recorded for each

event ‘trigger’, defined as 18 or more PMTs crossing their thresholds in a period of 93 ns .

The data set was reduced by rejecting events that did not have characteristics of

Čerenkov radiation. A fiducial volume cut was applied at a radius of 5.5 m to remove

external background events from materials outside of the D2O volume. Events with a re-

constructed electron kinetic energy below 6.75 MeV were also discarded in order to reduce

events from low-energy radioactive backgrounds. This resulted in a final data set with 1,169

events.

The reconstructed energy of events was calibrated using a tagged 16N source of 6.13 MeV

γ-rays and verified with a 8Li β source. These sources could be deployed 3-dimensionally

within the heavy water. Optical calibrations of the detector were performed by using diffuse

light from a pulsed laser source with six different wavelengths ranging from 337 nm to

620 nm . The detector’s response to neutrons was calibrated using a 252Cf fission source.

The analysis of the PMT data were done using an extended maximum-likelihood fit

for the number of CC and ES events in the data, as well as the number of neutrons.

The statistical separation between the different types of signals (CC, ES and neutrons)

was performed using, as ‘observables’, the reconstructed energy of events (Figure 1.6a),

the reconstructed radial position of events (Figure 1.6c), and the direction relative to the

Sun of the reconstructed Čerenkov events (Figure 1.6b). Probability density functions of
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these observables were obtained for each signal by Monte Carlo simulation and verified with

calibration data. The resulting fits in the three observables are shown in panels (abc) of

Figure 1.6.

SNO’s first published results did not include a determination of the number of neutral-

current neutrons due to the energy threshold that was chosen to limit contamination from

low energy events (including neutrons). The extended maximum-likelihood resulted in

975.4±39.7 CC events, 106.1±15.2 ES events and 87.5±24.7 neutrons. These event numbers

can be converted into the flux of solar neutrinos from the 8B decay, by assuming a neutrino

energy spectrum undistorted by the MSW effect:

φCC
SNO(νe) = 1.75 ± 0.07(stat.)+0.12

−0.11(sys.) ± 0.05(theor.) × 106 cm−2s−1

φES
SNO(νx) = 2.39 ± 0.34(stat.)+0.16

−0.14(sys.) × 106 cm−2s−1

(1.12)

where the theoretical uncertainty comes from the CC cross-section. The dominant source

of systematic uncertainty was due to the energy scale. The ES measurement from SNO

was in good agreement with the high precision result from the Super-K experiment at that

time:

φES
SK(νx) = 2.32 ± 0.03(stat.)+0.08

−0.07(sys.) × 106 cm−2s−1

(1.13)

A test was then performed for the hypothesis that electron neutrinos had not changed their

flavour, by comparing SNO’s CC flux (sensitive only to the electron flavour neutrinos) and

Super-K’s ES flux (sensitive to all flavours). It was found that SNO’s CC measurement

is inconsistent with the ES measurement from Super-K by 3.3σ. Since the ES reaction is

sensitive to other flavours of neutrinos, this is evidence of a non-electron-flavour component



CHAPTER 1. INTRODUCTION 17

of neutrinos in the solar flux. This was determined to be:

φSNO+SK(νµτ ) = 3.69 ± 1.13 × 106 cm−2s−1

(1.14)

which then gives the total flux of solar neutrinos as:

φSNO+SK(νx) = 5.44 ± 0.99 × 106 cm−2s−1

(1.15)

in excellent agreement with Bahcall’s BP2000 solar model prediction [3]:

φBP2000(νx) = 5.05(1.00+0.20
−0.16) × 106 cm−2s−1

(1.16)

A summary of the measured fluxes and the determination of the total flux is shown in panel

(d) of Figure 1.6.

This first measurement of CC reactions from SNO combined with Super-Kamiokande’s

measurement of the ES events had thus shown evidence for a non-electron flavour component

in the solar neutrino flux.

In 2002 [27], SNO published the first 8B neutrino fluxes determined using the neutral-

current reaction. The data set was obtained from Nov. 2, 1999 to May 28, 2001 comprising

306.4 live days spanning the entire first phase of SNO.

The principal challenge in this analysis was an accurate determination of backgrounds to

the neutral-current-induced neutrons. Background neutrons are present in the heavy water

from the photo-disintegration of deuterium due to γ-rays with energies above 2.2 MeV from

214Bi and 208Tl (uranium and thorium chain decay daughters). These photo-disintegration

neutrons were indistinguishable from neutral-current neutrons and were thus an irreducible

background. Water assays were performed in order to constrain the amount of uranium

and thorium in the water. These were compared with Čerenkov events (from radioactivity)

below the analysis energy threshold and provided consistent constraints on the number of
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(a) Fit in reconstructed energy (b) Fit in direction of event to sun

(c) Fit in events radial position (d) Total fluxes

Figure 1.6: Figures summarizing the results from the first published results from SNO.
Panels (abc) show the fit to the SNO data in energy, event direction to the sun and event
position in the detector, respectively. Panel (d) shows a summary of the inferred neutrino
fluxes along with the result from Super-K. The fluxes have been broken into an electron-
flavour component (x-axis) and a muon+tau component (y-axis). The CC measurement,
sensitive only to electron flavour neutrinos is thus a vertical band, whereas the ES measure-
ment has a slope due to its sensitivity to muon and tau flavour neutrinos. The combination
of both measurements (using Super-K’s high-precision result) allows the total flux to be
determined, and is shown here to agree very well with the standard solar model prediction
(dotted lines). Figures taken from [14].
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neutrons from radioactive backgrounds.

The reconstructed energy threshold was brought down to 5 MeV in order to increase

the amount of signal from the 6.25 MeV γ-rays from neutron captures on deuterium. The

measured fluxes from this first NC analysis were:

φCC
SNO(νe) = 1.76+0.06

−0.05(stat.)
+0.09
−0.09(sys.) × 106 cm−2s−1

φES
SNO(νx) = 2.39+0.24

−0.23(stat.)
+0.12
−0.12(sys.) × 106 cm−2s−1

φNC
SNO(νx) = 5.09+0.44

−0.44(stat.)
+0.46
−0.43(sys.) × 106 cm−2s−1

(1.17)

which included the first direct measurement of the total solar neutrino flux, in excellent

agreement with the solar model. The energy scale gave the largest contribution to the

overall systematic uncertainty and the neutron detection efficiency gave the next largest

uncertainty in the NC measurement. The results from the neutral-current analysis show

that the non-electron flavour neutrino component of the flux is non-zero at the 5.3σ level,

providing direct evidence that electron neutrinos from the Sun change flavour. This level

of significance was strong enough to conclusively solve the solar neutrino problem.

Data from the D2O phase were also used to investigate possible day-night variations in

the neutrino fluxes [28]. A difference in day and night fluxes is expected from the MSW

effect as the neutrinos will travel different path lengths in the Earth. Indeed, during the

day, the solar neutrinos do not traverse the Earth to reach SNO, whereas at night, they

may go through substantial amounts of matter. The MSW effect predicts that the survival

probability (the proportion of electron flavour neutrinos, proportional to the CC flux) can

be altered by the Earth depending on the value of the neutrino mixing parameters (the

mixing angle and mass-squared difference). Detecting any (day-night) asymmetries in the

electron flavour flux can test the MSW effect as well as constrain the solar neutrino mixing

parameters. A combination of the measured asymmetry from the CC and ES fluxes (fixing

the total neutrino flux asymmetry to be zero) gave the day-night asymmetry in the electron
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flavour neutrino flux from the first phase, AD−N , as [28]:

ACC
D−N = 7% ± 4.9%(stat.)+1.3

−1.2%(sys.) (1.18)

Neutrino oscillations are the accepted mechanism to explain how the electron flavour

neutrinos convert into the other flavours. Since the data from SNO confirmed the solar

model, data from the other solar neutrino experiments were used to help constrain the solar

neutrino survival probability, and thus the mixing parameters. Combining all the available

data including the day-night asymmetries from SNO yielded 3σ ranges for the neutrino

oscillation parameters [34]:

0.27 < tan2 θ12 < 0.92

2.4 × 10−5eV2 < ∆m2
21 < 4.7 × 10−4eV2 (1.19)

which were significant enough to excluded regions of parameter space that had been allowed

prior to this time. In particular this result disfavored the SMA (‘small mixing angle’) region

of parameter space, for which there was a theoretical prejudice due to the small mixing

angles in the quark sector [35]. The favoured region of parameter space has been termed

the ‘LMA’, for ‘large mixing angle’. A detailed account of the analysis of the first phase of

SNO is presented in [29].

1.4.2 The Salt Phase

In the second phase of SNO, 2 tonnes of salt (NaCl) were dissolved into the heavy water

to exploit the capture of neutrons on 35Cl . This improved the ability of SNO to detect

neutrons in three ways: first, the cross-section for capture on 35Cl is approximately 40,000

times larger than it is on deuterium, second, the energy released by the subsequent decay of

36Cl is greater (8.6 MeV versus 6.25 MeV) and finally, the 8.6 MeV decay energy is released

in several γ-rays (2.5 on average) resulting in several Čerenkov electrons producing light

that is more isotropic than for just one electron. The neutron detection efficiency was

increased almost three-fold (from 14.4% to 40.7%).
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The data from the salt phase was collected from July 26, 2001 to August 28, 2003 and

comprised 391 days. An analysis of the data up to October 10, 2002 (254 live days) was

published in [31], whereas the full data set, summarized here, was published in [32] with

much more detail.

Data reduction was performed in a similar way to the first phase. A fiducial volume

cut was applied at a radius of 5.5 m to limit backgrounds that are external to the heavy

water and a cut was placed on the reconstructed energy of events at 5.5 MeV to limit

contamination from low energy events from radioactive backgrounds. Applying cuts to

remove ‘instrumental events’ (such as micro-discharges within the PMTs) as well as the

cuts on the reconstructed observables resulted in a data set of 4,772 candidate neutrino

events.

Again, an extended maximum-likelihood ‘signal extraction’ was performed to determine

the number of CC, ES and NC events as well as neutrons from external (to the D2O )

backgrounds. In order to benefit from the increased isotropy of light emitted during neutron

captures on 35Cl , a light ‘isotropy parameter’, β14 , was introduced as an observable in the

fit:

β14 = β1 + 4β4

βl =
2

N(N − 1)

N−1
∑

i=1

N
∑

j=i+1

Pl (cos θij) (1.20)

where θij is the mean pair angle, as viewed from the reconstructed event position, between

the N PMTs in an event and Pl is the Legendre polynomial of order l. A larger value of

β14 corresponds to a less isotropic pattern of hit PMTs.

The neutron response of the detector was again calibrated using a 252Cf fission source

and checked with an AmBe neutron source. Both sources were deployed throughout the

heavy water volume to characterize the neutron detection efficiency as a function of position.

The maximum-likelihood fit was performed using four observables: reconstructed energy

(Teff ), reconstructed direction with respect to the Sun (cos θ⊙ ), reconstructed radial
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position (ρ = (R/RAV )3), and event isotropy (β14 ). A key difference from the first phase is

that multi-dimensional probability density functions were used to account for the correlation

of β14 with Teff and ρ. In addition, the increased sensitivity to neutrons allowed the use

of ρ to constrain the neutron backgrounds from radioactivity produced outside the vessel

(by looking for neutron captures near the acrylic, which are distributed differently than the

uniform NC neutrons). Figure 1.7 shows the resulting fits in the four observables.

The analysis was carried out in two ways; the first fit constrained the CC energy spec-

trum to the distribution expected for 8B and the second fit determined the values of the CC

signal in 17 energy bins, effectively measuring the energy spectrum of electron flavour neu-

trinos. The unconstrained fit determined that the data set contained 2,176(78)CC events,

279(26) ES events, 2,010(85) NC events and 128(42) external-source neutrons. Converted

into neutrino fluxes, these become:

φCC
SNO(νe) = 1.68+0.06

−0.06(stat.)
+0.08
−0.09(sys.) × 106 cm−2s−1

φES
SNO(νx) = 2.35+0.22

−0.22(stat.)
+0.15
−0.15(sys.) × 106 cm−2s−1

φNC
SNO(νx) = 4.94+0.21

−0.21(stat.)
+0.38
−0.34(sys.) × 106 cm−2s−1

(1.21)

The CC/NC ratio, which is proportional to the survival probability, was determined to be:

φCC
SNO(νe)

φNC
SNO(νx)

= 0.34 ± 0.023(stat.)+0.029
−0.031(sys.) (1.22)

The day-night asymmetry in the CC flux from the un-constrained fluxes was determined to

be:

ACC
D−N = −3.7% ± 6.3%(stat.)3.2%(sys.) (1.23)

when the asymmetry in the NC flux is fixed to zero. This data can then be combined with

the analysis from SNO’s first phase and the other solar neutrino experiments to obtain
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limits on the solar neutrino oscillation mixing parameters:

tan2 θ12 = 0.45+0.09
−0.08

θ12 = 33.9+1.8
−1.6 degrees

∆m2
21 = 6.5+4.4

−2.3 × 10−5eV2 (1.24)

which are significantly better determined than they were in the first phase. Results from

the KamLAND experiment [36], sensitive to oscillations of anti-neutrinos, can be combined

with the data from the solar neutrino experiments (assuming CPT invariance) to further

restrict the allowed ranges for the mixing parameters:

θ12 = 33.9+1.6
−1.6 degrees

∆m2
21 = 8.0+0.4

−0.3 × 10−5eV2 (1.25)

where the precision in the mixing angle has resulted in the literature beginning to quote

it in degrees. It is worthy to note that these results significantly (∼7σ) exclude ‘maximal

mixing’, where the mixing angle would be equal to 45 degrees. Figure 1.8 summarizes the

results from the salt phase.

1.4.3 The NCD Phase

The third phase of the experiment [37, 38] collected data from November 27, 2004 until

November 29, 2006 and consisted of 385 live days. The salt from the previous phase of

the experiment had been removed. Thirty-six ‘Neutral Current Detectors’ (NCDs) were

deployed to count the neutrons produced in the heavy water independently from the data

collected by the PMTs. The NCDs were strings of cylindrical proportional counters filled

with 3He gas which detected neutrons through:

n +3He →3 H + p + 764 keV (1.26)

The proton (p) and triton (3H) ionize the gas, and the resulting energy deposition (764 keV

if both deposit all of their energy) is collected on an anode wire. The current on the anode
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(a) Fit for CC energy spectrum, Teff (b) Fit in direction to sun, cos θ⊙

(c) Fit in radial position, ρ (d) Fit in β14

Figure 1.7: Fits over the observables in the salt phase. Panel (a) shows the measured
spectrum of CC events and was determined by breaking up the CC flux into 17 energy bins
and determining the contribution in each bin. The color bands show the contributions to
the systematic uncertainties, whereas the statistical uncertainties are shown on each point.
Panel (b) shows the fit in the direction of events with respect to the Sun and places a
strong constraint on the amount of ES signal in the data. Panel (c) shows the fit in the
radial position of events. The increase in neutron detection efficiency allows ρ to be used to
constrain the number of external neutrons. Panel (d) shows the β14 distribution of the data
and it is clear that this observable provides the ability to distinguish CC and NC events,
as can be seen by their different probability distribution. The pdfs for all signal in each
observable were determined by Monte Carlo simulation and constrained with calibration
data. Figures taken from [32]



CHAPTER 1. INTRODUCTION 25

(a) Total fluxes (b) SNO-only neutrino oscillation parameter
space

Figure 1.8: Panel (a) shows a summary of the fluxes measured by SNO in the salt phase,
as well as Super-K’s measurement of the ES reaction. It is again clear that this precision,
model independent, measurement of the total solar neutrino flux (blue band, nc signal) is in
good agreement with the standard solar model prediction (dotted band). The width of each
band is determined by the uncertainties. Panel (b) shows the allowed region in neutrino
oscillation parameter space when all of the SNO data is included (first and second phase,
day-night asymmetries). Including all neutrino oscillation data then only allows the region
in the upper-right to persist at more than 3σ, the so-called ‘LMA’ solution. Figures taken
from [32]
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wire as a function of time was read out as a pulse by digitizing scopes. The integral of

the charge deposited on the anode for each event was recorded independently and was

proportional to the energy deposited in the counter gas. The array of counters is described

in detail in chapter 2.

The main background to the neutron signal came from ionizing alpha particles from

the decay chains of 238U and 232Th contained within the counter materials as well as from

210Po deposited on the inner surfaces of the counters. In order to characterize the alpha

background, four counters filled with 4He gas (insensitive to neutrons) were also deployed. In

addition to backgrounds from ‘physics events’, the data contained a number of instrumental

events that were rejected based on their pulse shapes. Six of the NCD strings were rejected

from their analysis for reasons discussed in section 2.6.4.

One motivation for the third phase of the experiment was to perform an independent

measurement of the neutrons in SNO. The resulting determination of the NC flux would

have different systematic uncertainties, providing an independent confirmation of the SSM

prediction.

The analysis of the third phase differed from previous phases in several ways. The

biggest difference was the inclusion of data from the NCDs in addition to the PMT data.

This was handled by constructing a likelihood function that was the sum of a likelihood

of the PMT data and a likelihood of the NCD data. Both parts of the likelihood con-

tained the NC signal in common. Another major difference was the use of a Markov-Chain

Monte Carlo (MCMC) method [39, 40] (instead of minimization algorithms) to perform the

maximum-likelihood analysis. This was preferred due to the large number of parameters,

which included parameters to model systematic uncertainties (such as the PMT energy

scale).

The PMT likelihood was built using Teff , cos θ⊙ and ρ; the same three observables

that were used in the first phase. However, the pdfs were built as 3-dimensional functions,

to avoid any potential biases from the factorization into three 1-dimensional pdfs. The
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data on the PMT side had a 6 MeV threshold applied to it, in order to significantly reduce

backgrounds to the neutrino signals. The NCD likelihood was built using the deposited

energy of events. The probability density function (pdf) for neutrons was obtained from

calibration data, whereas the alpha energy pdfs were derived from a Monte Carlo simulation.

In addition to neutrons and alphas, two different instrumental backgrounds were identified

by an excess of low energy events in the data from two of the strings. Although these

strings were removed from the analysis, energy pdfs for these events were parametrized

with analytical functions to allow for the presence of the same type of events in the data. In

order to minimize the influence from these events, the NCD data were restricted to events

above a threshold of 400 keV. An upper energy cut was placed to keep only events below

1.4 MeV. This allowed 93% of neutrons to be kept in the data, since they peak at 0.764 MeV.

The response of the NCD array to neutrons was measured by dissolving an activated

24Na solution uniformly into the heavy water. The 24Na decay releases 2.754 MeV. γ-

rays that can photodisintegrate deuterium and thus result in a uniform neutron source.

The capture efficiency for neutrons by the array was determined to be 21.1%. The presence

of the NCD array capturing most of the neutrons significantly reduced the possibility for

the PMTs to detect neutrons, and the PMT neutron detection efficiency was brought down

to 4.9%.

The MCMC method was used to sample the likelihood function in parameter space and

obtain posterior distributions for each parameter. The parameter set included not only

the signals (neutrino fluxes, backgrounds) but also the systematic uncertainties in several

quantities. For example, the energy scale for the PMT energy was floated in the analysis,

subject to the constraints obtained from calibration data. This is a philosophically different

approach to systematic uncertainties than was employed in the previous phases where data

were fit, then re-fit with systematic parameters shifted by their 1-σ values. The ‘floating

systematics’ approach adopted in this phase allowed the data to constrain the systematic

parameters beyond the bounds provided by the calibration data.
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The joint analysis of the PMT and NCD data yielded 983.4+77.0
−75.5 NC events in the NCD

array and 267.0+23.8
−22.3 NC events in the PMT array. It was determined that 1,867.1+90.6

−100.9

CC, 171+24.3
−22.3 ES and 77.0+11.6

−10.2 background neutrons were observed in the PMTs. It was

also determined that 185.1+24.8
−22.3 background neutrons were detected in the NCDs along with

6,126.6 ± 100.6 alpha+instrumental events. The results of the fits in the PMT observables

and the NCD energy are shown in Figure 1.9. The neutrino fluxes from the data in the

NCD phase were determined to be:

φCC
SNO(νe) = 1.67+0.05

−0.04(stat.)
+0.07
−0.08(sys.) × 106 cm−2s−1

φES
SNO(νx) = 1.77+0.24

−0.21(stat.)
+0.09
−0.10(sys.) × 106 cm−2s−1

φNC
SNO(νx) = 5.54+0.33

−0.31(stat.)
+0.36
−0.34(sys.) × 106 cm−2s−1

(1.27)

and the CC/NC ratio is:

φCC
SNO(νe)

φNC
SNO(νx)

= 0.301 ± 0.033(total) (1.28)

Including all available solar neutrino data as well as the data from the KamLAND experi-

ment resulted in the best constraints of the mixing parameters to date:

θ12 = 33.8+1.4
−1.3 degrees

∆m2
21 = 7.94+0.42

−0.26 × 10−5eV2 (1.29)
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Figure 1.9: Summary of results from NCD phase. Panel (a) shows the fit to the deposited
energy of events in the NCD counters. The red pdf corresponds to neutrons and was
determined by calibration data. Panel (b) shows the fit in PMT energy, where the data is
dominated by CC events. Panel (c) shows the fit in cos θ⊙ and panel (d) shows the fit in ρ
within the fiducial volume.
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1.4.4 SNO’s Contribution to Physics

Although SNO has unquestionably solved the solar neutrino problem, it has achieved much

more than this initial goal. Indeed, thanks to the SNO experiment, there is now undeniable

evidence that electron neutrinos can change flavour. In addition, the uncertainty in the solar

neutrino mixing angle, θ12, is approaching 1 degree. This has ushered the community into

an area of precision neutrino measurements. Just 10 years ago, the flux of solar neutrinos

was uncertain, but SNO has now measured it more accurately than the prediction from

the solar model as well as placed stringent constraint on neutrino mixing parameters. The

combination of SNO results with KamLAND has also led to an accurate knowledge of the

solar neutrino mass-squared difference. The demonstration that solar electron neutrinos

change flavour, the resolution of the solar neutrino problem (by confirming the prediction

from the solar models) and the accurate measurement of solar neutrino mixing parameters

are without doubt the biggest contributions from SNO.

SNO data has been used to set an upper limit [30] in the flux of neutrinos from the

‘hep’ reaction in the Sun (the highest energy neutrinos in Figure 1.2). The hep flux was

determined to be less than 2.3×104cm−2s−1 at 90% confidence level using the data from the

first phase (an analysis combining the data from all three phases is underway). Uncertainties

in the predicted hep flux are dominated by nuclear matrix element calculations and thus,

a measurement of the hep neutrino flux helps to constrain these calculations as well as the

standard solar model.

A search for electron anti-neutrinos in the SNO data were performed [41]. These can be

detected efficiently as their CC interaction with deuterium (4.03 MeV threshold) releases two

neutrons and a positron in coincidence. Searches for anti-neutrinos can limit the possibility

for mechanisms that could convert neutrinos into anti-neutrinos. Results provided a 90%

confidence upper limit indicating that less than 0.81% of the 8B neutrinos convert into

antineutrinos.
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The SNO detector was also used to search for nucleon decays [42], which may be signs

of grand-unification theories. In particular, the data from SNO was used to search for

‘vanishing’ neutrons or protons inside 16O nuclei. This can happen if protons or neutrons

decay to ‘invisible’ particles (such as neutrinos), leaving an excited state of the nucleus which

subsequently decays with the release of a γ-ray above 6 MeV. SNO’s high γ-ray detection

efficiency allowed the limits on nucleon lifetimes to be improved to τ > 2 × 1029 years at

90% confidence level.

The solar neutrino flux has a 1-year period modulation due to the eccentricity of the

Earth’s orbit. However, an independent analysis [43] of the Super-K data had suggested that

the 8B flux also contained a modulation of the same period (9.42−1 years) as harmonic of

the Sun’s rotation period. Since the rotation of the Sun does not influence nuclear reaction

rates, a change in neutrino flux with that period would presumably be the signature of a

flavour-changing interaction with the solar magnetic field (‘new’ physics) [44]. A re-analysis

of the Super-K data by the collaboration [45] as well as a search for periodicities in the SNO

data [46], found no modulation except for that expected from the Earth’s orbit.

Finally, the SNO experiment was also used to measure the flux of atmospheric muons

through the detector [47]. High-energy muons (>100 MeV release much more Čerenkov ra-

diation in SNO than electrons and are easily detectable. Muons are produced in the at-

mosphere when cosmic rays induce showers. These ‘cosmic ray’ muons are seen in SNO as

coming from above, with small zenith angles. The cosmic ray showers also produce muon

neutrinos (from muon decays), which can reach SNO from all zenith angles (they can orig-

inate from atmospheric showers on the other side of the Earth). These muon neutrinos

can then interact with matter near the detector and produce a muon that will be seen by

SNO. A measure of the number of muons in SNO can thus serve to measure both the muon

flux from the atmosphere (by looking at small zenith angles) as well as the muon neutrino

flux. Figure 1.10 shows SNO’s measured muon flux as a function of zenith angle. Although

SNO is much less sensitive to atmospheric neutrinos than Super-K, the flux as a function
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of zenith angle favours neutrino oscillations (black boxes versus hashed boxes).

Figure 1.10: Flux of muons at SNO as a function of zenith angle. Zenith angles with
cos θ > 0 correspond to events above the horizon. The dashed line at small zenith angles (
cos θ > 0.3) corresponds to the events from the cosmic ray muons, whereas all other events
are from the neutrino-induced flux. The hashed boxes show the prediction for a model with
no neutrino oscillations compared to the black boxes for the case where neutrino oscillation
take place. The red arrow shows the region below which the muon flux is dominated by
neutrino-induced events and the dotted line shows the flux of muons coming directly from
the atmosphere. Figure from [47].

1.5 What Can (Still) be Learned from Solar Neutrinos

The previous section highlighted some of the physics results from SNO to date. This section

aims to motivate the benefits of a more accurate measurement of the solar neutrino flux and

parameters involved in solar neutrino oscillations as well as how this will be accomplished

in the upcoming analysis of SNO data (including this thesis).

Recent years have seen the emergence of a ‘solar metallicity problem’. Latest measure-

ments of solar metallicities (the abundances of element heavier than helium) have shown

lower levels than previously measured [48]. The inclusion of these lower abundances into so-

lar models has led to significant discrepancies with helioseismological measurements which
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cannot (to date) be explained by deficiencies in the models. It has been proposed [48]

that solar neutrinos can be used to distinguish between high and low metallicity models,

as the heavy element abundances have an impact on neutrino fluxes. Previous solar model

calculations [3, 15, 4] had large uncertainties (∼18%) on the neutrino fluxes to account

for different levels of metallacities. Recent years have seen the emergence [48] of ‘high’

and ‘low’ abundance solar model which have smaller uncertainties (∼11%) in the neutrino

fluxes. Although the difference in solar neutrino fluxes between these models is highest for

CNO neutrinos (44%), the predicted 8B neutrino flux differs by 21% between models so

that SNO data can make a significant contribution to this problem.

Through the measurement of the CC/NC ratio, SNO has a direct sensitivity to the

survival probability, and hence the θ12 mixing angle, which determines the amplitude of

the oscillations (equation 1.6). The KamLAND experiment [36] measures the energy spec-

trum of electron-flavour anti-neutrinos of energies of a few MeV with baselines of order

200 km . Assuming CPT invariance, both experiments are sensitive to the same set of neu-

trino oscillation mixing parameters, namely the solar oscillation mixing parameters. Since

KamLAND measures the energy spectra of neutrinos it is most sensitive to the frequency

of the oscillations and hence the mass-squared difference. The combination of solar neu-

trino experiments and KamLAND, provides constraints on both mixing parameters. Both

types of experiment have a slight sensitivity to θ13. Recent results [22] have shown that the

best fit values of θ12 between the solar (driven by SNO) and KamLAND experiments are

slightly different (at levels of low statistical significance), and the difference in this value of

θ12 can in fact be accommodated by a non-zero value of θ13. Figure 1.11 shows the ‘pull’

in the best fit θ12 between the solar and KamLAND results along with the inferred value

of θ13. Thus, a more accurate measurement of θ12 from solar experiments could lead to a

more robust determination of θ13. It is of important interest to measure this last remaining

mixing angle, as it can lead to the measurement of CP-violation in the lepton sector, which

could in turn shed some light on the leptogenesis process and whether it can help explain
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the matter/anti-matter asymmetry in the universe.

Figure 1.11: Allowed regions of θ12-θ13 for solar (red) and KamLAND (blue) data (panel
a). The slightly different best fit value of θ12 result in a non-zero best-fit value of θ13 when
the two data sets are combined (panel b). Contour lines are 1σ, the figure was taken from
[22].

The energy-dependence of the solar survival probability (Figure 1.4) is not measured to a

very good accuracy over the the full energy range. SNO has measured the spectrum at high

(>5 MeV) energies, and the radio-chemical experiments have measured some points at the

lower energies. Experiments [49] are starting to probe the ‘transition’ region, around 2 MeV

where the survival probability goes from its vacuum value to a matter-dominated value. An

accurate measurement of the energy spectrum in that region can help to distinguish between

the MSW model and other proposals, such as ‘mass-varying’ neutrinos [50] or ‘non-standard-

interactions’, where, for example, a neutrino magnetic moment alters the MSW interaction

with solar matter [51]. Figure 1.12 shows the survival probability that is predicted for

certain models as well as the data points that have been taken from various experiments to

date. A ‘low-energy-threshold-analysis’ (leta) of the SNO data is currently underway and

aims to extract the energy spectrum down to 4MeV using data from the first two phases. In

addition to constraining the shape of the survival probability, this analysis will significantly
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increase the amount of neutrino data and result in a much more accurate determination of

the mixing angle.

Figure 1.12: The solar neutrino survival probability in the transition region for different
models along with data from solar neutrino experiments. Measuring the energy spectrum
in the transition region can help to distinguish between models. Figure was taken from [52].

Finally, accurate measurements of θ12 can place constraints on theoretical models. There

are neutrino mixing models that predict the values of the neutrino mixing angles. Although

‘bi-maximal mixing’ (θ12 = θ23 = π
4 ) is now excluded by SNO, ‘tri-bi-maximal’ (θ12 = 35.3,

θ23 = π
4 , θ13 = 0)) models are still allowed. Other predictions such as ‘quark-lepton’

complementarity make use of symmetries to combine neutrino and quark mixing angles to

sum to π
4 . Although it is beyond the scope of this thesis to discuss these models, it is clear

that an accurate determination of θ12 is valuable. For an overview of these neutrino mixing

models, see [53].

Future results from the SNO data will include the low energy threshold analysis of the

first two phases. In addition, the collaboration is currently working on a ‘3-phase’ analysis
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that will include the data from all three phases (as well as the work pursued in this thesis)

and will result in the most accurate determination of the solar mixing angle and total

8B solar neutrino flux. The 3-phase analysis will also set new limits on the hep flux. Other

experiments that will look at low energy solar neutrinos (in the MSW transition region)

are currently underway or will start in the near term. These include Borexino [49] (already

running), KamLAND and SNO+ [54], which all use liquid scintillator to look for low energy

solar neutrinos. The SNO+ experiment will replace the heavy water in SNO with liquid

scintillator.

1.6 Overview of the work in this thesis

This thesis presents an independent analysis of the data from the proportional counters

(NCDs) used in the third phase of the SNO experiment. In particular, the ultimate goal of

this work is to derive an accurate number of neutrons detected by the counters during the

NCD-phase of SNO. An accurate determination of the neutrons detected by the NCD array

is directly related to the accuracy in the inferred neutral-current flux of solar neutrinos from

the third phase. In addition, a more accurate determination of the neutral-current flux has

a direct impact on the precision in the measurement of θ12.

The previous analysis of the NCD phase only used the energy deposited in the counters

to fit for neutrons on an alpha background (see panel (a) of Figure 1.9). This thesis will

introduce a new variable, ‘NoverA’, which is based on the shape of scope traces of events in

the counters and derived from the comparison with libraries of calibration neutron and alpha

pulse shapes. Distributions for the NoverA variable are determined for neutrons and alphas

so that this new observable can be used in conjunction with energy in a maximum-likelihood

analysis to decrease the uncertainty in the inferred number of neutrons.

Chapter 2 provides a detailed description of the neutral-current detector array and asso-

ciated electronics. The various calibrations that were performed in order to characterize the
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response of the array are also described. Chapter 3 is intended to provide an understanding

of the physics behind events in the NCDs. In particular, it motivates why neutron and

alpha pulse shapes are expected to look different, so that they may be used in an analysis

to differentiate the two types of events. The chapter concludes with a brief description of a

Monte Carlo simulation that was designed to model the NCD array.

The original work from this thesis begins in chapter 4, where the ‘Queen’s Grid Fitter’

(QGF) is introduced. QGF uses a library of calibration neutron pulse shapes and a library

of calibration alpha pulse shapes. The NoverA variable for NCD events is introduced here

and is the result of the comparison of data pulses to these libraries. The NoverA variable is

a measure of how a data pulse compares to the two libraries and indicates how neutron-like

a given pulse is. This chapter is aimed at motivating the fine details in how the NoverA

observable for each event is determined.

Chapter 5 characterizes the probability density functions (pdfs) for neutrons and alphas

for the energy and NoverA observables. The distributions and systematic uncertainties for

neutrons are determined using calibration data. The pdfs for alphas are determined using

the Monte Carlo simulation and the systematic uncertainties are derived from comparison

of the Monte Carlo simulation with alpha data from the 4He counters. In addition to neu-

trons, two additional instrumental-type of events are characterized. Distributions for these

events are also introduced and a novel method for handling their systematic uncertainties

is presented.

Chapter 6 gives a brief (mathematical) overview of the extended maximum-likelihood

technique that will be used to analyze the NCD data using the energy and NoverA observ-

ables. Methods for handling systematic uncertainties are presented as well as the Markov-

Chain Monte Carlo method that is used in the analysis.

Chapter 7 presents tests of the use of energy and NoverA to determine the number of

neutrons. The first part of this chapter presents extensive analysis of Monte Carlo generated

data to test for any biases in the determination of the neutron number. The second part of
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the chapter presents an analysis of a subset of the real NCD data using the techniques of this

thesis. This subset of the data were designed for a ‘blind’ analysis, so that the techniques

presented here are not tuned to ‘get the right answer’, since the data were already published.

Finally, chapter 8 presents an analysis of one third of the data from the NCD phase

using the methods presented in this thesis. The result from this new analysis is compared

to the published result. Chapter 9 presents some concluding remarks.



Chapter 2

Neutral Current Detector

Characterization

This chapter characterizes the Neutral Current Detector (NCD, hereafter) array and its

associated data acquisition system. The array was comprised of 36 (3He +CF4 ) cylindrical

proportional counters sensitive to neutrons and four (4He +CF4 ) counters (insensitive to

neutrons) to measure backgrounds. It was installed in the heavy water after the NaCl

was removed, between November 2003 and April 2004, with a commissioning phase until

November 2004. The neutrino data were collected from November 27 2004 to November 28

2006.

2.1 Overview of NCD Array

This section describes the physical characteristics of the proportional counters and array.

The design was motivated by the need for low radioactive backgrounds in order to detect

the ∼13 neutral-current-induced neutrons that are produced in the D2O each day.

39
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2.1.1 Neutron Detection Reaction

Thermal neutrons were detected in the 3He -filled cylindrical proportional counters (Figure

2.2) via the reaction:

n +3He →3 H + p + 764 keV (2.1)

with a cross section of 5333 b [33] (compared to 0.5 mb for neutron capture on D2O and

44 b for capture on 35Cl ). The proton and triton are created nearly back-to-back with

energies of 573 keV and 191 keV, respectively. They lose their energy by ionizing the gas

(the full 764 keV is only deposited providing neither particle collides with the counter wall);

the electrons are then collected onto an anode wire. The high electric field at the anode

wire causes an avalanche of secondary ionization with a gain of about 220 secondaries per

primary electron. The resulting pulse was detected in the data-acquisition system (section

2.2) and the charge in the pulse is proportional to the ionization energy deposited in the

gas. The energy spectrum for neutrons from a distributed 24Na calibration source (section

2.4.3) is shown in Figure 2.1; the peak at 764 keV corresponds to the proton and triton

depositing their full energy in the counter. The peak is broadened by events where either

the proton or triton collides with the wall. The lowest energy events (191 keV) correspond

to cases where the proton is immediately absorbed by the wall and only the triton energy

is deposited.

2.1.2 Counter Design

This section gives a brief description of the NCD string design; a detailed description can

be found in the technical paper [37]. Nickel was chosen as the main material for the

counters and was purified (by chemical-vapor-deposition onto aluminum, CVD) to 10−12 g/g

of 238U and 232Th .

The proportional counters were 2-3 m long with a 5.08 cm outer-diameter and a wall

thickness between 305 µm and 533 µm (370 µm nominal). The wall thickness was dictated
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Figure 2.1: Neutron spectrum from a distributed 24Na source calibration (see section 2.4).
The peak at 764 keV corresponds to the proton and triton depositing their full energy. The
shoulders in the spectrum are due to the proton and triton colliding with the NCD wall
and failing to deposit their full energies.
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by the need to maintain structural integrity in the heavy water under pressures of 3.2 atm at

the bottom of the acrylic vessel. The gas mixture was 85% Helium (3He or 4He ) and 15%

CF4 (by pressure) held at 2.5 atm. The anodes were made of 50 µm diameter copper wires.

The cylinders had CVD-nickel endcaps welded 4.3 cm from the end and allowed counters

to be electrically connected to each other into strings. A fused-silica feed-through tube

insulated the anode wire from the endcap and the counter body. The feed-through tube

extended between 2.5 cm and 2.8 cm into the gas volume to create an avalanche-free region

where the electric field is otherwise distorted (affecting the gain). The proportional counters

were assembled in the underground lab1 into groups of three or four to make NCD-strings

between 9 m and and 11 m in length. A schematic of a string and the connection between

counters is shown in Figure 2.2 (a and b).

The anode wires were terminated by open-ended delay lines at the bottom of the strings.

The delay lines extended the NCD-strings by about 45 ns , creating a 90 ns delay between

current exiting the top of the anode wire and its reflection from the bottom. The delay

line was a flat meander circuit etched onto a copper-clad Kapton sheet which was then

wrapped around an acrylic core positioned at the bottom of the strings (see Figure 2.2a).

The open-ended delay-line was designed for crude longitudinal event position determination,

as well as allowing for the full signal charge to be collected (thus improving signal-to-noise

characteristics).

The top part of the anode wire was connected to the NCD readout cables by a resistive

coupler. The readout cables were responsible for bringing the high-voltage to the detectors

as well as collecting the data. The impedance of the detectors is 415 Ω which required a

325 Ω resistive coupler to match the 93 Ω impedance of the readout cables. The readout

cable protruded through a standard CVD-nickel endcap (similar to the counter endcaps,

except with a larger hole to allow the cable through) into a gap similar to the one between

1Due to the headroom above the detector, counters had a maximum length of 3m and were welded
together as they were inserted into the heavy water.
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counters. The resistive coupler was made of a Teflon cylinder with wire strung back and

forth around one side. The wire was connected to a CVD-nickel toothed-ring that slid onto

the fused-silica feed-through of the NCD anode wire on one side and the cable connector

on the other (see Figure 2.2c). This method of connecting the cables to the detector failed

intermittently for some of the strings (and completely for at least one string).
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(c) NCD and readout cable connection

Figure 2.2: Panel (a) shows the string assembly with the open-ended delay-line on the
bottom and the readout cable on the top. The Vectran braid at the bottom held two
acrylic spheres; one anchored the string to the acrylic vessel in a specially designed slot and
the other was used by a remotely operated vehicle (ROV) to install the string. Panel (b)
shows the junction between two counters with the endcaps, the nickel coupler and fused-
silica feed-throughs. Panel (c) shows a closeup view of the resistive coupling between the
NCD and the readout cable. Figures are taken from [37].
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2.1.3 Array Layout

The deployed array consisted of 36 3He -filled and 4 4He -filled strings in a 1 m square grid

with cylindrical symmetry. The layout is shown in Figure 2.3 and was designed to maximize

the neutron detection efficiency while minimizing the shadowing of Čerenkov light to the

PMT array. Two-dimensional position reconstruction of neutron events is straightforwardly

achieved with this layout. The grid spacing resulted in a 21% capture efficiency for uniformly

produced neutrons (section 2.6.2)

The strings were labeled by two different coordinate systems; in one case, each string

was assigned a letter to indicate its radial position (see Figure 2.3) and a number to indicate

position in the ring, in the other labeling system, strings were simply numbered 0 to 39

(see Table 2.1 for the conversion between labeling systems). This thesis will predominantly

identify strings by their number.
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Figure 2.3: NCD array layout projected into the horizontal plane. The outer circle is the
equator of the acrylic vessel and the inner circle is the projection of the neck of the vessel.
The strings are installed in concentric circles on a square 1m grid and each ring is labeled
by a letter (N for the innermost rings and I for the outermost). Within a ring, different
strings are identified by a number. Figure taken from [37]
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String String

Number Label Number Label

0 N4 20* I3
1 M8 21 K4
2 K8 22 M4
3* I7 23 J4
4 J8 24 L4
5 L2 25 N2
6 J7 26 J3
7 M7 27 M3
8 K7 28 K3
9 I8 29 I4

10* I6 30* I2
11 K6 31 K2
12 M6 32 J2
13 J6 33 M2
14 N3 34 L1
15 L3 35 J1
16 J5 36 I1
17 M5 37 K1
18 K5 38 M1
19 I5 39 N1

Table 2.1: Conversion between NCD string number and ring-label. The four strings with
an asterisk contain the counters filled with 4He .



CHAPTER 2. NEUTRAL CURRENT DETECTOR CHARACTERIZATION 48

2.2 Electronics and NCD Data Acquisition

This section describes the flow of data from the readout cable at the top of the NCD and

characterizes the various components in the electronics chain. The description is limited

to the NCD-side of the electronics and data-acquisition (DAQ, hereafter); the PMT-side is

discussed in [25]. A more detailed overview of the NCD electronics can be found in [37] and

[55].

The design of the NCD-DAQ is motivated by the desire to be able to discriminate

neutron events from background alpha events (from the 238U and 232Th chains) by digitizing

the waveforms collected in the counters as well as the ability to collect events from a potential

galactic supernova at rates of a few kHz. For this reasons, two different DAQ paths were

implemented; the first allowed for the waveform digitization by oscilloscopes (at low event

rates, for solar neutrino analysis using particle identification) and the second used custom-

designed shaping-ADC boards to record event energies (at kHz event rates, suitable for

supernova events).

2.2.1 Electronics Layout

Figure 2.4 shows a diagram of the electronics layout with the fast (shaper) and slow (scopes)

DAQ paths. The NCDs were connected to a trans-resistance pre-amplifier which was re-

sponsible for the readout (toward the multiplexers), injection of calibration pulses (from

the pulser distribution system) and the high-voltage supply of the proportional counters.

Pulses from the NCDs were then sent from the multiplexers to the shapers (fast path) and

the digitizing scopes (slow path). The two DAQ paths interacted with the SNO Master

Trigger Card (MTC)[25], where they were assigned event identification numbers, before be-

ing recorded by a Mac computer running OSX and the ORCA (Object-oriented Real-time

Control and Acquisition) software which allowed for data acquisition as well as control of the

electronics. The following sub-sections will briefly describe the most important components
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of the DAQ.
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Figure 2.4: Layout of the NCD electronics and data-acquisition systems. Figure taken from
[37].
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2.2.2 PreAmp

The trans-resistance pre-amplifier was chosen over a charge-amplifier in order to preserve the

time profile of the charge collected by the detectors. A two-stage gain was provided by four

2SK152 JFETs followed by an AD8055 operational amplifier and met the design requirement

of a 3kHz-45MHz pass-band (determined by the sharpest of physics pulses). The pre-

amplifiers (one per NCD) were used to connect the HV supply to the detectors as well as

being the injection points for pulses from a waveform generator into the electronics chain

(for electronics calibration). The output from the pre-amplifier, Vout(t) can be modeled

[56] by a high-pass RC circuit:

Vout(t) = e−t/RC

∫ t

0

[

dVin(τ)

dτ

]

eτ/RCdτ (2.2)

where Vin(t) is the pulse at the input of the pre-amplifier.

2.2.3 Multiplexers

Four multiplexer boxes (Muxes) were used to send the signals to the digitizing scope read-

out. The signal from the current pre-amplifiers entered two parallel buffer amplifiers that

divided the signal towards the shaper and scope channels. The muxes contained an LT1016

comparator to trigger the digitizing system path. When the signal exceeded the discrimi-

nator level it was sent to an AD8307 logarithmic amplifier (logamp) (section 2.2.4). Signals

from 12 NCD strings were summed before entering the logamp. The normal trigger rate

during data-taking was low enough (0.3 Hz for the entire array) to make it unlikely that

more than one event entered the logamp at any time.

The Muxes were controlled by the Mux Control Board (MCB) (itself controlled by the

ORCA computer (section 2.2.7)) which is responsible for several functions. The MCB set

the discriminator thresholds through an 8-bit digital-to-analog (DAC) card with a resolution

on the order of one mili-Volt. The DAC card contained one 8-bit register for each NCD,

so that their discriminator thresholds could be controlled individually (they varied by a
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few milivolts between NCDs). The MCB was also responsible for sending a ‘Mux-Trigger’

to the NCD triggering system when the discriminators fired and recorded the pattern of

strings that exceeded their threshold in all four Muxes. The MCB triggered the digitizing

scopes and controlled the readout of the channel corresponding to the Mux that initiated

the trigger. A 320 ns delay line was built into the Muxes to allow the digitizing scopes the

time to trigger after the thresholds were exceeded.

2.2.4 Logarithmic Amplifier

The logamps [57] were used in order to extend the range of signals that could be digitized

accurately, as well as maintain an amplitude-independent noise in the pulses. The range

was dictated by the possible physics-events that could take place in the NCDs, ranging from

an inward-going 191 keV triton produced at the inner wall (200 nA current) to an 8.8 MeV

212Po alpha traveling parallel to the wire (30 µA current). This corresponds to a dynamic

range of approximately 150. The effect of the logamps on the input pulses was parametrized

[56] as:

Vlog(t) = a × log

(

1 +
Vout(t + ∆t)

b

)

+ c (2.3)

where Vout(t) is the pulse exiting the pre-amplifiers. The parameters a,b,c and ∆t were

measured with calibration pulses (described in section 2.3.2). Even though there were only

four Muxes (and hence logamps), these parameters were measured for each string, since

they each had different pre-amplifiers gains (parametrized by b) as well as for each scope

path, totaling 80 different electronic chains and sets of parameters to be determined for

each calibration.

2.2.5 Digitizing Scopes

Two Tektronix TDS754A digitizing scopes with four input channels (each) were used to

record the pulse waveforms from the NCDs. Each input channel was connected to one
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of the four Muxes. The MCB controlled which scope was triggered for the digitization,

alternating between scopes when neither was ‘busy’ or switching to whichever scope was

free. Upon triggering, the scope recorded on all four input channels, but the GPIB only

read out the channel corresponding to the triggered Mux(es). The signals were digitized

at 1GHz and 15 µs of data were recorded for each Mux-trigger event. In order to obtain a

baseline for the pulses, 1500 ns before the oscilloscope triggering was recorded in addition

to 320 ns of the event before the mux-threshold was crossed (to account for the mux delay

line). Using the two scopes, the NCD DAQ was able to digitize data at 1.8 Hz , which was

sufficient for solar neutrino data.

2.2.6 Shapers/ADC

In order to record NCD data at higher rates than in the digitizing path, six eight-channel

custom ADC/shaper boards residing in a VME crate were designed. This allowed for

the rapid, almost dead-time-less, recording of NCD-pulse charge, and hence event energy.

The NCD pulse sent from the Mux was first integrated by four successive operational

amplifiers and then divided into three paths; the first path went to an ADC converter

(12-bit MAX120CWG), the second path to a differentiating amplifier and the third to a

threshold discriminator. The signal from the differentiating amplifier clocked a D flip-flop

switch whose D-input was connected to the discriminator. The D flip-flop output then

triggered the ADC converter to digitize the integral as well as send a lock-out signal after

a 180 ns waiting period, so that all coincident channels could be recorded. The digitized

event was then read by an embedded CPU (eCPU in the VME crate) and the NCD trigger

board was notified to send a ’Shaper Trigger’ to the SNO Master Trigger Card.

2.2.7 The ORCA Computer

The Object-oriented Real-time Control and Acquisition (ORCA) software was used to con-

trol the hardware thresholds and record the data from the shapers/ADC and scopes. ORCA
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was run on a Mac G4 dual-processor computer running OS X. A PCI-to-VME card was

used to communicate with the shaper/ADC eCPU, the NCD trigger card, the HV supplies,

the pulser distribution system (section 2.3.1) and the Mux Control Board. The data from

the scopes was recorded using an Ethernet-to-GPIB adapter that was also used to control

the waveform generator of the pulser distribution system (section 2.3.1).

2.2.8 The NCD Triggering System

NCD events were assigned a Global Trigger Identification (GTID) by the NCD Trigger

Card (NCD-TC). A register of GTIDs in the NCD-TC was kept synchronized with the

SNO Master Trigger Card (MTC), so that NCD and PMT events could be time-ordered by

their GTIDs. The MTC recorded event times using (redundant) 10 MHz and 50 MHz clocks.

2.2.9 The NCD Data Stream

The raw data from ORCA for the NCD events (time, channel, trigger type) were written

to ZEBRA [58] Data Acquisition/Analysis Bank (ZDAB) files by the ‘ncdbuilder’ process

running on a Mac G5 computer. This was done in parallel to a similar process for the PMT

data. A second-level process, ‘snobuilder’, then merged the two data streams according to

event GTIDs into one ZDAB file. The snobuilder process was also responsible for forwarding

the events to a network dispatcher connected to the various DAQ monitoring tools.

The data were collected in ‘runs’ that were approximately 7 hours in length for neutrino

data. Each run corresponded to a ZDAB file with the data from both PMTs and NCDs.

Calibration runs would typically last less time to keep the size of the files manageable.

2.3 NCD Electronics Calibration

This section briefly describes the calibrations that were regularly performed on the elec-

tronics chain.
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2.3.1 The Pulser Distribution System

The Pulser Distribution System (PDS) was designed to inject pulses at the NCD pre-

amplifier in order to test the gain, linearity, dead-time, and thresholds of the shaper/ADC

and scope chains. An Agilent 33120A Waveform Generator was used to create pulses with

known shapes to perform these calibrations. In addition to weekly calibrations, a custom

pulser was also used to randomly trigger the electronics (during data-taking) in order to

measure their associated dead-time at an average rate of 0.01 Hz .

2.3.2 Calibration of the Logarithmic Amplifier

In order to obtain the pulse that was generated from the ionization in the NCDs, the

waveforms recorded by the scopes needed to be deconvolved. The main distortion on the

pulses was caused by the logarithmic amplification and it was thus important to accurately

measure the parameters related to this process. During the data-taking period, ‘logamp

calibrations’ were performed once a week, in which a sine-wave pulse was injected into the

electronics and the recorded waveform was then fit using equation 2.3 and the corresponding

parameters were extracted for each channel and scope. These parameters were then recorded

in SNO data banks so that waveforms could be ‘de-logged’ during analysis.

2.3.3 Threshold, Gain and Linearity Calibrations

In addition to measuring the effect of the electronics on the pulse shapes, calibrations were

also done to monitor the thresholds of the Mux and shaper/ADC paths, as well as the gain

and linearity of the shaper/ADCs. The thresholds of both data paths were measured by

sending sine-wave pulses of decreasing amplitude and determining when each channel would

stop triggering. The varying sine-wave amplitudes tested both the amplitude-threshold of

the digitizing path as well as the total charge-threshold of the shaper/ADC channels.
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The gain and linearity of the shaper/ADC channels were measured by injecting square-

wave pulses of different amplitudes into each shaper/ADC channel. The known amount of

injected charge was then compared with the digitized value to monitor the gain and linearity

of each shaper channel. Together with neutron source calibrations, one could then set an

absolute energy/ADC conversion for the events occurring in the NCDs.

2.3.4 Random Pulser

In addition to the weekly calibrations mentioned above, the PDS was also used to randomly

trigger the electronics (during data-taking) in order to measure their associated dead-time

at an average rate of 0.01 Hz on a dedicated channel (different than the channels used by

the NCDs).

2.4 Neutron Source Calibrations

In order to measure the response of the NCD array to neutrons, several neutron sources

described in this section were deployed during the data-taking phase. A manipulator system

(described in [25] [37]) allowed for the three-dimensional positioning of various encapsulated

calibration sources throughout the heavy water volume.

2.4.1 AmBe Source

Two encapsulated Americium-Beryllium (AmBe) sources, differing by their neutron pro-

duction rate, were used. The neutrons are produced by the (α,n) reaction of alpha-particles

from 241Am on a 7Be target. These sources were deployed monthly and used to monitor

the stability of the NCD array. In particular, the AmBe source was used to calibrate the

ADC energy spectrum. A summary of the source properties is shown in Table 2.2
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Source Type Half-life Source Strength

AmBe-Med encapsulated 432 yr 23.63(27) neutrons/second
AmBe-Hi encapsulated 432 yr 68.70(74) neutrons/second

Table 2.2: Properties of the SNO AmBe (medium and high rate) sources. The rate was mea-
sured using the PMT array and includes contributions from deuterium photo-disintegration.

2.4.2 Encapsulated 252Cf Source

A 252Cf fission-neutron source encapsulated in an acrylic puck and fixed to a stainless-steel

mounting was used in all three phases of SNO to measure neutron detection efficiency.

252Cf can decay by either α-emission or neutron fission. The californium source was used

primarily due to the possibility of accurately measuring its absolute neutron production

rate [32]. Properties of the source are summarized in Table 2.3.

Source Type Half-life Neutron Multiplicity Source Strength
252Cf encapsulated 2.645 yr 3.7676(47) 16.55(08) neutrons/second

Table 2.3: Properties of the SNO 252Cf source. The source strength is a weighted-mean of
several measurements [32] and adjusted to June 12, 2001.

2.4.3 24Na Distributed Source

In order to measure the response of the detector to a uniform source of neutrons, the heavy

water was ‘spiked’ twice with an activated 24Na brine. 24Na beta-decays to 24Mg with the

emission of two prompt γ-rays with energies of 2.75 MeV and 1.37 MeV. The 2.75 MeV γ-

ray has enough energy to photo-disintegrate deuterium (threshold of 2.2 MeV), effectively

producing a uniform source of neutrons, and happens approximately once for every 385

24Na decays. The 24Na spikes were performed in October 2005 and October 2006. The

strength of the 24Na (about 1 neutron detected per second in the array at the beginning

of the spike) was measured before the spike using different methods [59], including an

encapsulated sample that was counted with the PMT array and compared to 252Cf to set
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the absolute rate, as well as with a germanium detector. The 24Na data formed the basis

for measuring the neutron detection efficiency of the NCD array ([38],[59]).

2.5 Sources of Non-Neutron Backgrounds in the NCDs

This section describes sources of events in the NCDs that are not related to neutron capture.

These include alpha-emitters (from 238U and 232Th chains) and spurious electronic events.

There is also the possibility of β and γ decays depositing enough energy in an NCD to

trigger an event.

2.5.1 Alpha Emitters

Low-levels of 238U and 232Th in the bulk of the NCD nickel and anode-wire result in alpha

events in the NCDs. The alpha-particles from decays in the bulk of the metal have their

energy degraded (as a function of the depth of the emitter) and result in a relatively flat

energy spectrum. A more significant source of alpha events in the NCDs comes from the

plating of 210Po (5.304 MeV alpha-decay) on the NCD-wall surface after exposure to air

contaminated with 222Rn . Figure 2.5 shows the NCD spectrum for the entire array over

the NCD phase, the peak from the 210Po decay at 5 MeV and the peak from neutrons at

764 keV are clearly visible. The apparent position of the 210Po peak is below 5.3 MeV, which

is due to space charge effects (section 3.1.4). The rate of alphas in the neutron energy region

(155 to 800 keV) has been estimated [60] to be 16 ± 1 per day in the 36 3He-filled strings.

2.5.2 Beta and Gamma Events

Electrons can also ionize the gas and produce events in the NCDs. These β-particles can

come from the decays of elements in the 238U and 232Th chain present in the NCD materials

as well as being the result of Compton scattering of γ-rays from the same chains. Electrons

need to travel long distances in the gas to deposit enough energy and the phase space
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Figure 2.5: NCD spectrum from 0 to 6 MeV. One can see the neutron peak at 764 keV over
a background that is primarily due to 210Po . The 210Po peak is shifted down from 5.3 MeV
due to space charge effects (section 3.1.4).
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for them to do so is thus limited (as they need to travel parallel to the wire while being

most likely emitted from the NCD walls). The NCD data has not shown any signs of such

contribution in the energy spectrum shown in Figure 2.5

β-particles produced in the gas are more likely to deposit their full energy (from purely

geometric considerations). Since the 3He was obtained from tritium decay, care was taken

to ensure that the contamination of 3H in the NCDs was small. The end-point energy of the

tritium electron is 18.6 keV which is well below the threshold for analysis (191 keV), however,

there is the possibility of pileup events (multiple events in one string with a total energy

above threshold). As the gas mixture for the NCD was purified, the tritium contamination

was reduced by a factor of almost 400 to 2.7 nCi per liter of gas at STP, which resulted in

a negligible background.

2.5.3 Electronic Events and Low-Level Data Cleaning

The NCD DAQ also triggered on events that were not the result of ionization in the gas.

Such events were generated by thermal noise, micro-discharges, electronic pick-up and HV

breakdown in the PMT and NCD systems. Events that did not trigger both the digitizing

and shaper/ADC paths were discarded in the analysis. More complex cuts based on the

pulse shapes were designed to remove events that had pulse shapes that were inconsistent

with ionization events. Pulse-shape cuts were designed in both the the time and frequency

domains to remove specific events. The sets of cuts in either domain were seen to remove

almost identical fractions of the data. Figure 2.6 shows a class of electronic pulses at-

tributable to discharges in the gas (panel a) as well as the shaper spectrum after successive

data-cleaning cuts are applied (panel b). In particular, one notes that the raw data is dom-

inated by a low-energy peak which has been seen to arise mostly from one string (string 27)

that appeared to have a much larger rate of ‘fork’ events (similar to the one in panel a). It

was noted that some strings had particular classes of events or higher rates of certain event

types (such as string 27 having a large amount of fork events). About half of the strings
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in the array were virtually unaffected by data-cleaning cuts, and are sometimes referred to

as ‘super-clean’ strings. The sacrifice of physical data (neutrons) due to the data-cleaning

cuts was measured with neutron calibration data and seen to be less than 2%.
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Figure 2.6: Panel a) shows a discharge event (‘fork’ event) that most likely took place
inside an NCD. This class of events is cut relatively efficiently by cuts both in the time and
frequency domains. Panel b) shows the shaper/ADC spectrum for a fraction of the NCD
data after data-cleaning cuts have been applied. In this case, the raw data is shown in
black, the data in red is after applying a time-domain based cut for removing fork events,
the magenta line is after the addition of a frequency domain cut for removing fork events
and the blue line shows the spectrum after all pulse-shape based data-cleaning cuts have
been applied.

2.6 Detector Characterization

2.6.1 Stability of the NCD Electronics

The NCD electronic calibration constants (logamp parameters, thresholds, gain and linear-

ity) were measured weekly during the data-taking phase. Additional calibrations were done

during the commissioning-phase over smaller timescales (24 hours) and showed no signifi-

cant variation of the parameters over such timescales. The calibration constants were saved
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in weekly data-banks that were subsequently used to deconvolve the data. Figure 2.7 shows

one example of calibration constants measured string-by-string as a function of time during

the NCD phase. In this case, ‘logamp parameter a’ from equation 2.3 has been plotted for

ten strings (labeled by their names) as a function of run number using scope 1.

2.6.2 Neutron Capture Efficiency

The neutron capture efficiency for the NCD array is defined as the fraction of neutrons pro-

duced uniformly in the heavy water that capture in the detector array. This was measured

[62] by a solution of 24Na dissolved and mixed into the detector (section 2.4.3). The capture

efficiency, ǫNCD
cap was then determined using:

ǫNCD
cap = fnon−unif × fedge ×

Rspike

Aspike
(2.4)

where fnon−unif is a correction factor to take into account the possible non-uniformity of the

24Na brine and was measured by comparing PMT data to Monte Carlo simulations. The

fedge factor corresponds to a Monte Carlo correction that takes into account the possibility

of the 2.75 MeV 24Na γ-ray escaping the heavy water without producing a neutron (for

24Na near the acrylic vessel). Rspike is the rate of neutrons captured by the NCDs, whereas

Aspike is the neutron production rate from the brine (both rates corrected to same reference

time). Values for these parameters are shown in Table 2.4 along with the capture efficiency

for the two 24Na spikes (2005 and 2006) that were carried out. The data from the 2005

spike was used in the published analysis [38] and the 2006 values were used as a verification.

Year fnon−unif fedge Rspike Aspike ǫNCD
cap

2005 0.9812(21) 0.9702(78) 0.2708(34)n/s 1.240(20) n/s 0.2089(73)
2006 0.9812(21) 0.9702(78) 0.1811(24)n/s 0.838(13) n/s 0.2066(73)

Table 2.4: NCD neutron capture efficiency from 24Na and input parameters. The Monte
Carlo correction factors are taken to be the same for the two spikes and the rates are shown
in neutrons per second. This table is reproduced from [62]
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Figure 2.7: Logamp parameter a as a function of run number for ten strings using scope 1.
String I7 was turned off half-way during data-taking. Data shown here is representative of
the overall quality of electronics calibration. This figure was provided by [61].
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2.6.3 Energy Calibration

The absolute scale of the NCD shaper energy spectrum was calibrated monthly using the

AmBe sources. These were deployed using the 3-dimensional source manipulator system

[25] to ‘scan’ the NCD array. The energy scales were then defined using the 764 keV neutron

peak.

2.6.4 Problematic Strings

Although data-cleaning was shown to be successful at removing spurious events from the

NCD data, six strings were singled out due to the poor quality of their data and the impact

they would have on the uncertainties in the final analysis. Table 2.5 shows a summary of the

strings that were removed from the analysis and the reason for their removal. Two of the

strings (0 and 26) were removed due to the presence of unidentifiable events in the neutron

window of the energy spectrum. Although these strings were removed, the spectra of their

events were retained and used to look for similar events at lower rates in other strings (see

section 5.3). String 18 was removed because one of the counters in the strings was observed

to be leaking gas, significantly affecting its gain and energy resolution. It was observed that

the neutron peak in string 8 shifted back-and-forth during the data-taking phase. Finally,

string 1 and 31 had bad resistive coupler connections (Figure 2.2c), confirmed when the

strings were removed from the heavy water at the end of the phase. String 1 completely

disconnected from the DAQ after a seismic event in the mine and string 31 was seen to

intermittently disconnect (for periods of hours), making it difficult to estimate its live-time.

2.7 Summary

This chapter characterized the array of 3He proportional counters that were deployed in

SNO to count neutrons. Analysis of the data from these counters is the primary focus of

this thesis and motivated a detailed description of the electronics and calibrations that were
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String Reason for Removal

0 (N4) Low-energy events in neutron window, sometimes in bursts, particular to this string
1 (M8) Bad resistive coupler connection, difficult to estimate live-time
8 (K7) Unstable gain, observable shift in neutron peak during calibrations
18 (K5) Leaking counter, unstable gain and surface neutron source contaminant
26 (J3) Strange, low-rate events in neutron window. Also, weak resistive coupler connection
31 (K2) Bad resistive coupler connection, difficult to estimate live-time

Table 2.5: Summary of the 3He-strings that were removed from the NCD phase analysis.

performed for these counters to be operated as effectively as possible.



Chapter 3

Neutral Current Detector

Modeling

This chapter aims at characterizing the pulse shapes in the Neutral Current Detectors

(NCDs) recorded by the digitizing oscilloscopes. The intention is to motivate the pulse shape

analysis (PSA) techniques presented in this thesis and give the reader an understanding of

their potential and limitations. The first section will describe the physical processes that

generate the pulse shapes, then the characteristics of neutron and α pulse shapes will be

examined; the chapter will finish by briefly describing how these pulse shapes are simulated

in the SNO Monte Carlo simulation.

3.1 Pulse Shape Generation Processes

This section describes the physical parameters that lead to different pulse shapes in the

NCDs. The pulse shape is a record of the amount of charge (electrons) that comes out of

the anode wire as a function of time, and is thus determined by the location and orientation

of the initial ionization track, the electron drift and avalanche in the gas, the effect of the

ions and the electronics chain.

65
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3.1.1 Ionization Energy Deposition

An event in an NCD begins when a charged particle (α-particle or proton + 3H ion pair)

leaves an ionization track in the gas. Energy deposition is distributed according to a Bragg

curve. Figure 3.1 shows the energy-loss in the NCD gas-mixture (He + CF4 ) for 210Po al-

phas, protons and tritons of maximal energy as a function of energy calculated with SRIM

[63, 64]. The energy-loss in each step is proportional to the amount of ionization created at

that point and hence the amount of charge that is generated at each point on an ionization

track. A full energy alpha will have a track that is about 2.5 cm long , a proton will have a

track that is around 1.5 cm and the triton 0.3 cm .
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Figure 3.1: Bragg curves for 573 keV protons, 191 keV tritons and 5.304 MeV 210Po α-
particles. These show the energy loss in MeV per cm as a function of energy in the NCD
gas-mixture (He + CF4 ). The graphs were made using the SRIM [63, 64] simulation
software.
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3.1.2 Geometry

The proton and triton from neutron capture have energies of 573 keV and 191 keV respec-

tively, whereas α-particles from the decay of 210Po (the main source of α-particles) have a

maximum energy of 5.304 MeV. Compared with the drift speeds of electrons in the NCDs

(it takes about 3.5 µs for a electron to drift 2.5 cm from the wall to the anode) one can, to

a very good approximation, assume that the track is created instantaneously.

The time-profile of the charge-arrival will then depend primarily on the track orientation

and the distribution of charge along it (according to the Bragg curve). Tracks that are

parallel to the anode-wire result in a narrow pulse, since all the primary ionization is the

same distance to the anode and will all arrive there at the same time. Conversely, tracks

that are directed towards the anode will result in the widest pulse shapes. The orientation

can also make the primary ionizing particle hit the wall of the NCD and reduce the amount

of charge deposited.

3.1.3 Electron Drift and Avalanche

The electrons created along the ionization track will drift and cascade when they reach the

region of high electric field, close to the anode. The drift velocity depends on the local

electric field and will increase when the electrons are close to the anode. Measurements [65]

have shown that the drift time as a function of radius can be parametrized by:

tdrift(r) = 3.4µs
( r

2.54 cm

)1.6
(3.1)

where 3.4 µs is the maximum drift time (from the wall to the anode) and 2.54 cm is the radius

of the counter. As the electrons arrive close to the anode (about 1 anode radius, 25 µm ),

they have enough energy to further ionize the gas and create an avalanche of secondary

ionization. This effective gain was measured [65] to be about 220 at the operating voltage

of 1950 V . For the SNO Monte Carlo simulation, the effective gas gain was obtained from

string-by-string calibrations that were carried out monthly with the AmBe (section 2.4.1)
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source.

3.1.4 Space Charge

Depending on the geometry of the track, space charge effects can alter the effective gas

gain. This happens when an avalanche takes place in a region where a previous avalanche

has already occurred; the ions from the first occurrence effectively reduce the local electric

field thereby reducing the gain for the second avalanche. Space charge effects are the largest

for ionization tracks that intersect and are perpendicular to the anode wire, since all the

primary electrons will take the same path to the anode. These effects not only affect the

overall gain in a pulse, but also the time-profile of the charge-arrival, since later parts of the

avalanche will be influenced by the earlier parts. Because of the reduction in gain, space

charge results in a decrease of the charge integral for a pulse (as seen in the downshift of the

210Po peak in Figure 2.5). Space charge effects are notoriously difficult to simulate and a

model with free (tunable) parameters was used in the official SNO Monte Carlo simulation.

3.1.5 Ion Drift

The electrons collected on the anode are attracted to the ion cloud created by the avalanches

so that they cannot immediately leave the NCD. As the ions drift away (much slower than

electron drift), the electrons on the anode are slowly allowed to leave the avalanche region,

which results in an exponential-like decay in the charge-arrival profile, referred to as the

‘ion-tail’. The ion-tail has a large impact on the pulse-shape and washes out some of the

physics characteristics mentioned above. In the SNO Monte Carlo, the effect of the ion drift

is simulated by the Wilkinson function [66].

3.1.6 Electronics Chain

Once the pulse is generated by the ionization event, it is modified substantially by the

electronics. As the charge leaves the avalanche region, some of it travels downwards and
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is reflected by the bottom of the NCDs. Propagation along the NCD wire can be modeled

with a lossy transmission-line and low-pass RC filter. A slight impedance mismatch causes

another reflection at the input of the current pre-amplifier.

The pre-amplifier can be modeled as a combination of low and high-pass RC filters and

a gain of 27500 V/A. The chain from the pre-amplifier to the logamp can be modeled by a

low-pass RC filter, the log-amp can be described using equation 2.3 and another low-pass

RC filter can be used to model the final path to the scope.

3.2 Characteristics from Calibration Data

Using calibration data, one can determine the energy spectra of neutrons and alphas as well

as pulse shape characteristics such as pulse width, amplitude and rise-time (the time on the

leading edge of the pulse from 10% to 90% of the maximum amplitude). These data can

then be used to verify the modelling of pulses. In addition to simply verifying a model, one

can also motivate the use of a pulse shape-based analysis to discriminate between neutrons

and alphas if these distributions are different.

3.2.1 Energy Spectrum Characterization

Figure 3.2 shows the energy spectra for neutrons from the 2005 24Na spike as well as the

spectrum of alphas taken from the 4He strings. It is clear that these distributions are both

a good test of NCD pulse modeling as well as a good tool for extracting the neutron signal

from the NCD data. Indeed, the energy spectra were used to determine the number of

neutrons in the published analysis of the NCD phase [38].



CHAPTER 3. NEUTRAL CURRENT DETECTOR MODELING 70

Energy/MeV
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

200

400

600

800

1000

1200

1400

Neutrons

(a) Neutrons Energy

Energy/MeV
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

10

20

30

40

50 Alphas

(b) Alphas Energy

Figure 3.2: Energy spectra for neutrons and alphas. These distributions are useful for
testing the modeling of NCD data as well as being the basis for extracting the neutron
signal from the NCDs.

3.2.2 Pulse Shape Characterization

Figure 3.3 shows histograms of pulse rise-time, full-width-at-half-max (fwhm) and amplitude

for neutrons taken from the 2005 24Na calibration and alpha particles taken from the 4He-

filled strings. It is clear that the average pulse shape between these particles is different and

that this information can be used in addition to the energy spectra to extract the neutron

signal from the data. The distributions are most different for the rise-time parameter which

is also expected to contain the most information about the original ionization that created

the pulse; most of the later part of the pulse is generated by the ions leaving the anode

wire (the ion tail) and is less characteristic of whether the pulse was created by a neutron

or alpha particle.

3.3 The NCD Monte Carlo

In order to better understand the data from the neutral-current detectors, extensive work

was done to model the entire process of data acquisition in the NCD phase. A complete

Monte Carlo simulation of the NCDs has been produced by the SNO collaboration [67]
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Figure 3.3: Pulse rise-time, FWHM and amplitude distributions for neutrons and alphas
with energies below 1MeV. These distributions motivate the idea of using pulse shape
characteristics to distinguish between neutron and alpha events in the NCDs as well as
to provide a means of testing the NCD Monte Carlo. These pulse shape parameters were
measured on normalized pulses to reduce the effects from the differing energy spectra (the
amplitudes of the pulses (third row) are thus similar between neutrons and alphas).
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[68] and was used to produce probability density functions for the energy spectra of alpha

particles used in the published results [38]. This section highlights some of the features

of the model used for the Monte Carlo simulation. The SNO Monte Carlo simulation was

used for the work in this thesis to model the pulse shapes from alpha particles in order

to supplement the data from the 4He strings which is limited statistically. It is thus of

particular concern that pulse shapes be modeled adequately.

3.3.1 Description of the Model

Many of the features described in this chapter are implemented in the SNO NCD Monte

Carlo simulation. A complete and detailed account of the simulation and verification is

given in [67]. This brief section is aimed at highlighting the features that determine pulse

shapes, that is, the time profile of charge collected from the NCDs.

SRIM 2003 [63] was used to model the loss of energy from alphas particles in the nickel

walls of the NCDs as well as for all particles (alphas, protons and tritons) in the gas region.

In all cases, straight ionization tracks were assumed in the gas as the scattering of the

ionizing particle did not create any significant effect on the pulse shapes. The tracks were

generated in small segments (∼1µm ) and stopped when the particle lost all of its energy or

ran into the wall or anode. Energy straggling was also shown to produce negligible effects

on the pulse shapes.

The electron drift towards the anode was modeled from first-principles and verified with

the Garfield simulation package [69]. The simulation also included time-resolution effects

due to the random nature of the electron drift. The loss of electrons through attachment

processes was shown to be negligible.

A few radii away from the anode, the electrons produce avalanches. Average properties

of the avalanches are determined from the gain in each NCD string. The gains were measured

for each string during AmBe calibration with respect to a reference string and implemented

in the Monte Carlo to simulate all strings. The drift of the ions away from the anode wire
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is an important factor in the pulse shapes. The ion mobility was modeled and verified with

neutron calibrations.

The electronics chain was modeled as described in section 3.1.6. In order to include the

effect of the digitization from the scopes, the amplitude in each time bin of the calculated

pulse was round-off to the nearest integer. Noise was added to the pulses based on measured

frequency spectra of noise taken from calibration runs. Finally, a model for the NCD-DAQ

triggering system was also implemented.

3.3.2 Validation of the NCD Monte Carlo Simulation

Numerous tests [67] were performed to validate the Monte Carlo simulation. The neutron

model was validated by generating 20,000 simulated 24Na events and compared with the

data from the corresponding calibration. This helped to confirm the neutron model as well

as the general electronics and ionization simulations and provided the confidence that alpha

particles could be simulated appropriately.

The alpha-particle simulation was more difficult to validate in the neutron energy region

as the only available data in that region came from the 4He-filled strings, which have low

statistics. All other strings could not produce a pure sample of alpha particles, since these

would be contaminated with neutrons in that energy range. To gain confidence in the alpha

simulation, the Monte Carlo was compared with data at energies above 1.2 MeV, which

is free of neutrons. This was achieved by generating 200,000 210Po and 60,000 238U and

232Th -chain alpha events on all strings. The (real) data from each string was also fit

in order to determine string-by-string proportions of surface (polonium) and bulk (ura-

nium+thorium) contributions. This allowed for a Monte Carlo ‘cocktail’ data set to be

generated that adequately reflected the surface and bulk contributions from each string.

This properly ‘weighted Monte Carlo’ was then compared with the data at energies above

1.2 MeV. The Monte Carlo in the neutron energy region was then verified with the data

from the 4He strings. Figure 3.4a shows an example of a fit to the energy spectrum of string
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4. Panels (b) and (c) of Figure 3.4 show a comparison of real neutrino data and the Monte

Carlo with the weighting factors for all strings taken into account.

(a) Energy fit to string 4

(b) Neutrino data (c) Monte Carlo

Figure 3.4: Panel (a) shows an example of a fit in energy (MeV) to string 4 data (black) in
order to determine the surface (red) and bulk (blue) alpha contributions. Panel (b) shows
real data plotted as a function of energy (x-axis, in MeV) and pulse width (y-axis, defined
at 40% of the maximum amplitude of a pulse). Panel (c) shows pulse width versus energy
(in MeV) for the Monte Carlo, colour coded to show different types of alphas. Green =
Wire Po, Blue = Wire U, Cyan = Endcap Nickel Po, Red = Nickel Po, Magenta = Bulk
U, Grey =Neutrons. Figures were taken from [67].

Figure 3.5 shows a small sample of the verifications that were performed between the

data and Monte Carlo. The top panels compare pulse shape parameters between the neutron

Monte Carlo and the data from the 2005 24Na spike. The bottom panels compare the same

parameters for the weighted Monte Carlo with the data from the 4He-strings. In both cases,
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the Monte Carlo reproduces the general features visible in the data. The work in this thesis

will use a distribution derived from the Monte Carlo alphas (see section 5.2, Figure 5.11b

for the ‘NoverA’ distribution). The particular shape of this distribution will be such that

difference between Monte Carlo and data can be accommodated with a simple scale factor

and that results in a relative ‘robustness’ against small disagreements between the Monte

Carlo and the data.

(a) Neutron model validation using 24Na data

(b) Alpha model validation using 4He data

Figure 3.5: Panel (a) shows the Monte Carlo simulation for neutrons (blue line) compared
with data from the 2005 24Na spike (points with error bars). Three different pulse param-
eters are shown; the mean, width (sigma) and amplitude. Panel (b) shows the comparison
between the same parameters for the alpha model with data from 4He (points with error
bars). The weighted alpha simulation (gray) contains alphas from polonium (red), uranium
(blue) and thorium (green). Figure was taken from [67].
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3.4 Summary

This chapter aimed to give the reader an understanding of the physical processes behind the

pulses recorded by the scopes. The main goal was to motivate the idea that pulse shapes

for neutrons and alphas look different, and this was shown with simple pulse parameters

(such as rise-time and amplitude). Finally, the SNO NCD Monte Carlo was introduced

and motivated, as it will be used in this thesis to generate probability density functions for

alphas.



Chapter 4

The Queen’s Grid Fitter

This chapter describes the main Pulse Shape Analysis (PSA, hereafter) technique developed

by this author to distinguish neutrons from alphas in the NCD data. The Queen’s Grid

Fitter (QGF, hereafter) is designed to select neutron and alpha-like pulses by comparing

the data to a library of calibration neutrons (the ‘neutron library’) and a library of alpha

calibration pulses (the ‘alpha library’). Neutron pulses are available from the large quantity

of neutron calibration data (from the 24Na and AmBe sources) and alpha events can be

obtained from the 4He‘-filled counters which are insensitive to neutrons. This chapter will

introduce the NoverA observable which will be used in conjunction with ADC energy in a

maximum-likelihood extraction of the number of neutrons in the NCD data.

4.1 Introduction to Grid Fitting

This section describes how the grid-fitter operates and how one can quantify its effectiveness

at distinguishing neutrons from alphas. The basic principle is to compare a data pulse-shape

with a library of known shapes (from calibration data) using a chi-squared parameter to

measure similarities.

77



CHAPTER 4. THE QUEEN’S GRID FITTER 78

4.1.1 Pulse Normalization

In order to remove amplitude effects and to maximize the influence of the pulse shape in

distinguishing neutrons from alphas, pulses are normalized to unit area before comparison.

The energy of pulses is used in the comparison between data and library pulses to ensure

that the amplitude of a data and library pulse are similar (as the actual amplitude was

lost in the normalization). The range over which the pulses are normalized is dynamic

and corresponds to the range over which the χ2 is calculated. The choice of range will be

justified in section 4.2.2

4.1.2 Calculating a Chi-Squared Between Two NCD Pulses

The NCD scope events were recorded in histograms (1 ns bins) and are used by the grid-

fitter. The chi-squared between data and library pulses is calculated straightforwardly

using:

χ2 =
Max
∑

i=Min

(

Di − Li

σData

)2

(4.1)

where Di (Li) is the ith bin of the data (library) pulse histogram and σData is the ‘uncer-

tainty’ in the data pulse (defined below). The range (Min,Max) over which the calculation

is done will be justified in section 4.2.2. In this scenario, one assumes that the library pulse

is exact (the model), although, in reality, it also has associated noise and uncertainty. For

this reason, the chi-squared does not satisfy the statistical properties of a rigorous chi-

squared and should be considered a pseudo-χ2 . This thesis will not use the χ2 as an

absolute measure of the probability of being a neutron (or alpha) so this distinction is of

no importance.
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Time-Shifting

In order to account for artificial time shifts in the zero time of the scope traces arising from

the electronics, the pulses are allowed to shift in time during the χ2 calculation. The pulses

are first lined up so that their peaks occur at the same time bin and are then allowed to

shift by ±100 ns until the lowest χ2 is found (and retained).

Defining the Uncertainty on a Data Pulse

The uncertainty in the data pulse, σData, that is used for the χ2 calculation is determined

by measuring the noise rms in the last 3µs of the data pulse. The recorded scope-trace is

15 µs long so that the ion tail has decayed away in the last part of the pulse, as can be seen

in the typical neutron pulse shown in Figure 4.1.
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Figure 4.1: Typical neutron pulse from the 2005 24Na spike. In this case, the pulse is from
string 32 and has an energy of 0.75 MeV. The noise in the last part of the pulse is not likely
to be biased by the ion tail and is a suitable representation of the uncertainty in each bin.
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4.1.3 The Two Libraries of Data Pulses

The QGF technique uses two different libraries of pulses. The first library was designed

to contain almost entirely neutrons (obtained from neutron-source calibrations) and data-

pulses that find a good match in the neutron library are deemed to be neutron-like. Con-

versely, the second library was designed to contain events that are alphas (obtained from the

4He strings), and pulses that find good matches in this library are deemed to be alpha-like.

Due to the large amount of calibration neutron data, one has virtually no restriction

in the size of the neutron library. This allows one to build a library with a chosen energy

spectrum (flat or neutron-like), which will be discussed in section 4.3.2. On the other hand,

the limited amount of data from the 4He-strings severely impacts the size of the alpha

library unless one adds events that are simulated with the Monte Carlo.

4.1.4 Data sets used for Optimizing the Grid Fitter

In order to measure the performance of the grid-fitter in differentiating neutron events

from alpha particles, calibration alpha and neutron data sets will be used throughout this

thesis. The neutron data set was taken from the 2005 24Na spike and consists of 16,659

events isotropically distributed in the detector [59]. The alpha data set was taken from the

4He-strings during the entire SNO-NCD phase (during calibrations and data-taking) and

contains 2,112 events distributed in the four 4He-strings. In the rest of the thesis, these

data sets will be referred to as ‘the’ calibration neutron and alpha data sets unless otherwise

explicitly mentioned.

4.1.5 Observables from the Grid Fitter

This section introduces the observables that arise when a data pulse is compared to a library

using the grid-fitter. These new observables are then associated with each data event, along

with energy and other measurable quantities. One can then either place cuts on these



CHAPTER 4. THE QUEEN’S GRID FITTER 81

observables or use their associated probability density functions (pdfs) to fit for the amount

of signal and background (given the PDFs for signal and background for a given observable).

Best χ2 to Neutron Library, χ2
n

When a data pulse is compared to the neutron library, χ2
n is the lowest χ2 that was found by

comparison to all the pulses in the library. That is, χ2
n is the chi-squared between the data

pulse and the best-matching pulse in the library. If χ2
n is low, then the data-pulse found a

reasonable match in the neutron library; if it is high, then the library is not representative

of the pulse.

Best χ2 to Alpha Library, χ2
α

Similarly, χ2
α is the lowest chi-squared that was found by comparison to the alpha library.

A low χ2
α is then indicative of a good match in the alpha library .

Figure 4.2 shows an example of the χ2
n and χ2

α distributions for the calibration neutrons

and alphas. The distributions for neutrons and alphas appear to be ‘more different’ for

χ2
α than they are for χ2

n , indicating that the former is a better discriminator between

neutrons and alphas. This can be quantified by considering the integral of the distributions

within some range to estimate how they affect the signal (neutrons) to background (alpha)

ratio.

χ2
n/χ2

α “NoverA”

One can combine the information from both χ2
n and χ2

α by using their ratio and it will be

shown that this observable is a powerful discriminator between neutron and alphas. Figure

4.3 shows the distributions of χ2
n/χ2

α for neutrons (red) and alphas (black). This observables

shows the potential to be used either as a cut on the data or for a PDF extraction.
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Figure 4.2: Comparison of χ2
n and χ2

α distributions for neutrons (from 24Na ) and alphas
(from 4He-strings). The distributions shown here have been normalized to unit area. In
the χ2

n distribution, 98% of neutrons and 85% of alphas have χ2
n less than 2.0. In the

χ2
α distribution, 28% of neutrons and 90% of alphas have a χ2

α less than 2.0. It should be
clear from this figure that χ2

n and χ2
α both have potential as discriminators and that χ2

α is
more powerful.
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Figure 4.3: Comparison of χ2
n/χ2

α (“NoverA”) normalized distributions for neutrons and
alphas. 92% of neutrons and 30% of alphas have 0 < χ2

n/χ2
α < 0.7.
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4.1.6 Measuring Optimization of the Grid-Fitter

In order to measure the effectiveness of the grid-fitter in doing PSA, the distributions of the

variables presented in Section 4.1.5 under different regimes will be considered. In particular,

the grid-fitter will be optimized by considering the χ2
n/χ2

α distribution with the aim of

making the distributions for neutrons and alphas as different as possible. Additionally, the

grid-fitter will also be optimized so that the χ2
n/χ2

α distribution for neutrons is as narrow

as possible. This can be quantified by considering the integral of the distributions within

a certain range (essentially, measuring the acceptance that the observables would have if

used as data-cleaning cut).

4.2 Computational Efficiency Optimization for Grid Fitting

The process of running a grid-fitter can be long and such calculations should be optimized.

The number of iterations in calculating the χ2 with equation 4.1 will clearly have an impact

on the amount of CPU-time that is required. In order to minimize the number of iteration

in calculating a χ2 , one can reduce the range over which it is calculated, as well as change

the binning of the pulses before the calculation. In addition to minimizing the number of

iterations in one calculation, one can reduce the effective size of a pulse library by comparing

one data pulse only to pulses in the library that are already similar (decided based on pre-

calculated comparators such as energy, pulse-width, pulse rise-time). This section describes

the optimization of the various parameters that can reduce the amount of CPU time without

significantly affecting the discrimination of the grid-fitter.

4.2.1 Rebinning

Since the data pulses have electronic noise, one is led to consider the possibility of smooth-

ing them. This can be done by either using some smoothing algorithm or rebinning the

data (combining several bins into one, which effectively averages the data). In addition to
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smoothing the pulse shapes, rebinning also results in a faster calculation of equation 4.1,

since there are fewer iterations. Figure 4.4 shows the effect of rebinning a pulse in the

neutron data set by a factor of 50, and the smoothing effect is clearly seen. One needs to

find an optimal value of rebinning that will not wash away physical features of the pulses.

Figure 4.5 shows the the χ2
n/χ2

α distribution for neutrons when the grid-fitter was used with

different values of rebinning for the pulses. The distribution gets wider as the pulses are

rebinned into coarser resolution times, while the peak moves to the left. A rebinning value

of 50 is seen to preserve the distribution while substantially improving the computational

efficiency of the algorithm and will be used as the default value in this thesis.
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(b) Neutron pulse rebinned by a factor of 50

Figure 4.4: Effect of rebinning an NCD pulse. This pulse was taken from the neutron data
set. Rebinning by a factor of 50 smooths the pulse while retaining the principal features.

4.2.2 Fit Range

The PSA observables obtained from the grid-fitter will be affected by the range over which

χ2
n and χ2

α are calculated when matching a pulse to the libraries. Clearly, if the range is

too small, important characteristics in the pulses can be neglected and the benefits of the

pulse shape discrimination could be lost. On the other hand, if the fit range is too long,

parts of the pulse that are not characteristic of neutrons or alphas (such as the ion-tail) will

be over-weighted and could wash out any PSA discriminating power. It is then natural to
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Figure 4.5: χ2
n/χ2

α distribution for calibration neutrons with different values of pulse re-
binning. A pulse rebinning of 1 corresponds to the raw pulse, whereas a pulse rebinning
of 100 corresponds to summing 100 bins into one, and thus reducing the number of bins
in the pulse histogram by that factor. The table on the right shows the integral of the
histograms between 0 and 2. One can see that rebinning the pulses by 50 is reasonable. As
the rebinning is increased, the width of the χ2

n distribution increases and the location of
the peak get closer to zero.
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optimize the range over which the χ2 are calculated. In particular, the rising edge of the

pulse and peak are expected to be most characteristic of the particle that created it, since

those parts are mostly determined by the electrons arriving at the NCD wire. The decay

of the pulse amplitude is mostly determined by the ions moving away from the wire and is

expected to be less of a discriminator between neutrons and alphas.

Figure 4.6 shows the χ2
n/χ2

α distribution for neutrons where the fit range was varied

dynamically both on the rising and falling edges of the pulse. The lowest bin in the fit

range was always taken to be at 10% of the maximum pulse amplitude and the highest bin

in the fit range was taken when the pulse amplitude had decreased by 10, 20, 40, 60 and 80

percent with respect to the maximum amplitude. The best compromise between calculation

speed and efficient use of the pulse shape is achieved when calculating the χ2 until the pulse

has decreased to 40% of its maximal amplitude. If the range is much larger, the distribution

becomes too wide.

4.2.3 Grid Reduction Using Pulse Parameters

In order to avoid calculating a χ2 between a given data pulse and every pulse in the library,

the calculation can be chosen to be carried out only if the pulses are deemed similar enough

based on pre-calculated criteria, such as pulse width, rise time (the amount of time between

when the pulse goes from 10% to 90% of its maximum amplitude), energy (as measured by

the shaper/ADC boards) and amplitude. Figure 3.3 from section 3.2 showed the distribu-

tions of these ‘basic’ pulse shape parameters that were used to define ‘tolerances’ to be met

if two pulses are to be fit. The amplitude of the pulses is related to the energy and was

not used. It was found that using a 20 ns tolerance (between data and library pulse) on the

risetime alone was sufficient to speed up the calculation. From the distributions in figure

3.3 it is clear that the risetime contains more physical information about the pulse than the

other basic parameters.
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Figure 4.6: χ2
n/χ2

α distribution for calibration neutrons (from the 2005 24Na spike) fitted
with different fit ranges in the grid-fitter. The lowest bin in the fit range was determined
dynamically on the rising edge of the pulse at 10% of the maximum amplitude. The highest
bin in the fit range (on the falling edge of the pulses) was determined dynamically as the
location where the trace reaches 10, 20, 40, 60 and 80% of its maximum amplitude. The
table on the right shows the integral of the histograms between 0 and 0.7.
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4.2.4 The Energy Cut

Since pulses are normalized to unit area before the χ2 calculation, information about their

amplitude has been lost in the process. Requiring pulses to have similar energies guarantees

that the pulses have similar amplitudes. The energy tolerance that is required between

pulses has a similar effect in speeding up the calculation as the rise time tolerance. The

energy tolerance can, however, introduce a correlation between the χ2 observables and the

pulse energies (for example, with a small energy tolerance and a neutron library with a

peak, events with energies close to the neutron peak will be more likely to have a good χ2
n ).

Clearly, correlations between PSA observables and energy should be avoided at all costs,

since energy will be used as an observable in the data analysis.

Figure 4.7 shows the χ2
n/χ2

α distributions for neutrons and alphas that were fit using an

0.1 MeV (red) and 1 MeV (black) tolerance between data and library pulses (requiring that

the library and data pulse be within ± the tolerance of each other). Although the higher

energy tolerance allows pulses to find a better match in a library (in terms of chi-squared),

this is offset by the fact that, for example, neutrons will also find better matches to the

alpha library. It turns out that the distribution of χ2
n/χ2

α for neutrons is better (narrower

and more to the left) with the smaller energy tolerance. This is somewhat compensated by

the fact the alpha distribution is slightly better (wider and more to the right) for the 1 MeV

tolerance. The difference in shape of the distribution between neutrons and alphas is most

different for the 0.1 MeV tolerance; this choice also provides a substantial increase in speed

of the algorithm and is used for the remainder of this work.
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Figure 4.7: χ2
n/χ2

α distributions for neutrons and alphas fitted with different tolerances on
the energy between data and library pulses. For neutrons, 92% of events have χ2

n/χ2
α <0.7

for an 0.1 MeV tolerance and 72% for a 1MeV tolerances. This is offset by the fact the
for an 0.1 MeV tolerance 25% of alphas are below χ2

n/χ2
α = 0.7 versus only 15% with the

1 MeV tolerance

4.3 Optimization of the Neutron Library

4.3.1 Choice of the Library Size

The size of the neutron library is an obvious consideration in optimizing a grid-fitter; if it is

too small, it is not representative of possible neutron shapes and if it is too large, it will not

be computationally efficient. Additionally, the effect of allowing neutrons and alphas to find

a good match should be balanced, as a larger library will make it more likely for either type

to find a matching library pulse. In this section, the neutron and alpha χ2
n/χ2

α distributions

are considered as a function of neutron library size. In each case, the library was generated

using data from the 2005 24Na spike and pulses were selected in order to make the library

have a flat energy spectrum (the energy spectrum of the library is discussed in the next

section). Figure 4.8 shows the χ2
n/χ2

α distribution for calibration neutrons (from the 2005

24Na spike) fitted to neutron libraries of different sizes. The distribution becomes narrower

as the library size increases (more pulses are finding good matches) until the library contains

around 20,000 pulses, which is the size chosen for the rest of this work. Figure 4.9 shows
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the χ2
n distribution for alphas as well as the integral between 0 and 2 for χ2

n . It can be

seen that alphas are also more likely to find a better match in a larger neutron library, as

anticipated.
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16,208 89%
19,258 92%
25,392 92%

(b) Fraction of neutron events between
χ2

n/χ2
α =0 and 0.7, for the different size

neutron libraries

Figure 4.8: χ2
n/χ2

α distribution for calibration neutrons (from the 2005 24Na spike) fitted
to neutron libraries of different sizes. As the size of the library increases, more pulses find
good matches and the distribution becomes narrower. The table on the right shows the
integral of the histograms between 0 and 0.7.

4.3.2 Choice of the Library Energy Spectrum

If the energy spectrum in the neutron library has a peak (as the neutron spectrum in Figure

2.1), any pulse is more likely to find a match if it has an energy close to the peak, simply

due to the larger phase space of available pulses. In turn, this can bias the energy spectrum

of selected pulses and create a correlation between the pulse-shape parameters and energy.

Figure 4.10 shows the energy spectrum of neutrons (panel a) and alphas (panel b) after the

use of a PSA variable to cut the data; only events with χ2
n/χ2

α < 0.7 were kept. The black

lines show the spectra when the PSA variables were calculated using a neutron library with

a flat energy spectrum and the red curves were calculated using a neutron library with a
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Figure 4.9: χ2
n/χ2

α distribution for alphas fitted to neutron libraries of different sizes. As the
size of the library increases, more pulses find good matches and the distribution becomes
narrower. The table on the right shows the integral of the histograms between 0 and 0.7.

neutron spectrum. It is clear that the spectrum for the alpha particles passing this PSA

cut have inherited a neutron peak when the neutron library also contains that peak and an

unwanted correlation has been introduced. The neutron library was thus generated with a

flat energy spectrum by using the data from the 2005 distributed 24Na calibration source.

This was achieved by taking almost all of the pulses in the tail of the energy spectrum and

randomly selecting events in the peak.



CHAPTER 4. THE QUEEN’S GRID FITTER 92

Energy/MeV
0 0.2 0.4 0.6 0.8 1

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Flat neutron library

Library with neutron spectrum

(a) Neutrons

Energy/MeV
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16
Flat neutron library

Library with neutron spectrum

(b) Alphas

Figure 4.10: Normalized spectra for neutron and alphas after a PSA cut selecting events
with χ2

n/χ2
α < 0.7. In one case (black line) the PSA variable was calculated using a neutron

library with a flat energy spectrum. One notes that in the case where the neutron library
has a neutron spectrum (red line) the energy spectrum of the background (shown here with
alpha particles in panel b) is biased towards having a neutron peak.

4.4 Optimization of the Alpha Library

The alpha library is chosen to represent alpha backgrounds in the NCDs as accurately as

possible. The events from the 4He strings are an obvious candidate for use as the library.

These can potentially be supplemented with events generated by Monte Carlo simulation

of alpha particles to increase the statistics in the library.

4.4.1 Choice of Alpha Events

In this section, the use of pulses from the 4He -strings to build the alpha library is motivated

by considering the χ2
n/χ2

α distribution. It is shown that the inclusion of Monte Carlo

generated pulses into the alpha library does not add any valuable discrimination power to

χ2
n/χ2

α . Figure 4.11 shows the χ2
n/χ2

α distribution for neutrons (panel a) and alphas (panel

b) compared for two different alpha libraries; the black curve shows the case when the alpha

library is made from 4He strings events and the red curve shows the case when the library
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has been supplemented by Monte Carlo alpha events1. Although the data + Monte Carlo

alpha library is more efficient at discriminating alpha events (evidenced by the integral

between 0 and 0.7), it is clear the difference in shape of the distribution between neutrons

and alpha events is greatest when the alpha library is composed of only events from the

4He strings. The rest of this work thus uses an alpha library that contains only events from

the 4He strings.
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Figure 4.11: χ2
n/χ2

α distributions for neutrons and alphas fitted with different alpha library
made from data alphas (black) and including Monte Carlo events (red). For neutrons, 92%
of events have χ2

n/χ2
α <0.7 for the data library and 90% for the data + Monte Carlo library.

For the alphas, 30% have χ2
n/χ2

α below 0.7 when fitted to the data-only library, versus 23%
with the data + Monte Carlo library.

4.5 Summary

This section introduced the use of a grid-fitter (the ‘Queen’s Grid-Fitter, QGF) to analyze

the scope traces from the NCDs. QGF uses a set of neutron scope traces from the 2005

24Na neutron calibration (the neutron library) and a set of alpha events from the 4He -filled

detectors (the alpha library) to use in a comparison with a given data pulse.

The comparison of data pulses to all pulses in a library is done by calculating a χ2 and

1The set of Monte Carlo events were obtained from N. Oblath [70], and were generated on a grid in
parameter space that is representative of all possible alpha events.
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the lowest value for each library (χ2
n for the neutron library and χ2

α for the alpha library)

is retained to qualify the data pulse. A low value of χ2 is then indicative of the similarity

of the pulse with a given library. It was shown that χ2
n and χ2

α can be efficiently combined

into one variable, their ratio, χ2
n/χ2

α (“NoverA”), which was then shown to be effective in

discriminating neutrons from alpha events. The NoverA variable was then used to moti-

vate the way in which the QGF fitting is done and will be used in a maximum-likelihood

extraction of the number of neutrons in the NCD data.



Chapter 5

Probability Density Functions for

NCD Data

In this chapter, the uncertainty in the shape of NCD probability density functions (‘pdfs’,

hereafter) for energy and NoverA is characterized. Both of these quantities have different

probability density distributions for different classes of signals. Four classes of signals are

considered: neutrons, alphas and two types of pathological events, as determined from the

data in strings 0 and 26. This chapter shows how the pdfs and uncertainties in their shape

are obtained for use in a maximum-likelihood analysis of the data (described in chapter 6)

which will then be the basis for the analysis of the NCD-phase data presented in this work.

The various pdfs will be defined as histograms and the uncertainties on the shapes will

be handled by applying scale, shift and resolution functions to the histograms. This method

allows the pdf shapes to be distorted continuously and the extent of the distortion will be

constrained by calibration data.

95
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5.1 Neutron Probability Density Functions

The neutron probability density functions for ADC energy and NoverA are obtained by

considering the 24Na and AmBe neutron calibration data. The pdfs are then defined with

their uncertainties so that they agree with all calibration data. Since the data were taken

with neutron sources with different rates and at different times during the NCD phase, this

method will provide a good test of any such possible influences, as well as characterizing

any effect from the position of the neutron sources in the detector.

5.1.1 Energy

Figure 5.1a shows the energy spectra from all AmBe-Hi calibration scans along with the

spectra from the 2005 and 2006 24Na spikes. The AmBe data were collected in ‘scans’ of the

point source that approximate an equal volume weighting of the detector to provide similar

calibrations to the 24Na solutions. Statistical error bars are shown for each data set and are

seen to be comparable. The overall neutron energy pdf is determined by considering the

average of these calibration spectra and is shown in Figure 5.1b. For each bin, the average

bin content, µ̂, was found using a simple average over each data set:

µ̂ =
1

N

N
∑

i=0

µi

(5.1)

where µi are the bin contents for the N different data sets. In obtaining the average neutron

energy pdf, it has been assumed that the 24Na data and the AmBe calibration scans both

measure the neutron energy spectrum of the NCD array exposed to a uniform neutron

source. It will be seen later in this section that the AmBe data and 24Na agree very well.

In order to determine systematic uncertainties in the shape of the pdf, ‘deformation

parameters’ are applied and then constrained by calibration data. These deformation pa-

rameters allow the pdf to change shape by applying a scale, shift and resolution to the
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Figure 5.1: Determination of neutron energy pdf. Panel a) shows the ADC energy spectra
with statistical uncertainties for all AmBe-Hi scans as well as the two 24Na spikes. The neu-
tron energy pdf is taken as the histogram with the average bin content from the calibration
data and is shown in panel b).

x-axis. A function, f(energy), is built by (linearly) interpolating from the average his-

togram. One can then fit for the scale, shift and resolution function by fitting the function

f(scale ∗ (energy + shift))⊗Norm(scale ∗ (energy + shift), resolution) to the calibration

data (where Norm(µ,σ) is the normal distribution and is convolved with f() to simulate an

energy resolution function).

The fit for scale, shift and resolution are performed using a Markov-Chain-Monte Carlo

fitter developed by this author and described in chapter 6. Figure 5.2 shows an example of

the fitter applied to the energy spectrum of the data from the 2006 24Na spike where the

scale, shift and resolution were determined simultaneously. The data are shown with error

bars, the interpolation function is shown in blue and the histogram with the deformation

parameters applied (from which the interpolation function was created) is shown in red.

The scale, shift and resolution parameters that were determined by this fit (summarized in

Table 5.1) do not cause any perceptible deformation.

Since the deformation is very small, one can limit the number of deformation parameters.

In particular, the resolution is essentially zero, leaving only scale and shift, which are, in

turn, almost exactly correlated. Hence, it is sufficient to fit the neutron energy spectrum
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Figure 5.2: Example fit for energy scale, shift and resolution to the data from the 2006
24Na spike. The data were fit to the function f(scale ∗ energy + shift) ⊗ Norm(scale ∗
energy + shift, resolution) using the MCMC fitter described in chapter 6. The data are
shown with error bars, the interpolation function is shown in blue and the histogram with
the deformation parameters applied (from which the interpolation function was created) is
shown in red. The parameters that were determined by this fit do not cause any perceptible
deformation to the original pdf (not shown).
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with a floating scale, holding shift and resolution both fixed to zero. Table 5.1 shows a

comparison of the resulting scale that is fit out, depending on whether or not the shift and

resolution are fixed, for the two 24Na spikes (from 2005 and 2006).

The results from the 24Na data can be validated with AmBe calibration data. As the

AmBe data were taken more frequently than the 24Na spikes, it can be used to monitor for

the time stability of the deformation parameters. In addition, since the AmBe was deployed

as a point source, it can be used to check for any variations in the neutron response as a

function of position in the detector. The response of the whole detector is, however, better

measured by the uniform neutrons from 24Na as this avoids a complicated volume weighing

of the AmBe data. Nonetheless, the AmBe data were collected in a way to keep the volume

weighing as accurate as possible and provides a valuable consistency check. Each AmBe

run from the AmBe-Hi calibration source were also fit for a scale, shift and resolution, as

well as for a scale with the resolution and shift fixed to zero.

The fitted scales, shifts and resolution fitted for each run are shown in the left panels

of Figure 5.3, whereas the right panels show the data averaged over the scans. Figure 5.4

shows the case where only a scale parameter was fit (resolution and shift were set to zero).

The average, µ̂ and uncertainty, σ̂, for each scan was calculated using

µ̂ =
1

N

N
∑

i=0

µi

σ̂ =

√

∑

(µi − µ̂)2

(N − 1)

(5.2)

where N is the number of runs in each scan and µi is the measured parameter in a given run.

No systematic variation is seen between scans, indicating that the deformation parameters

are stable over time. In addition, it is clear that using only a scale parameter results in a

much more stable constraint, as the correlation between the shift and scale is removed.

The values and uncertainties for scale, shift and resolutions from the set of AmBe-Hi
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Data Scale Shift Resolution

2005 24Na 1.0213(55) -0.0133(13) 0.00030(03)
2005 24Na 1.0053(05) fixed fixed
2006 24Na 1.0249(39) -0.0161(29) 0.00023(10)
2006 24Na 1.0034(03) fixed fixed
AmBe-HI 1.0280(110) -0.0180(61) 0.00047(01)
AmBe-HI 1.0030(50) fixed fixed

Table 5.1: Neutron energy scale, shift and resolution uncertainties for the different data.
The case when only a scale parameter is more stable and will be retained for describing
the systematic uncertainty in the neutron energy pdf. In order to remain conservative, the
value from the AmBe data (last line) is used as the neutron energy scale central value and
uncertainty.

calibration data are found by creating a histogram of the data from the left panels as shown

in Figure 5.5. For each parameter, a value and uncertainty is determined by fitting a normal

distribution.

Table 5.1 summarizes the fitted energy scale, shift and resolution for the 24Na and AmBe

data. The values for scale, shift and resolution are consistent between the data sets when the

three parameters are fit simultaneously. Fixing the shift and resolution parameters to zero

results in a more accurate estimate of the scale parameter which, however, disagrees between

the two 24Na spikes. Since these parameters represent extremely small deformations of the

pdf, the conservative choice of using the value from the AmBe data (which agrees with

both 24Na ) still maintains a very small overall uncertainty in the neutron energy scale. In

the final analysis of the data, the neutron energy pdf will be deformed using only a scale

parameter with the constraint of being equal to 1.0030 ± 0.0050.
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Figure 5.3: Determination of neutron energy scale, shift and resolutions using AmBe-Hi
data. The left panels show run-by-run fits and the right-side panels show the parameters
averaged over the scans using equation 5.2. These plots corresponds to the results when
scale, shift and resolution are determined simultaneously. The grouping of the points on
the left-side figures shows points from a same scan.
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(a) Fit for only energy scale by run
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Figure 5.4: Determination of neutron energy scale using AmBe-Hi data. The left panels
shows the run-by-run fit and the right-side panel shows the parameters averaged over the
scans using equation 5.2. The grouping of the points on the left-side figures shows points
from a same scan.

5.1.2 NoverA

This section details how the neutron pdf for NoverA is determined. The NoverA variable for

each event corresponds to the χ2
n/χ2

α ratio that was introduced in chapter 4. The neutron

pdf for NoverA is determined using the same procedure as was used for the energy pdf.

The NoverA pdfs from the different AmBe-Hi scans as well as the 24Na spikes are shown in

Figure 5.6a; the average value in each bin was then used to determine the central value of

the neutron NoverA pdf, shown in panel b).

The systematic uncertainty in the NoverA pdf shape is also determined by deforming it

with scale, shift and resolution parameters. These parameters can again be estimated by

fitting the 24Na and AmBe-Hi data. An example of such a fit for the 2006 24Na data is

shown in Figure 5.7; the resulting fitted values are summarized and compared to the case

where only a scale parameter is used in Table 5.2. Once again, it is seen that using only a

scale is sufficient to properly account for the possible deformation of the neutron pdf.

The fits for NoverA scale to AmBe-Hi data were performed for each calibration run

and the resulting fits are shown in Figure 5.8a for each run and in panel 5.8b averaged for
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Figure 5.5: Determination of neutron energy scale, shift and resolution uncertainties using
AmBe-HI data. The allowed ranges in the deformation parameters are determined by
creating a histogram of the data from Figure 5.3 and fitting normal distributions. The
ranges of the parameters are summarized in Table 5.1. The first three panels (abc) show
the results for the case when all three deformation parameters are fit simultaneously and
the last panel (d) shows the case when only a scale parameter was used.
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Figure 5.6: Determination of neutron NoverA pdf. Panel a) shows the NoverA pdf with
statistical uncertainties for all AmBe-Hi scans as well as the two 24Na spikes. The neutron
NoverA pdf is taken as the histogram with the average bin content from the calibration
data and is shown in panel b).
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Figure 5.7: Example fit for NoverA scale, shift and resolution to the data from the 2006
24Na spike. The data were fit to the function f(scale ∗ (NoverA + shift))⊗Norm(scale ∗
(NoverA + shift), resolution) using the MCMC fitter. The data are shown with error
bars, the interpolation function is shown in blue and the histogram with the deformation
parameters applied (from which the interpolation function was created) is shown in red.
One should note that the parameters that were determined by this fit do not cause any
perceptible deformation.
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each scan using equation 5.2. There is no evidence for any systematic shift of the neutron

NoverA scale parameter with time. The resulting value for NoverA scale and its uncertainty

averaged over all the AmBe data is obtained by creating a histogram of Figure 5.8a and

fitting a normal distribution, as shown in Figure 5.9.
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Figure 5.8: Determination of neutron NoverA scale, shift and resolutions using AmBe-HI
data. The left panel shows run by run fits and the right-side panel shows the parameter
averaged over the scans using equation 5.2.

The distribution of Figure 5.9 results in a rather large uncertainty in the NoverA scale

parameter as determined from the AmBe data. This can be attributed to the non-uniform

volume weighting that is a result of the AmBe being a point source. In particular, if the

fitted scale parameter is examined as a function of Z-position in the detector, as in Figure

5.10, there is a clear trend for higher fitted scale for lower Z position. This is consistent

with pulse shapes depending on the location of the event in the NCD string, as this will

result in different reflections off the bottom of the counters. In considering the data from

the AmBe scans, one must then include this as an uncertainty which results in the rather

inaccurate measure of the scale parameter shown in Figure 5.9.

Table 5.2 summarizes the results for the deformation parameters extracted from the

neutron calibration data. Both 24Na data sets agree with each other and the AmBe data

when only a scale parameter is used. The larger uncertainty on the AmBe data is the result
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scaleh
Entries  323
Mean    1.083
RMS    0.03303
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Constant  2.3±  31.1 
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Figure 5.9: Determination of neutron NoverA scale with uncertainties using AmBe-HI data.
The allowed ranges in the scale is determined by creating a histogram of the data from Figure
5.8a and fitting a normal distribution. The results are summarized in Table 5.2. There is
a clear tail in the distribution to higher values of the scale which increase the uncertainty
substantially. This is due to the slight bias from the Z-position of the AmBe source as
evidenced in Figure 5.10
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Figure 5.10: Neutron NoverA scale as a function of Z position of the AmBe source. There
is a clear trend in higher fitted scale for lower values of Z, consistent with the fact that
reflections off the bottom of the NCDs will alter the pulse shapes.
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Data Scale Shift Resolution

2005 24Na 1.016(08) -0.005(04) 0.0010(02)
2005 24Na 1.071(07) fixed fixed
2006 24Na 1.049(27) -0.010(01) 0.0010(01)
2006 24Na 1.077(03) fixed fixed
AmBe-HI 1.084(31) fixed fixed

Table 5.2: Neutron NoverA scale, shift and resolution and uncertainties for the different
neutron calibration data. The AmBe data were fit with only a scale deformation parameter
and agrees with the 24Na data. The final fit will use the value from the 2005 24Na data.

of a non-uniform volume weighing of the NCD array and is a conservative estimate. The

final fit will thus use only a scale parameter to deform the neutron NoverA pdf and be

constrained to be equal to 1.084 ± 0.031, as measured with the AmBe data, which has a

larger uncertainty.
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5.2 Alpha Probability Density Functions

Due to the relatively small amount of 4He data, the alpha pdfs need to be determined with

the help of the Monte Carlo NCD simulation described in chapter 3. The procedure for

determining the alpha pdfs with systematic uncertainties will be analogous to the procedure

used for the neutrons; in this case, the large amount of neutron calibration data are replaced

by Monte Carlo data combined with the 4He data. The uncertainties will thus reflect the

variation between the Monte Carlo and data.

The Monte Carlo alpha events can look quite different for different types of alpha sources;

for example the energy deposition (and pulse shape) of an alpha decay from a nucleus

embedded in the NCD wall is quite different from that of a nucleus deposited on the surface

of the anode wire (to take two extremes). The amount of each type of alpha source (eg.

surface versus bulk) was determined from a fit to the energy spectrum of the data [67]

(described in chapter 3) and these contributions are taken into account when building a

‘weighted Monte Carlo’ pdf.

The alpha pdfs for energy and NoverA are built by combining the pdfs from the different

type of alpha particles. The uncertainties on the pdf are again determined by using scale,

shift and resolution parameters that will be constrained by the agreement with the data from

the 4He strings. In addition to making the weighted Monte Carlo agree with the 4He data,

the allowed ranges for the scale, shift and resolution parameter are further determined by

varying systematic uncertainties on the inputs to the Monte Carlo pdfs themselves. The

full set of available Monte Carlo data with which to test the pdfs is shown in table 5.3. It

includes alpha particles from 238U , 232Th and 210Po deposited on the NCD walls, NCD

wires and NCD endcaps. In real data, roughly 99% of the alphas come from the wall of

the NCDs, and these are the only ones that are used in the determination of the ‘weighted

monte-Carlo’ alpha pdfs. In addition to the different types of alphas, the data set from table

5.3 also contains wall NCD alphas that were generated with different ‘input parameters’ to
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Label MC Alpha Type Label MC Alpha Type

1 endcap Po 16 Sc Scale Po
2 endcap Th 17 Sc Scale U
3 endcap U 18 E-drift(-) U
4 surface Po 19 E-drift(+) U
5 bulk Th 20 E-drift(-) Th
6 bulk U 21 E-drift(+) Th
7 wire bulk 22 E-drift(-) Po
8 wire Po 23 E-drift(+) Po
9 Depth Po 24 ionmobility(+) Th
10 Depth Th 25 ionmobility(-) Th
11 Depth U 26 ionmobility(+) U
12 Sc gradient Po 27 ionmobility(-) U
13 Sc gradient Bulk 28 4He Data
14 Sc offset Po
15 Sc offset U

Table 5.3: Types of alphas generated by the Monte Carlo [67]. Types 1-8 are ‘central value’
simulations, whereas the others have had ‘input parameters’ of the Monte Carlo modified.
The weighted average of Monte Carlo data contains only types 4-6, which are determined
to represent 99% [67] of the data in the neutron energy ranges. Systematic studies will
however compare the weighted Monte Carlo pdf to all 27 types of Monte Carlo alphas as
well as the 4He data.

the Monte Carlo. These input parameters cover the depth of the alpha emitting materials,

parameters describing the electron avalanche (gradient, scale and offset from a Diethorn

model) as well as electron and ion drift constants. These are described in detail in [67].

5.2.1 Energy

The energy pdf is determined by using the Monte Carlo data, where the contributions from

different types of alphas are weighted appropriately [67]. Energy fits to the different strings

in energy ranges above the neutron peak were performed and used to determine string-by-

string fractions of the types of alphas. It was shown that the contributions from wire and

endcap alphas could safely be ignored for an analysis in the neutron energy region. The

weighted Monte Carlo thus only contains contributions from the surface (polonium) and
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bulk (uranium and thorium) components.

The uncertainty in the pdf is then modeled as a scale and shift of the x-axis as well as a

convolution with a (gaussian) resolution function (in the same manner as the neutrons pdfs

were treated). The ranges of the scale, shift and resolution parameters are determined by

deforming the Monte Carlo pdf to agree with the 4He data.

Figure 5.11a shows the energy pdfs for the Monte Carlo alphas (types 1-8) as well as

the 4He data, panel b) shows the Monte Carlo spectrum when the different contributions

are weighted in appropriately, whereas panel c) shows the fit of the weighted Monte Carlo

pdf (with a scale, shift and resolution applied) to the 4He data. The deduced values for

scale, shift and resolution are summarized in Table 5.4.

The resolution is much smaller than the width of the bins and has no effect, so that it may

be ignored. In addition, the scale and shift parameters are very correlated and effectively

only trade-off with each other to match the discrepancy at the low energy threshold between

the Monte Carlo and the data. For this reason, it is, again, suitable to deform the alpha

energy pdf using only one parameter; either a scale or a shift. The shift and scale parameters

when fit individually are also shown in Table 5.4. The fitted scale is very far from 1 and

does not make much physical sense, whereas the shift parameter is much more convincing.

In order to gain confidence in the constraint of the energy scale or shift deformation

parameter, the different types of alphas (table 5.3) that the Monte Carlo group generated

can also be examined. The fits for scale and shift on those alpha data sets (types 1-28)

are shown in the left panels of Figure 5.12. The 4He data (the last point on the graphs)

gives the largest deformation from the Monte Carlo based pdf. This is not surprising as the

mismatch appears to come from a different threshold in energy between data and Monte

Carlo. The results are summarized in table 5.4.

For the ensemble of Monte Carlo data, the scale, shift and their uncertainties were

deduced by fitting a normal distribution to the histogram of the values in the left panels of

Figure 5.12. As the shift parameter disagrees less with the Monte Carlo and makes more
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Figure 5.11: Determination of alpha energy pdf uncertainty with 4He . Panel a) shows
the energy spectra of the different types of central run Monte Carlo alphas (types 1-8)
along with the 4He data, although only the bulk and surface alphas (types 4-6) are used
to determine the weighted Monte Carlo pdf. Panel b) shows the spectrum of the weighted
Monte Carlo compared to the data from the 4He strings. In panel c), the weighted Monte
Carlo pdf is fit to the 4He data using a scale, shift and resolution. The main difference
between the Monte Carlo and the data is a shift in the low energy threshold.
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sense physically, it will be used to deform the alpha energy pdf. A conservative approach

dictates taking a shift parameter than can vary within the range -0.075-0.00 to cover the

range from the Monte Carlo and 4He data. Using this range as a 1σ bound, the alpha

energy shift parameter constraint will be taken as −0.038 ± 0.038. This seemingly large

uncertainty is however not expected to influence the number of neutrons very much, as it

essentially only ‘slides’ the alpha pdf (which is quite flat) along the energy axis, and is the

result of a different threshold between the Monte Carlo and the data.
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(d) Histogram of fitted energy shift by MC type

Figure 5.12: Determination of alpha energy scale and shift with the ensemble of Monte
Carlo data. The points are ordered in the same fashion as in table 5.4. The last point in
the graph is from the 4He data. The point from the data disagrees with the Monte Carlo
points because of differing energy thresholds between the two. In both cases, the scale or
shift parameter were fit as a single deformation parameter. Using only a shift produces a
better agreement between the 4He data and the Monte Carlo.
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Data Scale Shift Resolution
4He 0.978(48) -0.070(15) 0.007(11)
4He 0.650(04) fixed fixed
4He fixed -0.075(05) fixed
MC ensemble 0.932(44) fixed fixed
MC ensemble fixed -0.023(05) fixed

Table 5.4: Alpha energy scale, shift and resolution uncertainties as determined by fitting
the 4He data to the weighted Monte Carlo pdf as well as the available ensemble of Monte
Carlo alphas. The alpha energy scale and shift from 4He disagree with the Monte Carlo
due to a shift in threshold that can be seen in Figure 5.11. Since the shift agrees better, it
will be used as the deformation parameter. This results in a large uncertainty in the alpha
energy shift, taken to lie between -0.075 and 0 so that it agrees with the 4He data and the
Monte Carlo ensemble.

5.2.2 NoverA

The alpha pdf for χ2
n/χ2

α is determined in exactly the same way as the energy pdf. The

NoverA pdf for the different Monte Carlo alphas and the 4He data is shown in Figure 5.13a

and the weighted Monte Carlo NoverA pdf is shown in panel b). The fit of the Monte Carlo

pdf with scale, shift and resolution applied is shown in Figure 5.13c and panel (d) shows the

fit with only a scale applied. In this case, it is clear that the NoverA pdf for the Monte Carlo

is quite different than it is for the 4He data. The Monte Carlo is considerably narrower than

the data, which results in a large resolution to be fit out. However, the resolution, scale and

shift end up being very correlated as seen in the 2D likelihoods plotted in Figure 5.14. The

shape of the pdf is quite ‘simple’ and Figure 5.13d shows that a scale parameter is, in fact,

sufficient to model the change in shape between the Monte Carlo and the 4He data. The fit

quality is slightly worse, as there is less freedom in deforming the pdf but it still produces

a good fit and a more accurate constraint on the scale. The fitted values are summarized

in Table 5.5.

Again, in order to gain confidence in the measurement of the alpha NoverA scale, the

ensemble of Monte Carlo data (types 1-28) is examined. Figure 5.15 shows the fits for

the NoverA scale to the ensemble of Monte Carlo data. A large variation in scale is seen
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Figure 5.13: Determination of alpha NoverA pdf uncertainty. Panel a) shows the NoverA
pdf of the different types of alphas modeled in the Monte Carlo as well as the 4He data;
the (un-deformed) weighted Monte Carlo alpha pdf and the data from the 4He strings are
shown in panel b). Panel c) shows the weighted Monte Carlo pdf fit to the 4He data using
a scale, shift and resolution; the correlation between these parameters is seen in Figure
5.14. Panel d) shows the weighted Monte Carlo pdf fit to the 4He data using only a scale.
Although the quality of fit in panel (d) is not as good as in panel (c) it is still acceptable
and justifies the use of only a scale parameter to deform the alpha NoverA pdf.
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Figure 5.14: These figures show the correlations between the fitted scale, shift and resolution
from the fit in Figure 5.13c. These plots are made by creating a histogram of the parameters
at each step in the MCMC chain (described in chapter 6) and are thus proportional to the
marginalized likelihood as function of the pair of parameters. The obvious slope in the
functions reveals a large correlation between the scale, shift and resolution.
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although it is consistent with the value from the 4He data. The outliers in Figure 5.15 come

from types of alphas that are not a large contribution to the data (such as alpha decays in

the endcaps and wire); hence, giving them equal weight in the histogram may seem overly

conservative. It should be however noted that, although the Monte Carlo was designed to

model pulse shapes, it was not ‘vetted’ as extensively for that aspect as it was for creating

the energy pdf. Oblath [70] nonetheless used the pulse shapes from the Monte Carlo in his

doctoral thesis and carried out numerous verifications. It is the philosophy of the present

work that allowing the pdf to fluctuate with little constraint on the alpha NoverA scale

parameter allows for imperfection in the alpha pulse shape Monte Carlo to be taken into

account. Thus, the constraint on the alpha NoverA scale parameter will be taken from the

Monte Carlo result, as it agrees with the value from 4He data but has a larger uncertainty.

The alpha NoverA scale will be taken as 0.967 ± 0.079
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(b) Histogram of fitted NoverA scale by MC type

Figure 5.15: Determination of alpha NoverA scale with the ensemble of Monte Carlo data.
The points are ordered in the same fashion as in table 5.4. The last point in panel (a) is
from the 4He data.
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Data Scale Shift Resolution
4He 0.951(33) -0.042(24) 0.144(37)
4He 0.890(10) fixed fixed
MC ensemble 0.967(79) fixed fixed

Table 5.5: Alpha NoverA scale, shift and resolution uncertainties as determined by fitting
the 4He data to the weighted Monte Carlo pdf. The value of NoverA scale from the MC
ensemble is chosen as the constraint for the analysis, as it agrees with the 4He data and
yields a conservative estimate.

5.3 Pathological (NNNA) Event Probability Density Func-

tion

Two types of events in the NCD data have been identified that do not have the character-

istics of neutrons or alphas. These ‘non-neutron-non-alpha’ (NNNA) events were seen in

strings 0 and 26 and identified by a distortion of the energy spectrum of those two strings.

Since it has not been possible to determine a physical explanation for these events, it has

been assumed that similar events could be present at a lower rate in other strings. For this

reason, pdfs in energy and NoverA are determined for both classes of events, which will be

referred to as nnna0 and nnna26 events.

The only way of determining pdfs for these events is by comparing the energy spectrum

of the bad strings with the spectrum for the rest of the NCD array. If one subtracts the

‘normal’ spectrum from that of the problematic strings, one is left with the desired pdf.

The only issue is where to perform the normalization of the spectra before the subtraction;

since the single strings presumably have a different ratios of surface to bulk alpha emitter

contamination, the normalization should not necessarily be done, for example, about the

5 MeV 210Po peak.

Figure 5.16 shows the energy spectra of the two problematic strings normalized from

1 MeV to 3 MeV compared with the spectrum from the rest of the NCD array. The NNNA

events are clearly visible in both strings as the peaks at low energies, around 0.2 MeV.
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Figure 5.16: String 0(a) and 26(b) energy spectra normalized between 1MeV and 3 MeV
compared with energy spectrum from the ‘good’ strings in the NCD array. The NNNA
events are characterized by the bump in the energy spectra at low energies (around 0.2 MeV).
One must be careful in where the spectra are normalized since individual strings are likely
to have different amounts of 210Po contamination (the peak at 5MeV).

5.3.1 Energy

The energy pdfs with uncertainties are determined by subtracting the average NCD array

spectrum from the energy spectrum of the offending strings (0 and 26). In order to account

for different proportions of 238U , 232Th and 210Po between the offending strings and the rest

of the array, the subtraction is performed with different normalizations. The normalizations

are taken in 4 different energy ranges that change the weighing of the 210Po peak. This

results in 4 different energy pdfs for each string (shown in panel (a) of Figures 5.17 and

5.18). The energy pdf for each string is obtained by taking the average of the four spectra.

Since the statistical uncertainties in each bin are large, these are taken into account when

calculating the average value in each energy bin, µ̂, and the uncertainty in each energy bin,

σ̂:

µ̂ =

∑ µi

σ2
i

∑ 1
σ2

i

σ̂ =
1

√

∑N
i=0

1
σ2

i

(5.3)
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Panel (b) of Figures 5.17b and 5.18 show the resulting energy pdf for nnna0 and nnna26

events with error bars. In order to quantify systematic uncertainties, one does not have the

ability to constrain deformation parameters, in the same way as was done for neutrons and

alphas, since there is not enough data to impose such a constraint. Most of the uncertainty

is the result of the low statistics in each bin.

Barlow and Beeston have resolved the problem of using pdfs with low statistics [71].

Their approach was to treat the bin values as parameters in the likelihood fit that are

Poisson distributed about the bin centers. Since the ultimate (correct) values in each bin

for the pdfs are not required, an effective integration over the possible (allowed) pdf shapes

can be performed. The bootstrap method [72] is a way to perform this integration. In

the bootstrap method, the integration over possible pdfs is performed by drawing new pdfs

from the original pdf. That is, a new pdf can be built bin-by-bin by choosing a value based

on the bin value and error of the original pdf. A novel approach is adopted in this thesis

that reconciles the philosophies from both methods. The NNNA pdfs will be constructed

as the linear combination of 10 random (bootstrap) pdfs drawn from the original pdf with

uncertainties. The likelihood fit will then float the coefficients of the linear combination.

The procedure adopted in this thesis is described in more detail in 6.2.3.

5.3.2 NoverA

The NoverA pdf for the two type of NNNA events is obtained in a similar way as energy.

Since these NNNA events are distinguishable in energy, the normalizations for the subtrac-

tion is done in energy. The NoverA pdfs are then obtained by subtracting the NoverA

pdf for the NCD array from those of the offending strings, using the same 4 different nor-

malizations as for the energy pdf. This results in the variations in the NoverA pdf and

uncertainties shown in Figures 5.19 and 5.20 for nnna0 and nnna26 events, respectively.

Again, an average pdf with uncertainties in each bin is calculated and will be used in the

likelihood extraction to draw random pdfs.
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(a) Energy spectrum of nnna0 events for different
normalizations
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Figure 5.17: Determination of nnna0 energy pdf uncertainty. Panel a) shows the energy
spectra (with statistical uncertainties) for string 0 NNNA events for different normalization
between the string 0 spectrum and the average spectrum from the NCD array. Panel b)
shows the resulting pdf with systematic uncertainties that take into account the variations
from panel a) using equation 5.3.
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(a) Energy spectrum of nnna26 events for different
normalizations
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Figure 5.18: Determination of nnna26 energy pdf uncertainty. Panel a) shows the energy
spectra (with statistical uncertainties) for string 26 NNNA events for different normalization
between the string 26 spectrum and the average spectrum from the NCD array. Panel b)
shows the resulting pdf with systematic uncertainties that take into account the variations
from panel a).
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Figure 5.19: Determination of nnna0 NoverA pdf uncertainty. Panel a) shows the NoverA
distribution (with statistical uncertainties) for string 0 NNNA events for different normal-
ization between the string 0 energy spectrum and the average energy spectrum from the
NCD array. Panel b) shows the resulting pdf with systematic uncertainties that take into
account the variations from panel a).
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Figure 5.20: Determination of nnna26 NoverA pdf uncertainty. Panel a) shows the NoverA
distribution (with statistical uncertainties) for string 26 NNNA events for different normal-
ization between the string 26 energy spectrum and the average energy spectrum from the
NCD array. Panel b) shows the resulting pdf with systematic uncertainties that take into
account the variations from panel a)

.
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5.4 Summary

This chapter introduced the technique for determining the pdfs and their systematic uncer-

tainties for the energy and NoverA observables. Four classes of signals (neutrons, alphas,

nnna0s and nnna26s) were examined for use in the maximum-likelihood extraction of the

NCD data. The average pdfs were built as histograms. For neutrons, different types of

calibration data (AmBe and 24Na ) were used to determine a spread in the possible shapes

of the pdfs, and it was shown that all reasonable shapes can be accommodated by the ap-

plication of a simple scaling of the x-axis. For alphas, the variation in the pdfs was taken

to agree with Monte Carlo events and data from the 4He strings. It was shown that a shift

parameter was sufficient to encompass the uncertainty in the shape of the energy pdf and

a scale parameter was suitable for the NoverA pdfs. Finally, pdfs were obtained based on

pathological events that were detected in strings 0 and 26. The pdfs for these types of

events were obtained by comparing the spectra of the offending strings with the average

NCD array. Since the uncertainty in these pdfs is primarily due to statistics, the pdfs will

be handled in a way that is inspired by a combination of the Barlow-Beeston and bootstrap

methods. Figure 5.21 shows a comparison of the energy and NoverA pdfs for all four sig-

nals highlighting the differences that neutrons have from the other signals. The difference

between neutrons and the other three signals is clearly increased by the additional use of

the NoverA observable.
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Figure 5.21: Energy and NoverA pdfs with uncertainties for neutrons, alpha, nnna0 and
nnna26 events. The difference between neutrons and the other signals in this two-parameter
space is seen clearly.



Chapter 6

Description of

Markov-Chain-Monte Carlo Fitting

In this chapter, the techniques for parameter determination used in this thesis are intro-

duced. The motivation is to present the framework that will be used to analyze the NCD

data and, ultimately, determine the number of neutrons with their uncertainty. It will be

shown that a Bayesian approach using a Markov-Chain Monte Carlo (MCMC) is well suited

for this classical parameter determination problem. The chapter starts by presenting the

framework for parameter estimation using extended maximum-likelihood then introduces

the Bayesian approach and the MCMC method. The extended maximum-likelihood func-

tion will be built using the pdfs for the energy and NoverA observables that were introduced

in the previous chapter.

6.1 Parameter Fitting

The ultimate goal of this analysis is to determine the number of neutrons in the NCD data

using the available observables and signals to create a model. The observables that are

used in this analysis are energy and NoverA and the signals are, (n, α, nnna0, nnna26): the

124
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number of neutrons, the number of alphas and the number of NNNA events, respectively.

These two observables and four signals will be used to model the data by creating a likelihood

function for the contribution of each of the four signals, which become the parameters of the

problem. In addition to the four parameters that are desired, several ‘nuisance’ parameters,

~µ, will also be introduced to model systematic uncertainties; the final values of the signals

will have to take into account the correct marginalization over these parameters (within

their constraints from calibration data, if applicable). Examples of the nuisance parameters

are the deformation parameters for the pdfs that were introduced in chapter 5. The vector,

~p, will be used to represent the entire set of signal and nuisance parameters.

It should be noted that the ‘systematic parameters’ will be floated and the data will be

used to constrain these. This ‘floating systematic uncertainties’ approach is a consistent

way to handle systematic uncertainties [73] and takes into account the fact that the model

for the data ought to be constrained by the data (and not only the calibration data used to

make the model). Thus, the deformation parameters for the pdfs, although constrained by

the analysis in chapter 5, will be considered here as floating parameters of the model. This

section describes how the likelihood function is constructed.

6.1.1 Probability Density Functions

In order to use maximum-likelihood techniques, one requires a way of assigning the proba-

bility of a certain signal to have a certain value of an observable. For example, PE
n (E|~µ)dE

will be defined to be the probability for a neutron to have an energy between E and E+dE,

where the function depends on the systematic deformation parameters, ~µ. PNoverA
n (χ|~µ)dχ

will be the probability of a neutron to have NoverA between χ and χ + dχ. The functions

PE
n (E|~µ) and PNoverA

n (χ|~µ)dχ must satisfy the requirements of probability density functions
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(pdfs) and must therefore be normalized such that:
∫

AllE
PE

n (E|~µ)dE = 1

∫

Allχ
PNoverA

n (χ|~µ)dχ = 1 (6.1)

(6.2)

where the limits on the integrals extend over the entire range of the function (as opposed to

just the fit range). Since there is no analytical model for the pdfs, these must be determined

from data. In chapter 5, histograms to approximate the desired functions were obtained and

the probability density functions are then built from these histograms. In order to avoid

discontinuities that come from the size of the histogram bins, the pdfs are constructed by

using a linear interpolation1 from the center of the histogram bins, after the histogram has

been normalized to have a unit area. The systematic deformation parameters can then

be included in the interpolated histogram to give the actual probability density function.

Figure 6.1 shows an example of the neutron energy pdf histogram along with the linear

interpolated pdf, PE
n (E) (no deformation parameters applied).

6.1.2 Maximum Likelihood

In a maximum-likelihood fit (see, for example [35], [74], [75]) for the parameters ~p using

the data, D, one needs to calculate the likelihood, L (D|~p), of the data given the model

(i.e. a choice of the parameters). The data consists of a set of N events which each have a

measured value of energy, Ei, and NoverA, χi. Because the events are independent of each

other, the likelihood of the entire data is the product of the likelihoods, P (Ei, χi|~p), of each

event i:

L (D|~p) =
N
∏

i

P (Ei, χi|~p) (6.3)

1Using a linear interpolation preserves the normalization of the histogram
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Figure 6.1: Example of interpolation for the neutron energy pdf. The histogram is normal-
ized such that the sum of each bin content times the bin width is equal to 1 and the pdf
function is then a linear interpolation between the bin centers.

The likelihood of each event is obtained by adding the probabilities that it is from each of

the classes:

P (Ei, χi|~p) = n′ × Pn(Ei, χi|~µ) + α′ × Pα(Ei, χi|~µ)

+ nnna0′ × Pnnna0(Ei, χi|~µ) + nnna26′ × Pnnna26(Ei, χi|~µ) (6.4)

where the probabilities for each class depend on the systematic parameters, ~µ and the

dependence on the signal parameters (n′, α′, nnna0′, nnna26′) is shown explicitly. One

should note that the signal parameters in this expression are fractions (denoted by the

apostrophe) constrained such that they sum to 1; for example, the fraction of neutrons in

the data, n′, is defined as n′ = n/N . Pn(E,χ|~µ)dEdχ is then the joint probability of a

neutron having an energy between E and E + dE and NoverA between χ and χ + dχ. In

the case where the observables for energy and NoverA are uncorrelated (see section 7.4 for

tests of the correlation between energy and NoverA), one can factor the joint probability
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Pn(E,χ|~µ) into the product of the 1-dimensional pdfs obtained from the histograms of the

previous section:

Pn(E,χ|~µ) = PE
n (E|~µ) × PNoverA

n (χ|~µ) (6.5)

One then wants to maximize L (D|~p), with respect to the parameters and find the value of

~p that corresponds to the location of ‘maximum-likelihood’:

dL (D|~p)

d~p
= 0 (6.6)

In practice, it is more convenient to work with the logarithm of the likelihood, L(D|~p) =

log(L (D|~p)), which will have the same extrema as the likelihood but is computationally

easier to work with:

L(D|~p) = log (L (D|~p))

= log

(

N
∏

i

P (Ei, χi|~p)

)

=
N
∑

i

log (P (Ei, χi|~p))

=

N
∑

i

log
(

n′ × Pn(Ei, χi|~µ) + α′ × Pα(Ei, χi|~µ)

+ nnna0′ × Pnnna0(Ei, χi|~µ) + nnna26′ × Pnnna26(Ei, χi|~µ)
)

(6.7)

It is then standard practice to work with the negative log-likelihood, −L(D|~p) so that this

becomes a minimization problem instead of a maximization.

6.1.3 Extended Maximum-Likelihood

The derivation of the likelihood function assumed that the model for the data predicted an

exact number of events, N ; that is, of the four signal parameters, (n, α, nnna0, nnna26),

only three were independent, since they need to sum to N . One can lift this restriction if one

uses the ‘extended maximum-likelihood’ formalism, where it is assumed that the outcome

(i.e. the number of events) of one particular experiment (the one being analyzed) is just one
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of several possible outcomes that are Poisson distributed about some mean predicted from

the model. The probability, P exp(N,Nmodel), of one particular experiment having N events

then depends on the number of events in the model, Nmodel = n + α + nnna0 + nnna26,

according to the Poisson distribution:

P exp(N,Nmodel) =
NN

modele
−Nmodel

N !
(6.8)

The likelihood of the data, L (D|~p), must then be multiplied by P exp(N,Nmodel), and the

(positive) log-likelihood contains an extra term:

L(D|~p) =
[

N
∑

i

log
(

P (Ei, χi|~p)
)

]

+ log
(

P exp(N,Nmodel))

=
[

N
∑

i

log
(

P (Ei, χi|~p)
)

]

+ N log(Nmodel) − Nmodel − log(N !)

=
[

N
∑

i

log
(

P (Ei, χi|~p) × Nmodel

)

]

− Nmodel

=
[

N
∑

i

log
(

n × Pn(Ei, χi|~µ) + α × Pα(Ei, χi|~µ)

+ nnna0 × Pnnna0(Ei, χi|~µ) + nnna26 × Pnnna26(Ei, χi|~µ)
)

]

− (n + α + nnna0 + nnna26) (6.9)

where the term log(N !) has been dropped since it is a constant that will not affect where

the maximum-likelihood is located and the fractions from equation 6.7 have been multiplied

by Nmodel so that the only parameters left are the actual number of events from each signal

(n = n′×Nmodel), and not the fractions. By using the extended maximum-likelihood the sum

of the signal parameters is no longer restricted to be N . The last term in equation 6.9 serves

as a normalization and restricts each signal from becoming infinitely large (without this

term, there would be no absolute maximum, since the likelihood would increase indefinitely

with the signals).
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6.1.4 Fit Ranges and Normalizations

Care must be taken in correctly normalizing the pdfs when ‘fit ranges’ are applied to the

data; that is, when the likelihood is only calculated for events within a certain range of an

observable. For example, it will be of interest to study the number of neutrons depending

on the energy range that is chosen to fit the data. In particular, it must be guaranteed that

the same number of neutrons is inferred by looking at data from 0.4

,MeV.to 1

,MeV.as for the entire range of energies (so that the fit range may be optimized for the

analysis). In order to simplify the derivation, a notation is introduced to rewrite equation

6.9 as:

L(D|~p) =

N
∑

i

log





M
∑

j

ajP
j( ~E)



−
M
∑

j

aj (6.10)

where j is a sum over the M types of signals, aj (={(n, α, nnna0, nnna26)}), and P j( ~E) is

the joint probability for a certain type of signal to have a set of observables ~E.

It is of interest to maintain the values of each signal, aj, independent of the cuts that

are applied to the data. An example of a cut on the data would be to keep events that have

an energy between 0.4

,MeV.and 1

,MeV.as well as NoverA between 0.1 and 5. Cuts are implemented such that events need

to satisfy cuts in all observables in order to be kept.

Let the (potentially multi-dimensional) cut in observables be defined by keeping events

between ~Emin and ~Emax. ‘Pass fractions’, fj, can be defined for each class of event:

fj ≡
∫ ~Emax

~Emin
P j( ~E)d~E

∫

All ~E P j(~E)d~E
(6.11)

such that

aCut
j = fj × aj (6.12)
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where aCut
j is the amount of signal j in the cut data. In the case of uncorrelated observables,

the fj are the product of integrals over each 1-dimensional pdf. If a cut is applied to the

data, the sum over N events in equation 6.10 becomes a sum over the number of events that

pass the cuts, NCut, and the aj should be replaced by aCut
j . In addition, the probabilities,

P j( ~E), in equation 6.10 need to be normalized over the cut range. If the normalizations

from equation 6.1 are retained, then probabilities in equation 6.10 need to be replaced by

P j( ~E)/fj (which normalizes them in the cut range) so that the likelihood is now given by:

L(D|~p) =

NCut
∑

i

log





M
∑

j

aCut
j P j( ~E)/fj



−
M
∑

j

aCut
j

=

NCut
∑

i

log





M
∑

j

fj × ajP
j(~E)/fj



−
M
∑

j

fj × aj

=

NCut
∑

i

log





M
∑

j

ajP
j( ~E)



−
M
∑

j

fj × aj (6.13)

and the effect of applying the cuts to the data only modifies the last term and involves a

simple calculation to determine the pass fractions, fj. Thus, in equation 6.13, aj correspond

to the signals within the whole (uncut) data and P j( ~E) are normalized over the entire range.

6.2 The Inclusion of Systematic Uncertainties

In chapter 5, systematic uncertainties in the shape of the pdfs were introduced by allowing

the pdfs to be deformed using a set, ~µ, of scale, shift and resolution parameters applied to

each pdf. As an example, the case for the neutron energy pdf is worked out here. If the

interpolating function from the histogram is denoted by I(E), the neutron energy pdf with
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systematic parameters, PE
n (E|Sn, On, σn) is given by:

PE
n (E|Sn, On, σn) = g (Sn(E + On), σn) ⊗ I (Sn(E + On))

=

∫

AllE′

1

σn

√
2π

exp

(

− (E′ − Sn(E + On))2

2σ2

)

I
(

Sn(E + On) − E′
)

dE′

(6.14)

where Sn is the scale, On is the shift (offset) and σn is the width of the convolution gaus-

sian, g(Sn(E + On), σn). The convolution integral was explicitly written out in the second

line. Once the pdf from equation 6.14 is used in the likelihood calculation, the systematic

deformation parameters become variables, just like the signals. The allowed ranges for the

parameters that were obtained with the calibration data in chapter 5 will be included when

the prior probabilities are discussed in section 6.4.

6.2.1 Deforming the PDFs

Implementing the systematic uncertainties can then be done straightforwardly using equa-

tion 6.14 each time the likelihood is calculated for a set of systematic and signal param-

eters. Each time the pdf is rebuilt, it also needs to be re-normalized. The only issue is

the (lengthy) computation of the convolution to regenerate the pdf each time the likelihood

function needs to be evaluated. In practice, one can make the convolution reasonably fast

using a few simple approximations:

• Instead of integrating over the entire range of the observable, one can limit the integral

to within ±3σ of the central value when generating the convolved pdf

• If the width of the gaussian is small compared to the bin width of the original his-

togram, the convolution can be ignored

One should note that this method of deforming the pdf does not require rebuilding the pdfs

from the data that was used to create it; instead the deformation is, in fact, applied to

the interpolating function. In the case where there is a resolution, this is the only way to
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proceed. However, it was seen in chapter 5 that all the pdfs can be handled with the use

of only a scale or shift parameter. In such a scenario, it is possible to avoid rebuilding the

pdf altogether and apply the systematic parameters to the data.

6.2.2 Deforming the Data - No Resolution

Since the deformation of the pdf is applied to the interpolating function (to where it is

evaluated), one can bypass the regeneration of the pdf by simply applying the deformation to

the data points. This is particularly straightforward in the case where there is no resolution

function applied, which is shown in this section.

The idea is that instead of using the deformation parameters to rebuild PE
n (E|Sn, On, σn =

0), one can just evaluate the un-deformed pdf at a shifted/scaled data point PE
n (Sn(Ei +

On)). This will however affect the normalization of the pdf, which must be preserved. In

the case where the pdf is rebuilt, it can easily be re-normalized at the same time by simply

computing its integral. In the case where the deformation parameters are applied to data

the normalization can be preserved analytically.

In the case of rebuilding the pdf, the normalization is:
∫

AllE
PE

n (E|Sn, On, σn = 0)dE = 1 (6.15)

where the integral is over all energies. In the case with the deformation applied to the data,

it is required that:
∫

AllE
PE

n (Sn(E+On))dE = 1 (6.16)

If one introduces a simple change of variables, E′ = Sn(E + On), the integral becomes:
∫

AllE
PE

n (E′)SndE′ = 1 (6.17)

This preserves the normalization of the pdf up to the scale factor, Sn.

Looking back at the likelihood equation 6.13, this results in a few simple changes that

can be incorporated by:
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• Calculating the fj with the different limits on the integral in equation 6.11. One should

now integrate from Sn(Emin + On) to Sn(Emax + On), and use the same likelihood

function

• PE
n (E|Sn, On, σn = 0) should now be replaced with Sn × PE

n (E′) in the likelihood.

As was just shown, the pdf needs to be multiplied by the scale factor to preserve the

normalization

6.2.3 Handling the NNNAs (pdfs with low statistics)

Since the pdfs for the NNNA events cannot be deformed continuously with a parameter,

they need to be handled differently. In this case, the pdf is a histogram with uncertainties

in each bin and any result will have to be integrated over the full range of allowed variations

of the pdf. This integration can be done by using a different pdf each time the likelihood

is calculated. These pdfs need to be generated such that they cover the range of shapes

allowed by the histogram with the errors in each bin. A randomized pdf can be generated

by filling each bin with a number drawn from a normal distribution centered about the bin

content with a width equal to the uncertainty in that bin.

Figure 6.2a shows an example where 10 different pdfs were randomly generated from

the nnna26 energy pdf (from Figure 5.18b of chapter 5), by drawing numbers from a normal

distribution. Interpolated pdfs from the random histograms are shown in black, whereas

the original histogram with errors is shown in red. It can easily be argued that most of these

pdfs are unphysical as they allow big fluctuations between neighboring bins. Any physical

process ought to have a smoothly varying pdf, where the bins are correlated. This can be

achieved by applying a resolution function (a gaussian smoothing). It is then reasonable to

take a resolution (width of the gaussian smoothing function) of the same order as the bin

width to smooth out the function. The effect of applying a resolution of the same size as

the bin width is shown in panel (b) and leads to a much more convincing set of pdfs.



CHAPTER 6. DESCRIPTION OF MARKOV-CHAIN-MONTE CARLO FITTING 135

0 0.2 0.4 0.6 0.8 1

0

0.5

1

1.5

2

2.5

3

(a) 10 random pdfs

Energy/MeV
0.2 0.4 0.6 0.8 1 1.2

0

0.5

1

1.5

2

2.5

3
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Figure 6.2: 10 randomized pdfs (black) drawn from the average nnna26 energy pdf (red,
with bin errors). In panel (a) the 10 black pdfs were interpolated from 10 histograms that
were drawn by randomly sampling the bin contents of the (red) average pdf. In panel (b),
a resolution of the same size as the bin width was applied to the black pdfs to make them
smooth. All curves are normalized.

The rest of this chapter will introduce the Markov Chain Monte Carlo method for

performing the fit for the signals. It will be shown that the parameter estimation can be

implemented by sampling the likelihood function. Thus, if a different NNNA pdf is used

each time the likelihood is estimated, an effective integral over all the possible pdfs will be

performed. This can be trivially implemented. The process can be made computationally

efficient by generating a finite set (10 or so) of pdfs before the fit and choosing from that

small set at random during the computation. This avoids building a random histogram

each time the likelihood is evaluated.

The method for handling the systematic uncertainty in the shape of the NNNA pdf can

be improved by giving different weights to the random pdfs; of the 10 curves that were

generated in Figure 6.2, some will presumably be more representative of the data than

others. This can be implemented by creating a new pdf which is a linear combination of

the 10 randomized pdfs. The coefficients of the linear combination can then be treated as

parameters of the model in the likelihood function. The maximum-likelihood fit will then

yield values for the these coefficients which can then be used to generate the ‘most likely
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pdf’, based on the data. In addition, the linear combination method allows the pdf to be

deformed continuously as the parameters are varied. The analysis in this thesis will thus

use a floating linear combination of random pdfs (drawn from the original histogram with

uncertainties) to handle the systematic uncertainty in the shapes of the NNNA pdfs.

6.3 The Bayesian Approach

In this thesis, a Bayesian approach is adopted for analyzing the data. The main philosophy

comes from Bayes’ theorem, which can easily be derived from simple probability rules [74]:

P (X|Y ) =
P (Y |X) × P (X)

P (Y )
(6.18)

where P (X|Y ) is the conditional probability of X given Y , and P (X) is the probability of

X. The usefulness of Bayes’ theorem is that it allows for inversion of the arguments in the

conditional probability.

For the purpose of data analysis considered in this thesis, one is interested in the prob-

ability, P (~p|D), of the model parameters, ~p, given the data, D. Bayes’ theorem then allows

that probability to be calculated by using the likelihood of the data given the parame-

ters, P (D|~p). The probability of the parameters, P (~p), which is often called the ‘prior’,

depends on the knowledge that was available before the experiment. Such knowledge can

be embodied by the simple proposition that the number of neutrons cannot be negative,

or more complicated propositions obtained from calibration data. Finally, the term P (D)

is the probability of the data and is sometimes given the name ‘evidence’; however, since

it does not depend on the model parameters, it only serves the purpose of a normalization

constant2.

2One should note that this term cannot be ignored when different models are considered, for example
when comparing models with a different number of parameters. However, in this case, only the parameters
within the model are varied and it follows that ‘evidence’ can be ignored [76]
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Using the notation from this thesis, Bayes’ theorem can be written as:

P (~p|D) ∝ P (D|~p) × P (~p) (6.19)

where the normalization from the evidence has been dropped. Equation 6.19 can then be

interpreted as giving the probability of the parameters after analyzing the data. Philo-

sophically, this is a very powerful statement that provides a guideline for analyzing data;

it embodies the idea that the previous knowledge about the parameters, P (~p), is improved

by using the data (in the form of the likelihood function) and resulting in the ‘posterior’

knowledge about the parameters, P (~p|D).

The goal is then to determine P (~p|D) as a function of ~p to obtain the value of the

parameters as well as their uncertainties. The standard approach (in the literature) has

often been to use a minimizing algorithm to search for the minimum of the negative log-

likelihood and then search the nearby area of parameter space to determine 1σ errors on the

parameters. The Bayesian approach adopted in this thesis will be philosophically different

in that the goal will be to determine the posterior distribution functions for each parameter

and infer the values of the parameters from those ‘posteriors’. For example, if one is

interested in the number of neutrons, the quantity of interest will be P (n|D) which is given

by marginalizing (i.e. integrating) the function P (~p|D) over all parameters:

P (n|D) =

∫

n × P (~p|D)d~p (6.20)

Section 6.5 introduces the MCMC method for obtaining the posterior probability distribu-

tions and interpreting them.

6.4 The Prior Distributions

The prior distributions will be used to quantify the knowledge about the model parameters

that was available before analyzing the data. There are essentially two categories of prior

knowledge that are available when applied to the problem considered in this thesis:
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• Signal Priors: This should embody the prior knowledge about the amount of signals

(neutrons, alphas, NNNAs) in the data. In the most ‘ignorant’ approach, one can, at

least, say that these signals should not be negative. In that case, one assigns a ‘flat

prior’ where all amounts of signals are equally probable but any negative signal gives

a probability of zero.

• Systematics Priors: This part of the prior knowledge is meant to include calibration

data. In this case, looking back at chapter 5, it was shown that the deformation

parameters for the pdfs can be constrained by calibration data to lie within certain

ranges. This part of the prior distribution is sometimes included in the likelihood and

referred to as a ‘constraint’ or ‘penalty function’; the inclusion of the information as

a Bayesian prior is perhaps more appealing, philosophically.

It will be assumed that the parameters in the prior distribution are uncorrelated so that

P (~p) can be factored:

P (~p) =

M
∏

i

P (pi) (6.21)

as the product of the priors on the M parameters.

Although one could, in principle, make estimates of the amounts of signals contained in

the data, the only prior will be to impose that signals cannot be negative. It is clear that

by using the previous results from SNO and other solar neutrino experiments to fix the flux

of neutrinos, one could constrain the number of neutrons that are produced in the detector.

However, this would make the result of the present analysis correlated with the previous

results and is thus avoided here. One should however note that this is exactly the method

that should be used to combine the results of the different experiments or phases of SNO.

The prior probability for the deformation parameters will be modeled using a normal

distribution. The ranges determined in chapter 5 are then used to define the ±1σ span of

the normal distribution. If parameter, pi is restricted to lie between pmin and pmax, then
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P (pi) is given by:

P (pi) = Norm(pavg, σi) (6.22)

where Norm() is the normal distribution, pavg = 1/2(pmin + pmax) and σi = 1/2(pmax −

pmin). The posterior distribution is then the product of the likelihood with all the prior

distributions. Throughout the remainder of the thesis, unless specified, the words ‘likeli-

hood’ and ‘posterior distribution’ will be used loosely, in the sense that they will refer to

the product of the likelihood and the priors. This simplification in terminology will bridge

the gap between a Bayesian approach and other methods of analyzing data. Although the

approach used in this thesis is technically Bayesian, references to ‘fitting for parameters’

and ‘minimizing the likelihood’ will be made.

6.5 Markov Chain Monte Carlo ‘Fitter’

This section presents the Markov Chain Monte Carlo method that will be used for the

parameter estimation problem that was posed in the beginning of the chapter. The solution

has historically been obtained by using minimization techniques that are widely discussed

in the literature [77]. However, these minimization algorithms often suffer from limitations

that cannot always be resolved by increasing computing power. Of course, of primary

concern is the ability to properly sample parameter space in the case where there is a

large number of parameters. Then, there is the fear of being ‘stuck’ in local minima of

the likelihood function and, finally, the fact that the likelihood space is not smooth, due to

the likelihood function being constructed using real data with real statistical fluctuations.

Minimizing techniques, which are based on estimating local derivatives to find a minimum,

can easily fail when the likelihood function is not smooth.

It will be argued that the MCMC technique presented here will eliminate at least some

of the concerns that arise from minimization algorithms. The trade-off for more accurate

parameter estimation will be at the expense of CPU needs. It will be however seen that,
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with the advent of reasonably sized computer farms (100 CPUs), computational issues are

irrelevant.

6.5.1 Monte Carlo Techniques

One should recall that the ultimate goal is to evaluate the posterior distribution function

for neutrons, P (n|D), given by equation 6.20:

P (n|D) =

∫

n × P (~p|D)d~p

That is, one needs to integrate the posterior distribution for the parameters, P (~p′|D), over

all parameters. The posterior distribution is itself the product of the likelihood function,

P (D|~p), and the prior distribution functions, P (~p). The bottom line is that one needs to

compute a very complicated integral in order to obtain P (n|D):

P (n|D) =

∫

n × P (D|~p)P (~p)d~p (6.23)

The difference with a minimization technique is stressed once again; whereas minimizing

algorithms try to minimize the function − log (P (D|~p)P (~p)), the Bayesian approach requires

one to map out the function and integrate it. This is a much greater task (computationally)

but also has a greater payoff: one obtains the posterior distribution for the parameter of

interest with all correlations (with other parameters) properly integrated

Monte Carlo integration has been around for a long time ([78], [75]) and can be imple-

mented easily. The idea is to use Monte Carlo simulation to calculate the expectation value

of the number of neutrons, 〈n〉:

〈n〉 =

∫

n × P (~p|D)d~p (6.24)

using the basic theorem of Monte Carlo integration:
∫

n × P (~p|D)d~p ≈ V
1

N

N−1
∑

i=0

ni × P (~xi|D) (6.25)

where N independent points, ~xi, have been drawn uniformly from a volume, V , that encloses

all of parameter space. This simple technique is however inefficient, since it can easily spend
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a large amount of time sampling points in parameter space that do not contribute to the

integral. The obvious remedy to this problem is to draw the ~xi from the distribution

P (~p|D) itself, which will then make the process efficient. This modification is known as

‘importance sampling’, but has the caveat that drawing random, independent numbers from

a complicated, multi-dimensional function is difficult in itself. In the case of importance

sampling, where the ~xi are drawn from P (~p|D), the expectation value 〈n〉 is trivially given

by:

〈n〉 =
1

N

N−1
∑

i=0

ni (6.26)

6.5.2 The Metropolis-Hastings Algorithm

The Metropolis-Hastings algorithm ([39], [40]) is a way to generate a sample of points drawn

from the distribution P (~p|D). This is achieved by obtaining a sequence of ~xi that are not

independent but are, however, properly distributed according to P (~p|D), which is sufficient

to evaluate equation 6.26.

The algorithm to generate the sequence of ~xi uses a ‘proposal distribution’, q(~xi+i, ~xi),

which generates the next point in parameter space, ~xi+1 using the current point, ~xi. In

this thesis, the proposal distribution will be taken as a multivariate gaussian such that each

component of ~xi+1 is drawn from a gaussian about the corresponding component of ~xi using

a different gaussian width for each component, ~σ.

The Metropolis-Hastings algorithm for generating the sequence of ~xi goes as follows:

• Given a starting position in the chain, ~xi

• A proposed point, ~xi+1, is generated using the proposal distribution

• The ‘Metropolis acceptance ratio’, r, is calculated, r = Min
(

1,
P (~xi+1|D)
P (~xi|D)

)

, using a

ratio of likelihoods
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• The new point is accepted with a probability equal to r (which can be done by gen-

erating a random number between (0,1) and checking that it is smaller than r)

• These steps are repeated until the user is satisfied with the size of the sample of ~xi

The sequence of numbers ~xi satisfy the properties of a Markov Chain (any point only

depends on the previous point) and the process is thus called Markov Chain Monte Carlo

integration. Although it is beyond the scope of this thesis to provide a rigorous proof that

the Metropolis-Hastings algorithm produces a set of ~xi that are distributed according to

P (~p|D), it is enlightening to provide a simplified overview. For a rigorous treatment, see

[75].

One can imagine the MCMC as a random walk in parameter space. The chain starts at

some point and then chooses a random point which it always accepts if the likelihood there

is better (r = 1, since P (~xi+1|D) > P (~xi|D)), and sometimes (with a probability equal to

r) accepts if it is worse. At least intuitively, it should make sense that the chain will tend

to move into regions of parameter space where P (~p|D) is larger and thus produce more ~xi

in that region.

An important concept is that the Markov Chain needs to reach a ‘stationary’ state; if

the chain is started in a region of low likelihood it will tend to walk more in a particular

direction (towards higher likelihood). Thus, the first ‘few’ steps in the MCMC are often

discarded as ‘burn-in’ when posterior distributions are generated so that the chain can reach

this stationary state.

One can introduce the ‘transition kernel’, T (~xi+1, ~xi), as the probability that the Metropolis-

Hastings algorithm will draw and accept the proposed point, ~xi+1. This is simply given by:

T (~xi+1, ~xi) = q(~xi+1, ~xi) × r(~xi, ~xi+1) (6.27)

which is the probability of generating a point multiplied by the probability of accepting
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that point. It is then easy to show that the chain satisfies the ‘detailed balance equation’:

P (~xi|D) × T (~xi+1, ~xi) = P (~xi|D) × q(~xi+1, ~xi) × r(~xi, ~xi+1)

= P (~xi|D) × q(~xi+1, ~xi) × Min

(

1,
P (~xi+1|D)

P (~xi|D)

)

= q(~xi+1, ~xi) × Min (P (~xi|D), P (~xi+1|D))

= q(~xi, ~xi+1) × P (~xi+1|D) × Min

(

P (~xi|D)

P (~xi+1|D)
, 1

)

= P (~xi+1|D) × T (~xi, ~xi+1)

⇒ P (~xi|D) × T (~xi+1, ~xi) = P (~xi+1|D) × T (~xi, ~xi+1) (6.28)

where the proposal distribution is taken as symmetric (q(~xi+1, ~xi) = q(~xi, ~xi+1)). If one

integrates equation 6.28 with respect to ~xi, one obtains
∫

P (~xi|D) × T (~xi+1, ~xi)d~xi =

∫

P (~xi+1|D) × T (~xi, ~xi+1)d~xi

= P (~xi+1|D) ×
∫

T (~xi, ~xi+1)d~xi

= P (~xi+1|D) (6.29)

Thus, it is shown that if ~xi is drawn from the desired distribution, then all subsequent

points, ~xi+1, will also be from that distribution. Thus, the MCMC process generates a set

of points that are distributed according to P (~xi|D), as advertised.

6.5.3 The Posterior Distribution

The Metropolis-Hastings algorithm that has been shown here allows one to create a sample

of points in parameter space that are distributed according to the posterior distribution.

Obtaining the posterior distribution for, say, neutrons, can then be done simply by making a

histogram of the neutron-component of the set of points, ~xi, from the parameter space. The

MCMC method is then a very straightforward way of obtaining the posterior distribution

for all of the parameters. The histogram can be normalized to unit area, if one desires a

true probability density function.
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6.5.4 Determining Parameter Values and Uncertainties

Once the posterior distribution has been obtained, one really has freedom in how to present

these results. The most rigorous option is to show the posterior distribution. In terms of

the number of neutrons, the mean number of neutrons can be calculated using equation

6.26:

〈n〉 =
1

N

N−1
∑

i=imin

ni

where the ni are just one component of the set of ~xi and imin has been adjusted to the

‘burn-in’ length.

In this thesis, the number of neutrons (and all other parameters), will be obtained by

fitting a gaussian to the histogram of the ni. The fit range of the gaussian will be determined

to be ≈ ±10 bins around the highest point in the distribution. The mean of the gaussian

will be taken as the number of neutrons and σ will be taken as the symmetric uncertainty.

This is consistent with the assumption of a parabolic log-likelihood near the extremum. In

order to obtain asymmetric uncertainties, the histogram will be re-fit to a gaussian on the

positive (negative) sides with a fixed mean to determine the positive (negative) asymmetric

uncertainties. If this procedure fails, the parameter and uncertainty are then taken as the

mean and rms of the distribution.

Figure 6.3 shows an example of fitting a posterior distribution to determine the value of

the parameter with uncertainties. The black line shows the gaussian used to determine the

mean, the blue(red) gaussian uses that mean to determine the positive(negative) asymmetric

uncertainties.

6.5.5 The Auto-Correlation Function

The set of points that are generated using the Metropolis-Hastings algorithm is correlated,

so that care must be taken when applying the the basic theorem of Monte Carlo integration.

In particular, one needs to make sure that the Markov-Chain has ‘forgotten’ it’s starting
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Figure 6.3: Example of fit to a posterior to determine the parameter value and uncertainties.
First, the range of the central gaussian (black) is determined by a 12 bin range centered
about the maximum entry. The black gaussian is then fit to determine the mean and width of
the distribution which are quoted as the parameter value and symmetric uncertainty. That
mean is then used to fit two more gaussians (red and blue) with fixed mean and floating
width for the asymmetric uncertainties over a 12 bin range (with one end determined by
the mean). This particular case shows that the asymmetric uncertainties can account for
skewed posteriors.
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point in parameter space and has indeed reached a stationary state. This can be verified

by introducing the ‘Auto-Correlation Function’, ACF, for a parameter, p, which depends

on the mean value of the parameter, p̄:

ACF (p, h) =

∑

(pi − p̄)(pi+h − p̄)
√
∑

(pi − p̄)2
√
∑

(pi+h − p̄)2
(6.30)

where h is called the ‘lag’. The ACF is essentially a measure of how far a point pi+h must be

from another point pi in the chain to not be correlated. The ACF is an important measure

of the MCMC performance and should be monitored to check that the chain has a reached

a stationary state, independent from its starting position in parameter space.

Figure 6.4b shows an example of the ACF for a MCMC chain with four parameters.

The auto-correlation function is similar to a decaying exponential [75], so it is reasonable to

state that the correlation has been lost when the ACF is smaller than ∼ 1/e. One can see

that the parameters forget about each other after about 100 steps. This is an indicator of

the amount of time before the chain reaches a stationary state. Also, if one were to create a

sample of points from the chain, taking every hundreth point, then one would end up with

an essentially uncorrelated sample from the posterior distribution. Panel a) of figure 6.4

shows the values of one of the parameters as a function of step in the chain. In this particular

case, the parameter was given an initial value of 100 and one can clearly see the ‘burn-in’

phase of the chain in which the parameter systematically increases. Once the chain has

reached an area of high likelihood in parameter space, the value of the parameter oscillates

around its most likely value (about 950) and the histogram for the posterior distribution

can be generated. One should note that it is a coincidence that the ACF reaches zero at

approximately the same time as the chain burns in; both these conditions should always be

checked (in particular, the chain can often appear to have burned-in long before the auto-

correlation function is close to zero). The ACF for each parameter also needs to be checked

as different parameters will take different amounts of time to lose their (auto)correlation.
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Figure 6.4: Example of Auto-Correlation Function (b) and evolution of a parameter in the
chain (b). The ACF indicates a lag of about 100 before the parameter forgets its value.
Panel a) shows the parameter evolving along the chain from its starting value of 100 to an
area around 950. The burn-in length is, coincidentally, also around 100.

6.5.6 Acceptance Tuning

The most delicate part of the MCMC process is the choice of the proposal distribution,

q(~xi+i, ~xi, ~σ). In this thesis, a multivariate (symmetric) gaussian will be used. This leaves

one with the choice of the σ for each parameter. Intuitively, it should be obvious that this

choice will have a significant impact on the performance of the chain; if the chain is in the

region of maximum-likelihood and all the σ are large, there is a very small probability that

any new choice of parameters will be accepted (the Metropolis acceptance ratio will be very

small) and the chain will take a long time to properly sample parameter space. On the

other hand, if the σ are too small, the chain will move around parameter space very slowly

and will run a greater risk of being stuck in a local minimum.

Although there is no exact prescription for determining the proper ‘widths’ for the

proposal distributions, it has been argued that one should aim for an acceptance ratio

around 23%, to have an efficient process [79]. One can imagine various algorithms to carry

out the tuning of the parameter widths or simply tune them ‘by hand’, which, unfortunately,

is often the fastest method.
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The main caveat of the MCMC method is the tedious adjustment of these widths. Not

only do they influence the efficiency of the method, but also its likelihood of getting ‘stuck’

in a local minimum; although, in theory, the chain cannot get stuck in local minima if it

runs for long enough, in practice, this can happen for finite length chains. The MCMC

method is, however, impervious to discontinuities in the likelihood space, since there is

no need to worry about derivatives and these discontinuities can just be smoothed-out by

‘jumping across them’.

6.6 Summary

This chapter started by introducing the framework for determining the number of neutrons

in the NCD data using an extended maximum-likelihood formalism that can accommodate

variable fit ranges as well as systematic deformation parameters. A novel method for im-

plementing the uncertainty in the shapes of the NNNA pdfs was introduced. The Markov

Chain Monte Carlo method was then presented as a way of implementing a Bayesian ap-

proach to data-analysis using the likelihood function.



Chapter 7

Data Analysis Tests with Monte

Carlo and Blind Data

This chapter is aimed at demonstrating that the MCMC techniques presented in chapter

6, as well as the choice of signals and observables, are suitable for analyzing the NCD

data and extracting an accurate number of neutrons. In the first part of this chapter, the

MCMC fitter is applied to fake data (Monte Carlo events generated from the pdfs) to test

for correlations between observables and biases in the resulting fits. The MCMC analysis

procedure is then ‘tuned’ to give the smallest uncertainty in the number of neutrons. In

the second part of this chapter, the technique is applied to a fraction of the real NCD data,

that has been blinded in order to perform these tests. The blinding scheme involved the

removal of an unknown fraction of the data as well as the addition of an unknown amount

of ‘muon-follower’ events1.

1These are events that are close in time to vetoed muon events. This type of occurrence is generally rich
in neutrons created from spallation

149
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7.1 Generating Monte Carlo Data

In order to test for biases and correlations between the signals, several sets of Monte Carlo

data were generated. The data sets were made using the pdf histograms that were obtained

in chapter 5. For each signal, sets of events with energies and NoverA distributed according

to the (1-dimensional) pdfs were randomly generated using CERN’s ROOT analysis package

[80] and the TH1F::GetRandom() method. In order to examine possible correlations be-

tween observables, limited data were generated by sampling from 2-dimensional histograms

(energy vs NoverA, using ROOT’s TH2F::GetRandom2() method) for neutrons and alphas.

In all data sets, unless otherwise specified, the MC samples were generated with 2000

neutrons, 8000 alphas, 100 nnna0 and 200 nnna26 events.

7.2 Extracting Signals from Monte Carlo Data Using Energy

This section examines the use of the energy observable alone to determine the neutron

number. The effect from the choice of the energy range, binning and the contribution from

the systematic uncertainties are characterized.

7.2.1 Without Systematic Uncertainties

In order to examine the effects of fit range and binning of the pdfs on statistical accuracy,

it is useful to perform the fits without any systematic uncertainties.

The Effect of Fit Range and Binning

It is clear that a larger fit range should produce greater statistical accuracy. However, if

one limits the data to events with higher energies (above 0.4 MeV), the contribution from

the NNNA events is greatly diminished (as these peak at lower energies). Since the NNNA

pdfs have the largest uncertainties on them, it may be advantageous to work in a regime

where their contribution is low. For that reason, the effect of a smaller energy range is also
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considered. It is expected that changing the energy range will also impact the uncertainty

on the NNNA contributions, as these are best constrained at lower energies.

Two different energy ranges will be considered; on the one hand, a ‘full energy range’

(from 0.2 MeV to 1 MeV) and, on the other, a ‘short’ energy range, (0.4 MeV to 1 MeV) to

limit the number of NNNA events.

In addition to the fit ranges, two choices of binning for the pdfs will also be examined;

50 keV and 25 keV bins. The smaller bin size should improve statistical accuracy, whereas

the larger bin size will wash out some of the allowed deformations of the pdfs and could

improve the systematic uncertainties.

Table 7.1 shows the resulting signals that are fit out from a set of Monte Carlo data

using energy with the two different binnings and fit ranges. In terms of neutrons, the

number is stable with respect to these changes and the statistical uncertainty is lowest

when the finer binning is used. The main effect of the fit range is in the number of alphas

and their uncertainty. With the smaller energy range, the fitter has trouble constraining

the NNNA signals, which can then trade off with the number of alphas as well as increase

the uncertainties on the corresponding signals. From these fits, it is concluded that the

smaller energy binning (25 keV) combined with the larger energy range provides overall

better constraints on all signals. The uncertainty on the number of neutrons is virtually

unaffected by the fit range.

Figure 7.1 shows the resulting fits in energy for the two energy ranges (panels (a) and (b))

and the finer binning, as well as the correlation between the alpha signal and the nnna26

signal (panels (c) and (d)). The correlation is obtained by creating a two-dimensional

histogram of the signals generated by the MCMC. Hence, this two-dimensional histogram

is proportional to the marginalized likelihood as a function of the two parameters and is,

in fact, the two-dimensional analog of the posterior distribution.
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Figure 7.1: Comparison of energy fits for full range (a) and small range (b). Panels (c) and
(d) show the correlation between alphas (y-axis) and nnna26 events (x-axis) for the two
ranges. The fit over the larger range places a better constraint on the alphas and nnna26
events, but these remain correlated.
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50 keV bins 0.2 MeV 1MeV 0.4 MeV 1 MeV

neutrons 2033(93) 2034(91)
alphas 7932(199) 7790(202)
nnna0 117(102) 59(139)
nnna26 154(152) 392(195)
Fit Quality 13.5/11 (26.5%) 11/7 (14%)

25 keV bins 0.2 MeV 1MeV 0.4 MeV 1 MeV

neutrons 2014(79) 1995(79)
alphas 7960(176) 7902(195)
nnna0 53(76) 122(157)
nnna26 234(114) 228(167)
Fit Quality 31.2/27 (26.4%) 26/19 (13%))

Table 7.1: Energy fit to MC data for different fit ranges and binning performed using
the MCMC fitter. The (symmetric) uncertainties and mean values are obtained from a
Gaussian fit to the posterior distribution centered about the maximum. The quality of each
fit is shown as a chi-squared and probability as calculated between a histogram of the data
and histogram that sums the pdfs from the different signals, as shown in panels (a) and (b)
of Figure 7.1.

7.2.2 With Systematic Uncertainties

This section examines the impact of the deformation parameters for the pdfs on the uncer-

tainties in the extracted signals. The Monte Carlo data will be generated with and without

the deformation parameters applied and the fit will be carried out with and without the

prior distributions imposed on the deformation parameters. These tests will quantify how

well the fitter can extract the values of the applied deformation parameters, as well as test

the strength of the constraint supplied by the prior distributions from the calibration data.

The effects from neutrons, alphas and NNNA events will be applied sequentially. Table

7.2 summarizes the energy deformation parameters that were obtained in chapter 5 as the

mean and spread of a gaussian distribution:

Including Neutron Energy Scale

The effect of the neutron energy scale is considered first. Two different data sets were

generated: in one case the data has no scale applied to it and in the other case, the data has
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Signal scale shift resolution

neutrons 1.003(05) fixed fixed
alphas fixed -0.038(38) fixed

Table 7.2: Summary of energy deformation parameters for neutrons and alphas. The
parameters are given a central value and uncertainty from the ranges determined in chapter
5. These are designed to be applied as prior distributions using gaussians with mean and
sigma given by the central values and uncertainties.

a energy scale of 1.05 applied only to the neutrons (inconsistent with the prior). This data

is then fit with and without the priors applied to the neutron energy scale. No deformation

parameters are floated for the other signals. Table 7.3 summarizes the results for the fits.

It is seen that, with both data-sets, the prior has a very small effect on the uncertainty in

the number of neutrons which increases slightly with no prior. The prior does constrain the

number of alphas and including the prior results in a more accurate estimate of the number

of alphas. In the second case, where the prior disagrees with the actual scale that was used,

the fitted scale comes out slightly wrong and impacts the fit quality. The uncertainty on

the number of neutrons appears to have increased slightly with the inclusion of a neutron

energy scale (from ∼79 to ∼83), but it is difficult to make a statistically sound estimate of

the effect with just one Monte Carlo data set. The point of this demonstration was to show

that the neutron number uncertainty does not ‘blow up’, even when no prior constraint is

imposed.

Including Alpha Energy Shift

Similar tests can be performed to test the influence of the alpha energy shift on the number

of neutrons and the associated uncertainty. In this case, the neutron energy scale is floated

with the prior constraint and the fake data is generated with a neutron energy scale fixed to

the central value of the prior applied to the (fake) neutrons. Two data sets are then created,

with and without an alpha energy shift applied. In the case where the data is generated

with an alpha energy shift, a value of -0.07 MeV is chosen (consistent with the value inferred
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Undeformed Data With Prior No Prior

neutrons 1988(83) 1989(84)
alphas 8008(138) 7921(185)
nnna0 35(29) 32(40)
nnna26 216(114) 264(119)
neutron energy scale 1.004(2) 1.005(2)
Fit Quality 31/27 (27%) 31/27 (27%)

Deformed Data With Prior No Prior

neutrons 2045(86) 2059(90)
alphas 7917(113) 7869(140)
nnna0 67(50) 28(44)
nnna26 271(65) 285(109)
neutron energy scale 1.044(02) 1.053(03)
Fit Quality 48/27 (1%) 33/27 (20%)

Table 7.3: Energy fit to MC data with neutron energy scale systematic. In the first row,
the data were generated with no scale and then fit for a neutron scale that comes out
essentially equal to 1. The first column imposes a prior of 1.003(5) on the neutron scale,
whereas the second column lets the scale float freely, which does not affect the uncertainty
on the extracted number of neutrons. In the second row, the data were generated such that
the neutrons have a 1.05 scale applied to them.

from the 4He data). The data sets are then fit with and without the prior constraint on

the alpha energy scale. The results are summarized in Table 7.4. The inclusion of the

alpha energy shift deformation parameter is seen to have no effect on the uncertainty in

the number of neutrons, although the use of the prior constraint on the alpha energy shift

seems to increase the uncertainty in the number of alphas.

Including NNNA Energy Systematic Uncertainties

The NNNA systematic uncertainties are included as described in section 6.2.3. That is, from

a histogram with uncertainties in each bin (the original energy pdf), 10 new histograms

are created by randomly sampling each bin with a normal distribution. In each step of

the MCMC, a linear combination of those 10 pdfs is built; the parameters in that linear

combination are then floated. At the end of the fit, an effective NNNA pdf has been

measured, by building a linear combination from the parameters deduced from the fit.
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Undeformed Data With Prior No Prior

neutrons 2016(82) 2012(80)
alphas 7980(185) 8026(170)
nnna0 114(102) 93(82)
nnna26 296(65) 282(116)
neutron energy scale 1.007(2) 1.007(2)
alpha energy shift -0.011(1) -0.011(1)
Fit Quality 42/27 (3%) 42/27 (3%)

Deformed Data With Prior No Prior

neutrons 2083(80) 2082(80)
alphas 7860(158) 7912(144)
nnna0 66(78) 87(52)
nnna26 199(98) 100(66)
neutron energy scale 1.005(2) 1.006(2)
alpha energy shift -0.066(2) -0.066(2)
Fit Quality 26/28(55%) 27/28 (53%)

Table 7.4: Energy fit to MC data with alpha energy shift systematic. In both rows, data
were generated with a neutron energy scale set to 1.003 and the neutron energy scale was
floated with a prior. In the first row, the alpha energy shift was floated with and without a
prior. In the second row, the Monte Carlo data were generated with an alpha energy shift
of -0.07 MeV (consistent with the value determined from 4He data).
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In this section, the fake data sets were generated by sampling from the NNNA average

pdfs as well as from the neutron and alphas (as in the previous sections). The neutron

energy scale is fixed to 1.003 in the generated data and is floated with a prior. Similarly,

the alpha energy shift is fixed to -0.038 and floated with its prior. The interest is to show

that letting the NNNA pdfs float this way does not result in any large increase of the

neutron uncertainty.

Table 7.5 shows fit results for the signals when the NNNA pdfs are floated in this manner

using either 5 or 10 random pdfs in the linear combination. The first row shows the case

where only the nnna0 pdf is floated, the second row shows the case for nnna26 and the third

row shows the result when both NNNA energy pdfs are floated. The last row corresponds

to the scenario that will be used in the energy part of the NCD fit to the data. Figure 7.2

shows the pdfs that were determined from the fit (red) compared to the input pdf (black) for

the two different NNNAs for the case where both pdfs were floated as a linear combination

of 10 random pdfs (the last row, second column of Table 7.5).

The number of random pdfs that are chosen do not significantly impact the number

of neutrons. Increasing the number of random pdfs from 5 to 10 seems to increase the

uncertainty on the extracted number of NNNAs but slightly decrease the uncertainty in the

number of alphas. The analysis in the rest of this thesis will use 10 randomized energy pdfs

for each type of NNNA as this will result in a better integration over the possible shapes.

7.2.3 Biases and Correlated Signals in the Energy Fit

It is important to understand any bias in the signals that could result from using energy as

an observable in the maximum-likelihood analysis. This might happen if one type of signal

‘trades off‘ with another, because of having similar pdfs. Indeed, it has just been seen that

the NNNA pdfs are similar enough that the extracted numbers are not very accurate. Of

particular interest are any possible biases in the neutron number as any trade-off between

other observables has no impact on the neutrino flux measurement.
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Floating nnna0 5 random pdfs 10 random pdfs

neutrons 2073(84) 2059(83)
alphas 7843(178) 7831(178)
nnna0 97(77) 96(109)
nnna26 244(111) 271(126)
neutron energy scale 1.006(2) 1.006(2)
alpha energy shift -0.037(2) -0.037(2)
Fit Quality 24/28 (70%) 24/28 (69%)

Floating nnna26 5 random pdfs 10 random pdfs

neutrons 2075(86) 2070(86)
alphas 7873(175) 7886(165)
nnna0 108(108) 152(116)
nnna26 171(147) 200(140)
neutron energy scale 1.006(2) 1.006(2)
alpha energy shift -0.037(2) -0.038(3)
Fit Quality 24/28 (67%) 25/28 (65%)

Floating nnna0 and nnna26 5+5 random pdfs 10+10 random pdfs

neutrons 2079(90) 2072(86)
alphas 7873(202) 7839(182)
nnna0 143(102) 127(108)
nnna26 185(121) 228(143)
neutron energy scale 1.006(2) 1.005(2)
alpha energy shift -0.037(2) -0.037(3)
Fit Quality 25/28(65%) 26/28 (55%)

Table 7.5: Energy fit to MC data including the systematic uncertainties in the shapes
of the NNNA pdfs. The uncertainties are implemented by building linear combinations of
either 5 or 10 random pdfs drawn from the average NNNA pdfs. The first row shows the
fitted signals when only the nnna0 pdfs is floated, the second row shows the case when only
the nnna26 pdf is floated and the last row shows the case when both are floated. It is seen
that using 10 random pdfs for each NNNA results in a larger uncertainty in the number of
NNNA, but has virtually no effect on the number of neutrons.
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Figure 7.2: Example of NNNA energy pdf determined from fit to fake data. The black
histograms corresponds to the pdfs that were used to generate the fake data and were
determined in section 5.3. The red lines are the linear combination of 10 histogram randomly
drawn from the black histogram. The coefficients of the linear combination were determined
by the MCMC. Panels (a) and (b) show the case for nnna0 events and nnna26 events,
respectively. These pdfs correspond to the fit in the second column for the third row of
Table 7.5.

In order to study biases from the energy observable, 100 sets of Monte Carlo data were

generated in the same way as they were for Table 7.5. A neutron energy scale and alpha

energy shift were applied (equal to the central values of their prior) and all 100 data sets

were fit by floating the neutron and alpha parameters with a prior and the NNNA pdfs

were floated with 10 random pdfs each.

Each data set was generated with a Poisson-distributed number of events, N i
MC , from

each signal, i, distributed about a mean, λi. Neutrons were generated about a Poisson mean

of 2000, alphas about a mean of 8000, nnna0s about 100, and nnna26 about a mean of 200.

The panels in Figures 7.3 and 7.4 show the ‘bias’ for each signal plotted as a function of

Monte Carlo data-set, along with a histogram projecting the data on the y-axis. The bias

for each signal, Bi, was defined with an uncertainty, δBi, as:

Bi =
N i

F it − λi

λi

δBi =
δi
F it

λi
(7.1)
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where NF it is the number of the signal fitted out with uncertainty δi
F it. The bias is thus

a measure of the relative difference between the Poisson mean of the distribution and the

numbers that were determined in the fit. The uncertainties in the bias show whether the

uncertainty determined from the extended maximum-likelihood fit are consistent with the

data being Poisson distributed. The projections of the biases on the y-axis show that the fit

overestimates the number of neutrons by ∼3.1% and underestimates the number of alphas

by ∼1.2%. This can be taken into account as either a correction or an uncertainty.
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(d) alpha energy bias projection

Figure 7.3: Biases (and projections) for neutron and alpha signals when using energy as
an observable plotted as a function of the 100 Monte Carlo data sets. It is clear that for
neutrons and alphas, there appears to be a systematic pull away from the number of events
that were put in each data set, as seen in Figure 7.5.

The panels in Figure 7.5 show the distributions of the ‘pull’, pi, for each signal defined
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Figure 7.4: Biases (and projections) for the NNNA signals when using energy as an observ-
able plotted as a function of the 100 Monte Carlo data sets.
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as:

pi =
N i

F it − λi

δi
F it

(7.2)

where λi is the mean of the Poisson distribution used to generate the Monte Carlo events

for that signal. The pull is then expected to follow a normal distribution about 0 with a

standard deviation of 1, if the fit and uncertainties are determined correctly. If the mean of

the distribution is not 0, there is an indication that the results determined from the fit are

‘pulled’ towards a certain direction. The value of the mean is in units of the error on the

measurement. For example, if the mean of the pull distribution is 0.5, the N i
F it are 0.5δi

F it

from the λi. The width of the pull distribution is a measure of the accuracy of the error

determined by the fit. If the standard deviation of the pull distribution is less than 1, the

fit has overestimated the uncertainties on the fitted number of neutrons and conversely if

the width is larger than 1.

Again, it is clear from the pull distributions, that the number of neutrons is slightly

pulled towards higher values and the number of alphas towards lower values. This suggests

a correlation between the number of neutrons and the number of alphas that are determined

in the fit. Figure 7.6 shows the 2-D likelihood for neutrons and alphas for the fit from the

second column of the third row of Table 7.5, and the slight correlation between the two

signals is seen clearly. The pull can be taken into account as an uncertainty when the data

is fit.
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Figure 7.5: Pull plotted for each signal as determined from a sample of 100 Monte Carlo
data sets. The data sets were fit using the energy observable. Neutrons and alphas show
evidence for a slight pull as the distributions are not centered about 0.
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Figure 7.6: Correlation between neutrons and alphas in the energy fit from the second
column of the third row of Table 7.5. The correlation is show by plotting the 2-dimensional
likelihood as a function of neutron and alphas.
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7.3 Extracting Signals from Monte Carlo Data Using NoverA

This section examines the use of NoverA as the observable in a likelihood extraction of the

signals, in the same way as was done for energy. Sets of ‘fake’ data are generated using

the pdfs so that biases and uncertainties in the signals can be examined. The systematic

uncertainties from neutrons, alphas and NNNAs will be added progressively so that their

individual effect on the number of neutrons can be understood. The Monte Carlo data sets

will again comprise of 2000 neutrons, 8000 alphas, 100 nnna0s and 200 nnna26s.

7.3.1 Without Systematic Uncertainties

Table 7.6 shows the extracted signals when the Monte Carlo data set is fit in NoverA with

different bin sizes (0.1 and 0.2 bin widths) and fit ranges (0 to 5 and 0 to 10). The fit with

the smallest bin width and largest fit range is the most accurate (smallest uncertainties) and

will be chosen for the rest of the analysis. The neutron number uncertainties are larger than

in the case where energy was used, because neutrons do not look ‘as different’ in NoverA as

they did in energy. There also appears to be a significant downward bias in the number of

neutrons. This will however disappear when the NNNA systematics are taken into account

and is the result of a statistical fluctuation in the average NNNA pdfs (the nnna26 pdf has

a statistically high bin content in the same place as the neutron pdf and results in a neutron

bias).

Figure 7.7 shows the resulting fit using the small bin size and large range (panel a)

and the neutron posterior distribution (panel b). The posterior highlights the fact that

care must be taken when quoting a parameter value from the posterior, as the peak of the

histogram is closer to the actual number of neutrons that is inferred from the Gaussian fit

(also seemingly resulting in a downward bias in the number of neutrons).
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0.1 bin 0 - 10 0 - 5

neutrons 1932(93) 1922(122)
alphas 7962 (122) 7946(138)
nnna0 153(86) 140(126)
nnna26 268(135) 210(140)
Fit Quality 76/90(90%) 44/45(51%)

0.2 bin 0 - 10 0 - 5

neutrons 1928(128) 1984(99)
alphas 8035(120) 8049(124)
nnna0 160(105) 113(76)
nnna26 190(163) 76(118)
Fit Quality 41/45(64%) 20/21(55%)

Table 7.6: NoverA fit to MC data for different fit ranges and binning. The MC data were
fit using a bin width of 0.1 and 0.2 and fit ranges from 0 to 5 and 0 to 10 in NoverA. The
smaller bin width and larger fit range results in the smallest uncertainties and is chosen for
the analysis.
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Figure 7.7: Panel (a) shows the fit to MC data for NoverA using the small (0.1) bin width
and large fit range (0-10) of Table 7.6. Panel (b) shows the resulting neutron posterior
distribution and highlights the fact that care needs to be taken in quoting a number from a
posterior distribution. In this case, the Gaussian fit resulted in a smaller number of neutrons
than the peak of the distribution and leads to an apparent downward bias in the number
of neutrons.
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Signal scale shift resolution

neutrons 1.084(31) fixed fixed
alphas 0.967(79) fixed fixed

Table 7.7: Summary of NoverA deformation parameters for neutrons and alphas. The
parameters are given a central value and uncertainty from the ranges determined in chapter
5. These are designed to be applied as prior distributions using gaussians with mean and
sigma given by the central values and uncertainties.

7.3.2 With Systematic Uncertainties

The following sections characterize the effect of including the systematic uncertainties in

the shape of the pdfs. In chapter 5, it was shown that the uncertainty in the shape of the

NoverA pdf for both neutrons and alphas could be accommodated using a scale parameter.

Table 7.7 summarizes the constraints that were obtained on the neutron and alpha NoverA

scale. The Monte Carlo data sets in this section will be produced in the same way as they

were when energy was examined in the previous sections. Data will be generated with and

without deformation parameters applied and will then be fit with and without the priors

applied to the deformation parameters.

Including Neutron NoverA Scale

The effect of the neutron NoverA scale is examined by fitting with and without the prior

constraint. Data with and without a neutron NoverA scale of 1.05 applied will also be

generated to test the impact of the prior constraint on the neutron number uncertainty.

Table 7.8 shows the results from the four possible combinations. The neutron uncertainty

is measurably affected by the inclusion of a neutron NoverA scale and goes from ∼93 to

∼123. It is also apparent that the neutron NoverA scale is not determined very accurately

by the fitter.
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Undeformed Data With Prior No Prior

neutrons 1838(123) 1913(107)
alphas 7983(121) 7908(130
nnna0 193(111) 100(90)
nnna26 247(138) 372(141)
neutron NoverA scale 1.015(0.09) 1.001(8)
Fit Quality 77/94(89%) 73/91(91%)

Deformed Data With Prior No Prior

neutrons 1811(113) 1819(164)
alphas 8000(135) 7901 (127)
nnna0 195(108) 119(102)
nnna26 266(147) 440(140)
neutron NoverA scale 1.103(18) 1.084(43)
Fit Quality 76/94(92%) 72/89(91%)

Table 7.8: Effect of neutron NoverA scale on fits to MC data with a prior (first column)
and no prior (second column) applied to the neutron NoverA scale. In the second row, the
MC data were generated with a neutron NoverA scale of 1.05.

Including Alpha NoverA Scale

In this section, the effect of the alpha NoverA scale is included together with that from the

neutron NoverA scale. Data were generated with a neutron scale of 1.084 applied and fit

with and without the prior on the alpha scale. In addition, a data set with an alpha scale

of 0.89 (consistent with the 4He data) was also generated and analyzed in the same way.

In all cases, the neutron scale was constrained with the prior from Table 7.7. The results

from the fits are summarized in Table 7.9.

The inclusion of the alpha NoverA scale uncertainty has facilitated the process of deter-

mining the neutron NoverA scale, which results in overall smaller neutron number uncer-

tainties. In the case where the data has been deformed, the neutron uncertainty is decreased

even more. This can be explained by the fact that deforming the alphas results in a wider

NoverA alpha distribution which makes them ‘more-different’ from neutrons, and results in

the neutron being extracted better.
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Undeformed Data With Prior No Prior

neutrons 1962(110) 1897(102)
alphas 8029(128) 7975(128)
nnna0 143(98) 175(71)
nnna26 189(149) 299(104)
neutron NoverA scale 1.082(23) 1.114(11)
alpha NoverA scale 0.999(02) 0.999(02)
Fit Quality 81/94(84%) 77/95(90%)

Deformed Data With Prior No Prior

neutrons 2036(90) 2024(82)
alphas 8019(126) 8002(129
nnna0 80(64) 93(87)
nnna26 153(104) 197(134)
neutron NoverA scale 1.093(09) 1.081(11)
alpha NoverA scale 0.889(02) 0.889(02)
Fit Quality 77/94(90%) 77/94(90%)

Table 7.9: Effect of alpha NoverA scale on the NoverA fit to MC data. The neutron scale
was fixed to 1.084 in the data and was floated subject to the prior constraint. The data
were fit with and without the prior constraint applied to the alpha NoverA scale. The data
in the second row was generated with an alpha scale of 0.89, similar to the value determined
for the 4He data (chapter 5). The decrease in the neutron uncertainty seen in the second
row is due to the alphas in the fake data having a scale applied and thus ‘looking more
different’ from neutrons than they did in the first row.
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Including NNNA NoverA Systematic Uncertainties

The uncertainties in the NNNA NoverA pdfs are handled analogously to the case for energy.

This section shows the effect of using the linear combination of randomized pdfs on the fit

for the signals. The fake data set was generated with neutron and alpha NoverA scales

set to their central prior values from Table 7.7. The NNNA events were generated from

the average pdfs. Table 7.10 summarizes the results from the study carried out using

either 5 or 10 random pdfs. Figure 7.8 shows an example of the resulting pdfs that were

determined for the NNNAs for the fit with 10 random pdfs each. In the case where the

systematic uncertainties are applied to only one type of NNNA, the use of 10 pdfs increases

the uncertainty in the number of neutrons compared to when only 5 pdfs are used. However,

when both types of NNNAs have their pdfs floated, the use of 10 pdfs results in an overall

smaller uncertainty in the number of neutrons. The final analysis will thus use the linear

combination of 10 pdfs for each type of NNNA.
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(a) nnna0

NoverA
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nnna26 NoverA pdf

(b) nnna26

Figure 7.8: Example of NNNA NoverA pdf determined from fit to fake data. The black
histograms corresponds to the pdfs that were used to generate the fake data and correspond
to the histograms determined in section 5.3. The red lines are the linear combination of
10 histogram randomly drawn from the black histogram. The coefficients of the linear
combination were determined by the MCMC. Panels (a) and (b) show the case for nnna0
events and nnna26 events, respectively. These pdfs correspond to the fit in the second
column for the third row of Table 7.10.
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Floating nnna0 5 random pdfs 10 random pdfs

neutrons 1993(114) 1922(169)
alphas 7909(132) 7920(152)
nnna0 36(29) 48(50)
nnna26 361(127) 205(225)
neutron NoverA scale 1.098(31) 1.112(25)
alpha NoverA scale 0.966(02) 0.966(02)
Fit Quality 80/94(84%) 83/94(79%)

Floating nnna26 5 random pdfs 10 random pdfs

neutrons 1989(80) 1941(95)
alphas 7978(121) 8032(121)
nnna0 70(66) 107(143)
nnna26 185(149) 199(145)
neutron NoverA scale 1.080(27) 1.120(12)
alpha NoverA scale 0.966(02) 0.966(02)
Fit Quality 81/94(84%) 81/94(83%)

Floating nnna0+nnna26 5+5 random pdfs 10+10 random pdfs

neutrons 1926(165) 1979(106)
alphas 7963(130) 7984(143)
nnna0 58(80) 99(78)
nnna26 258(148) 149(130)
neutron NoverA scale 1.112(31) 1.101(09)
alpha NoverA scale 0.966(02) 0.966(02)
Fit Quality 82/94 (82%) 79/94(86%)

Table 7.10: Influence of the NNNA pdf uncertainties on the NoverA fit to Monte Carlo
data. The data were generated with neutron and alpha NoverA scales set to the central
values from their prior. The neutron and alpha scales were then floated subject to their
prior.
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7.3.3 Biases and Correlated Signals

The biases and pulls are used again here to characterize any biases on the inferred signals

from the use of NoverA as an observable. 100 fake Monte Carlo data sets were generated,

with neutron NoverA scale and alpha NoverA scale set to their mean values from Table

7.7. The number of events for each signal were distributed about the same Poisson means

as they were for energy. The scale parameters (neutrons and alphas) were floated with the

constraint from the priors and the NNNA pdfs were fit as the linear combination of 10

randomized pdfs for each signal.

Figures 7.9 and 7.10 show the biases for the 4 signals as a function of the fake data set

along with projections on the y-axis and figure 7.11 shows the corresponding pulls. These

plots show that neutron have a slight tendency (1.1%) to fit out low. The nnna0 events

have the largest bias and pull.
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Figure 7.9: Biases and projections for the neutron and alpha signals when using NoverA as
an observable plotted as a function of the 100 Monte Carlo data sets.
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(c) nnna26 NoverA bias
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Figure 7.10: Biases and projections for the NNNA signals when using NoverA as an observ-
able plotted as a function of the 100 Monte Carlo data sets.



CHAPTER 7. DATA ANALYSIS TESTS WITH MONTE CARLO AND BLIND DATA174

 / ndf 2χ  9.671 / 10
Constant  1.68± 12.64 
Mean      0.0755± -0.2772 
Sigma     0.0662± 0.6133 

NoverA pull for nc
-10 -8 -6 -4 -2 0 2 4 6 8 10
0

2

4

6

8

10

12

14

16

 / ndf 2χ  9.671 / 10
Constant  1.68± 12.64 
Mean      0.0755± -0.2772 
Sigma     0.0662± 0.6133 

(a) neutron NoverA pull

 / ndf 2χ  15.01 / 16
Constant  1.318± 9.475 
Mean      0.0815± -0.3931 
Sigma     0.0673± 0.7221 

NoverA pull for alphaWMC
-10 -8 -6 -4 -2 0 2 4 6 8 10
0

2

4

6

8

10

12

 / ndf 2χ  15.01 / 16
Constant  1.318± 9.475 
Mean      0.0815± -0.3931 
Sigma     0.0673± 0.7221 

(b) alpha NoverA pull

 / ndf 2χ  15.36 / 12
Constant  1.59± 10.53 
Mean      0.0432± -0.3857 
Sigma     0.0459± 0.3445 

NoverA pull for nnna0
-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2
0

2

4

6

8

10

12

14

 / ndf 2χ  15.36 / 12
Constant  1.59± 10.53 
Mean      0.0432± -0.3857 
Sigma     0.0459± 0.3445 

(c) nnna0 NoverA pull

 / ndf 2χ  14.29 / 17
Constant  0.985± 7.113 
Mean      0.06481± 0.01151 
Sigma     0.0601± 0.5109 

NoverA pull for nnna26
-10 -8 -6 -4 -2 0 2 4 6 8 10
0

2

4

6

8

10

 / ndf 2χ  14.29 / 17
Constant  0.985± 7.113 
Mean      0.06481± 0.01151 
Sigma     0.0601± 0.5109 

(d) nnna26 NoverA pull

Figure 7.11: Pull plotted for each signal as determined from a sample of 100 Monte Carlo
data sets. The 100 data sets were fit using the NoverA observable and floating all systematic
parameters.
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7.4 Correlations Between Energy and NoverA

This section justifies the factorization of the joint pdfs for energy and NoverA for neutrons

and alphas. This factorization will allow the use of two 1-dimensional pdfs (in energy and

NoverA) instead of a single 2-dimensional pdf for each signal when the fit is performed

using both energy and NoverA. If, for example, energy and NoverA were correlated, the

joint probability can not necessarily be factorized as was suggested in equation 6.5 from

chapter 6.

In order to validate this factorization, 2-dimensional pdfs need to be obtained for the

signals. This is easily achieved for neutrons, by using the data from the 24Na spike. A 2-

dimensional pdf for alphas can be obtained from the 4He-strings with reasonable statistics.

However, the statistics in the NNNA events do not allow for 2-dimensional pdfs to be

generated. Since fits to data show that the number of NNNA events is low, these are

ignored in this validation to a very good approximation.

Figure 7.12a shows the 2-dimensional distribution of energy and NoverA that is obtained

for neutrons from the 2005 24Na data. Panel (b) shows the same pdf as obtained by the

product of the two 1-dimensional distributions and looks qualitatively similar. Figure 7.13

shows the case for alphas, as deduced from 4He data. The 2-dimensional alpha pdfs disagree

the most at higher energies.

Validating the factorization of the pdfs was be done by creating data sets from the

2-dimensional pdfs and then fitting those with the 1-dimensional pdfs. It was found that

limiting the energy fit range to 0.9 MeV removes any bias in the inferred amount of neutrons.

Figure 7.14 shows the bias and pull distribution for neutrons as deduced from 100 sets

of Monte Carlo data. The Monte Carlo data were generated by ‘throwing’ events from

the 2-dimensional pdfs for neutrons and alphas (panels (a) of Figures 7.12 and 7.13) using

ROOT’s TH2F::GetRandom2() method. The data set contained neutrons distributed about

a Poisson mean of 2000 and alphas distributed about 8000. Fitting the data using the same
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Figure 7.12: Two-dimensional distribution of energy and NoverA for neutrons as measured
with data from the 2005 24Na spike. Panel (a) shows the 2-dimensional (normalized) distri-
bution and panel (b) shows the product of the two 1-dimensional distributions for energy
and NoverA.
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Figure 7.13: Two-dimensional distribution of energy and NoverA for alpha, measured with
data from the 4He-strings. Panel (a) shows the 2-dimensional (normalized) distribution and
panel (b) shows the product of the two 1-dimensional distributions for energy and NoverA.
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2-dimensional pdfs resulted in no bias. The 1-dimensional pdfs that were used to fit the

data were the same neutron and alpha pdfs used throughout this thesis. It was found that

building 1-dimensional pdfs from the 24Na and 4He data did not change the results for this

bias study, even though those pdfs are closer to what was used to generate the fake data

sets. This robust result validates the use of factored 1-dimensional pdfs to represent the

joint probabilities for neutrons and alphas.
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Figure 7.14: Bias and pull for neutrons from 100 Monte Carlo ‘fake’ data sets. The fake data
were thrown from the 2-dimensional pdfs for neutrons and alphas determined in Figures
7.12 and 7.13. The MCMC fit was then done using the 1-dimensional pdfs for neutrons and
alphas from this thesis (as opposed to 1-d pdfs generated from the same data). There is no
significant bias or pull in the number of neutrons, thus justifying the factorization of the
(energy, NoverA) joint probabilities into 1-dimensional pdfs. It was found that the energy
range in the fit needs to be limited to 900 keV in order for this factorization to be valid.

7.5 Extracting Signals from Monte Carlo Data Using Energy

and NoverA

This section considers the combined use of energy and NoverA to determine the number

of neutrons in the NCD data. It is expected that the overall uncertainty in the extracted

number will be smaller than if only one of the observables were used. The addition of the

NoverA observable to energy in a maximum-likelihood analysis is the original idea that
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neutrons 2005(59)
alphas 7849(136)
nnna0 85(49)
nnna26 350(78)
Energy Fit Quality 13/24(97%)
NoverA Fit Quality 80/94(85%)

Table 7.11: Fits to Monte Carlo data using Energy+NoverA and no systematic uncertain-
ties. Using the combination of observables has resulted in a substantially smaller uncertainty
in the number of neutrons.

motivated the work in this thesis. The influence of the energy and NoverA systematic

uncertainties is explored here along with any possible biases in using the combination of

observables. This study will again be carried out by analyzing Monte Carlo data sets

generated from the 1-dimensional pdfs.

7.5.1 Without Systematic Uncertainties

Data with no scale parameters applied to it were generated and analyzed with the 1-

dimensional pdfs with no systematic uncertainties. This is done here in order to later

understand the effect of including the systematic uncertainties in the shapes of the pdfs.

Table 7.11 shows the signals and uncertainties that were fit by using energy and NoverA as

observables. Figure 7.15 shows the resulting fits to the Monte Carlo data. The data were

fit with 0.25 keV bins in energy from 0.2 MeV to 0.9 MeV and in 0.1 bins in NoverA from

0 to 10. As anticipated, the uncertainty on the number of neutrons improves substantially

(from ∼80 to ∼60) compared to the fits in energy or NoverA alone.

7.5.2 With Systematic Uncertainties

The effect of the systematic uncertainties from energy and NoverA are first considered

independently, then in conjunction.
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Figure 7.15: Energy (a) and NoverA (b) fits to Monte Carlo data with the fit carried out
jointly over the two observables.

With Energy Systematic Uncertainties

Monte Carlo data were generated with the neutron and alpha energy deformation param-

eters set to their central values. The data were then fit with the energy deformation pa-

rameters floated with their prior constraints and the NNNA energy pdfs were built as the

linear combination of 10 randomized pdfs. No systematic uncertainties were applied to the

NoverA pdfs and the NoverA part of the data had no systematic uncertainties applied. Ta-

ble 7.12 shows the results from the fit. The inclusion of the energy systematic uncertainties

does not impact the neutron uncertainty. This demonstrates that the combination of both

observables results in a stable way of estimating the number of neutrons.

With NoverA Systematic Uncertainties

The effect of the NoverA systematic uncertainties is studied independently by fitting a

Monte Carlo data set where only the NoverA pdf uncertainties are floated. The data were

generated with neutron and alpha NoverA scales set to their central values from their prior

constraints. The data were then fit with the NoverA deformation parameters floated subject

to their priors and the NoverA NNNA pdfs floated as the linear combination of 10 random
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neutrons 1988(59)
alphas 7807(136)
nnna0 60(53)
nnna26 432(101)
neutron energy scale 1.000(02)
alpha energy shift -0.040(03)
Energy Fit Quality 18/24(78%)
NoverA Fit Quality 118/94(5%)

Table 7.12: Fits to Monte Carlo data using Energy+NoverA and including energy system-
atic uncertainties. The data were generated with energy deformation parameters applied
and set to the central values from their priors. The fit was then done by floating the energy
deformation parameters subject to their priors and the NNNA pdfs were floated with 10
components. The NoverA systematic parameters were set to their un-deformed values in
the data and were not floated. Adding the systematic uncertainties has no effect on the
neutron uncertainty, but has affected the quality of the NoverA fit.

pdfs (each). The energy deformation parameters were not floated and set to un-deformed

values to generate the data. The results of the fit are show in Table 7.13. The NoverA

systematic uncertainties also result in no significant changes in the neutron uncertainty.

With Energy+NoverA Systematic Uncertainties

Finally, the full effect of the pdf systematic uncertainties on a fit in energy and NoverA

is studied. A Monte Carlo data set was generated with all (energy+NoverA) deformation

parameters set to the central values from their priors. The fit was then done by floating

all deformation parameters subject to their priors and the NNNA pdfs were (each) floated

with 10 randomized pdfs. This results in a fit with 4(signals)+ 4(deformation parame-

ters)+40(linear combination parameters)=48 parameters2. The uncertainty in the number

of neutrons is not increased substantially compared to the case with no deformation on the

pdfs. Including the uncertainties in both observables has now allowed for ‘good fits’ in both

observables.

2It should be clear to the reader why the MCMC method was chosen over minimizing algorithms
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neutrons 1999(59)
alphas 7804(145)
nnna0 45(60)
nnna26 417(112)
neutron NoverA scale 1.095(02)
alpha NoverA scale 0.967(02)
Energy Fit Quality 13/24(97%)
NoverA Fit Quality 94/94(49%)

Table 7.13: Fits to Monte Carlo data using Energy+NoverA and including NoverA system-
atic uncertainties. The data were generated with NoverA deformation parameters applied
and set to the central values from their priors. The fit was then done by floating the NoverA
deformation parameters subject to their priors and the NNNA pdfs were floated with 10
components.

neutrons 2000(61)
alphas 7852(154)
nnna0 97(67)
nnna26 358(124)
neutron energy scale 1.000(02)
alpha energy shift -0.040(3)
neutron NoverA scale 1.091(22)
alpha NoverA scale 0.968(02)
Energy Fit Quality 19/24(77%)
NoverA Fit Quality 92/94(75%)

Table 7.14: Fits to Monte Carlo data using Energy+NoverA and including all systematic
uncertainties. The data were generated with deformation parameters for energy and NoverA
applied and set to the central values from their priors. The fit was then done by floating
all deformation parameters subject to their priors and the NNNA pdfs were floated with 10
components for each observable and signal.
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7.5.3 Biases and Correlated Signals

Again, biases and pulls are examined in the same way as for energy and NoverA. 100

fake data sets were generated with the deformation parameters set to their central prior

values. The data sets were then fit by floating all deformation parameters using their

prior constraints and the NNNA pdfs were each floated as the linear combination of 10

randomized pdfs. The amount of each signal in the data sets was generated according to

Poisson distributions.

Figures 7.16 and 7.17 show the biases for each signal with their projections and Figure

7.18 shows the corresponding pulls. It is clear that the use of both observables removes

any bias or pull in the number of neutrons that was seen with either observable. This

encouraging result will lead to no additional uncertainty in the number of neutrons other

than determined from the posterior distribution. However, there is clearly a large bias in

the number of alphas that trade off with the nnna26 events, which show the largest relative

bias.
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Figure 7.16: Biases and projections for the neutron and alpha signals when using En-
ergy+NoverA as an observable plotted as a function of the 100 Monte Carlo data sets.
There is no bias in the number of neutrons when both observables are combined. There
is however clear evidence for a large trade off between alphas and the nnna26 events. The
corresponding pulls are shown in Figure 7.18.
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(c) nnna26 Energy+NoverA bias
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Figure 7.17: Biases and projections for the NNNA signals when using Energy+NoverA as
an observable plotted as a function of the 100 Monte Carlo data sets. There is no bias in the
number of neutrons when both observables are combined. There is however clear evidence
for a large trade-off between alphas and the nnna26 events. The corresponding pulls are
shown in Figure 7.18.
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Figure 7.18: Pull plotted for each signal as determined from a sample of 100 Monte Carlo
data sets that were fit in Energy and NoverA. Neutrons are consistent with no pull. Alphas
and nnna0 have a large negative pull and clearly trade-off with the nnna26 events.
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7.6 Signal Extraction on Blind Data

The tests that have been presented so far only served to demonstrate the ‘separation power’

of the energy and NoverA observables as well as the impact of the pdf uncertainties on the

extracted number of neutrons. The last section of this chapter demonstrates that these

observables can indeed be used to analyze the real data that was taken with the Neutral

Current Detectors.

In order to test this ‘signal extraction‘ on real data, a blind data set was created. This

data were generated by removing an (unknown) fraction of events as well as adding in an

unknown number of neutrons from muon spallation events. This ‘Wilkerson-Elliott’ blinding

procedure was implemented in a similar fashion to the data for the currently published

analysis [38]. At the time the analysis presented in this thesis was performed (June 2009),

the data from the NCD phase had already been published; the data set discussed here is

thus the result of a ‘re-blinding’ of the previously ‘open’ data and was implemented in order

to avoid any bias resulting from the knowledge of the results from the published analysis.

The next chapter will present the results on a data set that only has a statistical blindness

applied. This thesis chapter was written before ‘un-blinding’ and was part of documentation

submitted to the SNO collaboration to request the removal of the blindness scheme.

7.6.1 Just Energy

It is relevant to consider the fit of the blind data carried out in the individual observables.

It is of particular interest to determine the number of neutrons using only the energy as

this observable has already been used (‘vetted’) in the published analysis [38]. It should be

noted that the energy fit discussed in this work is somewhat different than in the published

analysis, specifically in the way that the backgrounds are handled.

Table 7.15 shows the result of the fit to the blind data using only energy as an observable.

The first column shows the results with no systematic uncertainties applied to the shape
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Without Systematics With Systematics No Prior

neutrons 285(33) 284(35) 271(37)
alphas 925(91) 908(107) 860(115)
nnna0 14(20) 32(39) 67(86)
nnna26 161(58) 185(75)) 479(195)
neutron energy scale fixed 1.001(04) 0.996(06)
alpha energy shift fixed -0.047(15) -0.276(140)
Energy Fit Quality 25/24 (39%) 21/24 (66%) 34/24(9%)

Table 7.15: Fit to blind neutrino data using an energy fit with 0.25 keV bins from 0.2 MeV.to
0.9 MeV (fitting up to 1 MeV does not change any of the results). The first column shows
the results without the systematic uncertainties in the shape of the energy pdfs. In the
second and third columns, the NNNA energy pdfs were floated as the linear combination
of 10 random pdfs. The second column was done with priors applied to the systematic
parameters and no priors were applied in the the third.

of the pdfs, the second column shows the results when the energy systematic uncertainties

are included with a prior and the third column shows the case when no prior is included.

The fit was done from 0.2 to 0.9 MeV using 0.25 keV bins. Extending the range to 1 MeV

changes the number of neutrons with uncertainties (and priors) included to 286(31), which

results in a slightly improved uncertainty. Limiting the range to 0.9 MeV was done so that

effect of including the NoverA observable could be directly compared. The pdf uncertainties

have little influence on the accuracy in the number of neutrons. They however play a role in

changing the uncertainties in the other signals. Panel (a) of Figure 7.19 shows the resulting

fit in energy (with systematic uncertainty and priors) of the blind data as well as the energy

pdfs that were thus determined for the NNNA events. The case with no prior applied results

in a very large alpha energy shift (300 keV) which is clearly an indication of a failure in

the algorithm. This is due to the relative flatness of the alpha and NNNA pdfs which can

trade-off with each other. In this case, the alpha pdf was shifted out of the range and the

nnna26 signal was increased to compensate. Panel (b) of Figure 7.19 shows the correlation

between the alpha energy shift with the nnna26 signal and panel (c) shows that the neutron

number is virtually independent of this failure to determine the alpha energy shift.
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in fit with no prior.

Figure 7.19: Panel (a) shows the fit to the blind neutrino data in energy using systematic
uncertainties in the shape of the pdfs with prior constraints applied. The resulting fit
has also determined the shape of the NNNA energy pdfs. Panels (b) and (c) show the
correlations of the nnna26 and neutron signal with the alpha energy shift in the case where
no prior was applied. The lack of prior makes the alpha energy shift difficult to determine
because it can trade off with the nnna26 signal, but the number of neutrons is largely
unaffected.
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Without Systematics With Systematics No Prior

neutrons 274(40) 299(43) 320(39)
alphas 973(44) 962(39) 956(41)
nnna0 63(46) 40(55) 29(36)
nnna26 19(28) 40(33) 39(36)
neutron NoverA scale fixed 1.049(27) 0.986(16)
alpha NoverA scale fixed 0.938(22) 0.929(05)
NoverA Fit Quality 99/94(34%) 98/94(38%) 96/94 (41%)

Table 7.16: Fit to blind neutrino data using NoverA. The first column shows the results
without the systematic uncertainties in the shape of the NoverA pdfs. In the second and
third columns, the NNNA NoverA pdfs were floated as the linear combination of 10 random
pdfs.

7.6.2 Just NoverA

Table 7.16 shows the signals determined by fitting the blind data using only the NoverA

observable from 0 to 10 in bins of 0.1. This results in a less accurate estimate of the

number of neutrons compared to the energy fit, due to the fact that neutron pdf is ‘less

different’ in NoverA than it was in energy. Also, the NoverA fit results in considerably less

nnna26 events than the energy fit. The inclusion of the systematic uncertainties results in

a substantial change in the number of neutrons, suggesting that NoverA is not particularly

good at constraining neutrons when used by itself. This was indeed already seen in the

Monte Carlo tests.

The NoverA distribution however provides a strong constraint on the number of alphas

in the data and results in a smaller uncertainty in alphas than for the energy fit. It is this

added constraint on the number of alphas that leads to the overall smaller uncertainty in

the number of neutrons when both observables are combined.

7.6.3 Using Energy and NoverA

Table 7.17 summarizes the results for fits to the blind data when both observables are used.

As anticipated, the use of both observables has significantly improved the accuracy in the
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Figure 7.20: Fit to the blind neutrino data in NoverA using systematic uncertainties (with
priors) in the shape of the pdfs. The resulting fit has also determined the shape of the
NNNA NoverA pdfs.
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number of neutrons. It is clear that the fit in energy provides a stronger constraint on

the number of neutrons, but the fit in NoverA constrains the alpha signal and thus results

in an overall smaller uncertainty in the number of neutrons. The measured number of

neutrons in this blind data set from fitting the posterior distribution is determined to be

274.3+23.0
−21.1 when priors are taken into account. Removing the constraints from the prior

results in an increase in the neutron uncertainty indicating that the priors were inconsistent

with the data. It is evident that the alpha energy shift is responsible for this discrepancy.

A conservative approach dictates that the number of neutrons quoted from this data set

should be taken from the fit with no prior: 278.8+27.5
−25.3

Some ‘diagnostic plots’ of the fit to the blind data conclude this chapter. All plots

were done for the case where prior constraints were imposed on the parameters. Figure

7.21 shows the result of the fit in energy and NoverA, the negative log-likelihood, as well

as the auto-correlation functions for ‘some’ of the parameters in the fit (the signals, the

neutron and alpha deformation parameters and 4 of the linear combination coefficients for

the NNNA pdfs). Figures 7.22 and 7.23 show the posterior distributions that were used to

determine the values and uncertainties of the parameters in Table 7.17. The Markov-Chain

had a length of 200,000 steps where 40,000 steps were thrown out as ‘burn-in’, resulting in

160,000 iterations to estimate the posterior distributions. The auto-correlation functions

show that parameters have forgotten their state after a lag of ∼5,000, justifying the burn-in

decision.
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Figure 7.21: ‘Diagnostic’ plots for the energy+NoverA fit to the blind data. Panels (a)
and (b) show the fit in energy and NoverA. Panel (c) shows the negative log-likelihood as
a function of step in the MCMC, the vertical line shows where the burn-in cut was placed
(at 40,000 of 200,000 steps). Panels (d) and (e) show the auto-correlation function for the
signals as well as the neutron and alpha deformation parameters. Panel (f) shows the ACF
for 4 of the linear combination parameters that are used to build the NNNA pdfs.
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Without Systematics With Systematics No Prior

neutrons 280(22) 274(22) 279(28)
alphas 953(49) 993(63) 957(63)
nnna0 35(21) 46(30) 40(33)
nnna26 143(44) 123(49) 119(56)
neutron energy scale fixed 1.000(03) 0.998(04)
alpha energy shift fixed -0.018(32) 0.034(38)
neutron NoverA scale fixed 1.078(32) 1.07(12)
alpha NoverA scale fixed 0.991(09) 0.993(08)
Energy Fit Quality 28/24(27%) 24/24(46%) 23/24(53%)
NoverA Fit Quality 110/93(11%) 116/94(6%) 110/94(12%)

Table 7.17: Fit to the blind neutrino data using both energy and NoverA. The second
column includes systematic uncertainties in the shape of the pdfs.
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Figure 7.22: Posterior distributions for the signals from the fit to the blind data in en-
ergy+NoverA. The histograms are shown together with the fits to normal distributions
that were used to determine the parameter means and uncertainties.
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Figure 7.23: Posterior distributions for the neutron and alpha systematic parameters from
the fit to the blind data in energy+NoverA. The alpha energy shift posterior is multi-modal,
so that the quoted value was not based on the fit to a normal distribution, but rather, using
the mean and rms of the posterior distribution. It should be noted that this ‘multi-modality’
in the parameter is not an indication that the fit for the other parameter has not converged.
It is a reflection of the fact that the likelihood has several local minima as a function of that
parameter. The MCMC chain has, however, integrated (marginalized) over this distribution
when determining, for example, the number of neutrons.



Chapter 8

Final Analysis Using the

One-Third Data Set

This chapter uses the extended maximum-likelihood fit developed in the previous chapters

to determine the number of neutrons in the reduced NCD data set. This data set contains

exactly one third of the data set that was published and the results presented here are thus

directly comparable. The MCMC will be used to carry out this analysis using the energy

and NoverA observables presented in this thesis. Results are then compared to the analysis

that was published previously as well as the standard solar model prediction.

8.1 The One-Third Data Set

To date, no publication of the NCD data has included information from pulse shapes to

determine the number of neutrons in the data. The analysis presented in this thesis is

one of two methods being pursued by the SNO Collaboration that incorporate pulse shape

information. A blindness scheme (described in the previous chapter) was thus imposed on

the data in order to avoid influencing these two methods with the results from the published

analysis. These pulse-shape based analysis techniques are intended to be used by the SNO

195
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Collaboration in a future publication that will cover all three phases of the experiment and

are, as such, subject to review by a SNO Pulse Shape Topical Committee. At the time that

this thesis was submitted, the committee has not had time to fully review both methods

and it was decided that the blindness would not be lifted on the full data set before this

thesis was submitted. However, in order to allow the work in this thesis to have a ‘physics

result’, it was decided to partially lift the blindness and retain only a ‘statistical blindness’

scheme. This has led to the creation of a data set that includes only one third of the data

from the NCD phase; the data set was created by selecting every third event in the NCD

phase, so that it is uniformly distributed in time and representative of the entire data set.

Analysis of this ‘reduced data set’ then allows statistical and systematic effects to be fully

defined and compared with the results from the previous analysis. In addition, it is also

possible to infer the expected uncertainties that this method will have once the full data

set is analyzed, so that the impact of this new technique can be quantified.

8.2 The Published Analysis

A neutrino flux analysis of the NCD data has already been carried out and published [38].

This section briefly describes how this work was done and how it can be compared to the

results in this thesis.

The published analysis used a Markov-Chain Monte Carlo method to determine the

solar neutrino flux from the data and is fully described in [81, 82]. The likelihood function

was built using the data from both the PMT and NCD data.

The PMT data were fit using energy, cos θ⊙ and event radial position as observables. The

PMT pdfs were generated from Monte Carlo and contained contributions from neutrons,

ES events and CC events. The ES and CC events were fit as separate signals in each of 13

PMT energy bins. The neutrons were further divided into contributions from: NC, acrylic

vessel photo-disintegration, D2O neutron backgrounds, NCD neutron backgrounds (from
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materials in the NCDs), K2 neutron backgrounds (from a localized source located on string

31), K5 neutron backgrounds (from a localized source located on string 18) and atmospheric

neutrino-induced neutron backgrounds. All neutron backgrounds were constrained with

priors determined from other analyses [83]. This resulted in 33 different signals in the PMT

data.

In addition to the signals, 12 systematic deformation parameters were floated in the

PMT-side of the likelihood subject to priors obtained from calibration data. These parame-

ters included an energy scale and resolution, shift parameters for reconstructed positions (x,

y, z), an overall scale parameter for reconstructed positions, two parameters to model a z-

position resolution and one PMT angular resolution parameter to deform the ES cos θ⊙ pdf.

The resulting fits over the PMT observables were summarized in chapter 1 and illustrated

in Figure 1.9.

The NCD data were fit using ADC energy as the only observable. Signals included

neutrons, alphas and events from the NNNA strings. The neutron pdf was obtained from

the 2005 24Na calibration and was allowed to float with a resolution parameter. The neutron

signal was further broken up into the same contributions as the neutron signal in the PMTs.

The NNNA signals were modeled as skew gaussians subject to a prior constraint on the

mean. The alpha (central) pdf was determined from the Monte Carlo in the same way as

was done in this thesis (chapter 5). However, the central alpha energy pdf was allowed to

float by deforming it with the addition of 8 different polynomials to simulate 8 different

variations to the inputs of the Monte Carlo. The amplitude, αi, of the deformation from

each parameter was then floated. The effective (deformed) alpha pdf, P sys(E), was built

from the central alpha pdf, PCentral(E), as follows:

P sys(E) = PCentral(E) +

7
∑

i

αi × si(E) (8.1)

where priors on the si were obtained by deforming the central Monte Carlo pdf to make it

agree with pdfs generated from Monte Carlo simulations with different input parameters.
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The si then model the variation between the central simulation and the ones with different

parameters [67]:

210Po alpha depth variation: s0 = −2.06 + 6.58E − 6.56E2 + 2.11E3

Bulk alpha depth variation: s1 = −0.0684 + 0.0892E

Drift time variation: s2 = −0.131 + 0.252E − 0.117E2

Avalanche width offset variation: s3 = −0.0541 + 0.0536E

Avalanche gradient offset variation: s4 = −0.0138

Ionmobility variation: s5 = −0.00930

Po/bulk fraction variation: s6 = −0.00405 + 0.0386E

Data cleaning systematic: s7 = 0.861 − 2.77E + 2.72E2 − 0.870E3

(8.2)

This results in a large number of degrees of freedom for the alpha pdf and is similar to float-

ing a polynomial to represent the background (alpha + NNNA), subject to the constraints

available from calibration data (the 4He -strings and analysis of the NNNA strings).

The number of neutrons from the NC interaction of neutrinos were constrained to be the

same in the NCD and PMT sides of the likelihood. This was achieved by floating the flux

of neutrinos and using the PMT and NCD neutron detection efficiencies (determined from

calibration data) to convert to a number of events seen in each type of instrumentation.

Each component of the neutron backgrounds in the PMT was obtained by converting the

number seen in the NCDs using the ratio of expected number of events seen in the PMTs

to the number seen in the NCDs.

Results from the previously published analysis are difficult to compare directly to the

results in this thesis since they determined the neutrino flux and not the number of neutrons

in the NCDs directly. The conversion from the flux into a number of neutrons includes

systematic uncertainties that are not directly inherent to the analysis of the NCD data.
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Section 8.4 describes how a neutrino flux can be converted into a number of detected

neutrons in the NCDs. This conversion involves systematic uncertainties that arise from

the conversion of neutrino flux into a number of neutrons (detection efficiencies, cross-

sections) as well as uncertainties related to the number of background neutrons that are in

the data (neutrons from radioactivity). The process of determining a ‘number of neutrons

detected in the NCDs’ is further complicated by the fact that the systematic uncertainties

in the conversion from neutrino flux to neutrons were also floated in the published analysis.

Since the previous analysis determined the neutrino flux with statistical and systematic

uncertainties, this number must be converted into a number of neutrons with the corre-

sponding contributions. Table 8.5 from section 8.4 shows how a neutrino flux, Φ, can be

converted into the number of detected neutrons using a multiplicative factor, X, and the

number of background neutrons, B. In order to obtain the number of neutrons with un-

certainties that are representative of the analysis of the NCD data and not the conversion

from neutrino flux, a few assumptions must be made to remove the uncertainties from the

conversion between neutrino flux and neutron number:

• The uncertainty in the multiplicative factor (the conversion between neutrino flux

and number of detected NC neutrons) can be removed in quadrature from the quoted

systematic uncertainty in the neutrino flux.

• The uncertainty in the number of background neutrons can be removed in quadrature

from the systematic uncertainty in the total number of neutrons.

Although it may seem that these systematic uncertainties can be removed in quadrature

from the total systematic uncertainty that was quoted, this is not necessarily true because

these were floated in the MCMC. In theory, the resulting marginalization results in an

equal or smaller effect than addition in quadrature. It was found that the results from

the fit determined the uncertainties in the multiplicative factor to be 3.308% compared

with 3.334% before the fit and the uncertainty in the number of background neutrons
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was determined to be 12.8%, compared with 13.7% before the fit. The changes in the

uncertainties being smaller than 1%, it can be safely assumed that these uncertainties can

be removed in quadrature from the neutrino flux systematic uncertainty.

The previously published analysis [38] reported the neutrino flux measured with the

PMTs and NCDs to be:

φNC
NCD+PMT (νx) = 5.54 ± 0.32(stat.) ± 0.35(sys.) × 106 cm−2s−1 (8.3)

where the asymmetric uncertainties were ‘symmetrized’ here by taking the average of the

positive and negative uncertainties. The ‘statistical’ uncertainty in the flux was determined

by running the MCMC with no systematic parameters. The systematic uncertainty was then

determined by running the MCMC with systematic parameters and removing in quadrature

the previously determined statistical uncertainty. Any change in the mean value of the flux

from the inclusion of the systematic uncertainties was ignored. It should be noted that this

method of ‘separating out’ the systematic uncertainty will not necessarily lead to a robust

determination of its value and really depends on how one wishes to define ‘systematic

uncertainty’. This is because the part that is defined as the statistical uncertainty also

includes contributions that are due to the method that is employed to determine the flux,

and therefore, of a ‘systematic’ nature.

Since this analysis included data from the PMTs, it is not directly comparable to the

results in this thesis. For this reason, the author of this thesis has used the official software

package that was used for the published analysis to determine the same flux by ignoring the

data from the PMTs. The resulting fit in NCD energy for the published analysis and the

one that was run without the PMTs are compared in Figure 8.1 and seen to be qualitatively

very similar. The result that was obtained for the neutrino flux without using the PMT

data is:

φNC
NCD(νx) = 5.45 ± 0.39(stat.) ± 0.22(sys.) × 106 cm−2s−1 (8.4)

and it should be noted that the ‘balance’ between statistical and systematic uncertainties
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has changed between this flux and the published one, even though the total uncertainties

are similar. This is an illustration of the caution that should be taken when the total

uncertainty returned by the MCMC is interpreted and divided into statistical and systematic

components.

These neutrino fluxes can now be converted into a number of neutrons with statistical

and systematic uncertainties using the multiplicative factor and the number of background

neutrons. Removing the uncertainties from the multiplicative factor and background neu-

trons in quadrature from the systematic uncertainty results in:

NNCD+PMT = 1, 246 ± 60(stat.) ± 61(sys.)

NNCD = 1, 229 ± 76(stat.) ± 27(sys.)

(8.5)

where NNCD+PMT and NNCD are the number of detected neutrons determined with and

without the inclusion of the PMT data, respectively. NNCD is directly comparable to the

results in this thesis since it only depends on data from the NCDs and is not biased by any

pull from the observables on the PMT side of the analysis. In order to compare NNCD to

results from this thesis, it is assumed that the statistical uncertainty will scale by
√

3 and

the systematic uncertainty will scale by 3 when the number is scaled down to a value for

the one-third data set:

N
1

3

NCD = 410 ± 44(stat.) ± 9(sys.) ± 45(tot.)

(8.6)

where the total uncertainty was obtained by adding the statistical and systematic uncer-

tainties in quadrature.
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Figure 8.1: Comparison of fit to NCD phase NCD energy spectrum with (a) and without
(b) the PMT data. Panel (a) is the fit that was used in the publication, whereas panel (b)
is a fit performed by the author of this thesis using the same software but removing the
contributions from the PMT data.

8.3 The New Analysis

This section presents the same analysis of the NCD data as was done on the blind data,

in section 7.6. In this case one third of the data set that was used for the publication [38]

is analyzed for the number of neutrons. Systematic uncertainties are applied in the same

way as they were for the blind data set (floating subject to their priors, 10 randomized

components for each NNNA pdf).

8.3.1 Using Energy

The NCD data is first re-analyzed using only a fit in the energy observable so that the

result from the energy fit can be compared with the published result. This comparison is

useful since the method presented here differs significantly from what was previously done

(particularly in the way that the backgrounds to the neutron signal are handled). Table 8.1

shows the signals that were extracted from the NCD data with the systematic uncertainties

in the energy pdfs applied. The result presented here is virtually unaffected by systematic

uncertainties and the uncertainty is thus expected to scale with statistics.
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Without Systematics With Systematics No Prior

neutrons 411(39) 406(40) 401(41)
alphas 1490(89) 1505(90) 1482(93)
nnna0 18(25) 122(94) 0(87)
nnna26 65(59) 33(37) 30(49)
neutron energy scale fixed 1.005(03) 1.008(04)
alpha energy shift fixed -0.035(41) -0.074(97)
Energy Fit Quality 30/24 (19%) 31/24(15%) 35/24(6%)

Table 8.1: Fit to one-third neutrino data using energy. The first column shows the resulting
numbers determined with the pdfs fixed to their un-deformed shapes and all systematic
parameters fixed. The second column allowed the pdfs to float with deformation parameters
constrained with the prior information and the last column allowed the pdfs to float with
no constraints from the priors. The quality of the fit is expressed as the chi-squared per
number of degrees of freedom and is shown with the corresponding probability.

Without Systematics With Systematics No Prior

neutrons 384(48) 387(50) 351(56)
alphas 1393(49) 1387(58) 1413(61)
nnna0 29(37) 25(34) 40(41)
nnna26 81(59) 43(76) 37(59)
neutron NoverA scale fixed 1.056(22) 1.243(32)
alpha NoverA scale fixed 0.986(16) 0.990(14)
NoverA Fit Quality 80/94(86%) 81/94(84%) 77/94(90%)

Table 8.2: Fit to one-third neutrino data using NoverA.

8.3.2 Using NoverA

To provide a comparison with the analysis that was done on the blind data, it is of interest

to consider the results when only NoverA is used as an observable. Table 8.2 shows the

signals that were determined from a fit in NoverA. Similarly to the case that was seen on

the blind data set, it appears that NoverA by itself has trouble in constraining the number

of neutrons, especially if the systematic parameters are allowed to float with no priors, as

seen in the third column.
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8.3.3 Using Energy and NoverA

Finally, the main result of this thesis is presented here. Table 8.3 shows the extracted signals

on the one third NCD data set when both energy and NoverA are used. As anticipated, the

uncertainty in the number of neutrons has decreased as compared to the fits using only one

observable. Allowing the systematic parameters to float with no priors does not change the

number of neutrons or the uncertainty. Removing the priors only has a small effect on the

alpha energy shift, which was already shown to be difficult to constrain in the blind data.

A key difference between this data set and the blind data is that the fit quality in NoverA

has improved substantially (72% here vs 12% in the blind data) whereas the quality of the

fit in energy has decreased somewhat (from 53% to 25%).

The number of neutrons determined in the one third data set is thus 398.3+30.7
−29.4. The

uncertainty is almost unaffected by the inclusion of the systematic parameters. This section

concludes with a set of diagnostic plots resulting from the fit in both observables using prior

constraints on the systematic parameters (second column of Table 8.3). Figure 8.2 shows

the resulting fits in energy and NoverA, the negative log-likelihood as well as the auto-

correlation function for some of the parameters. Figures 8.3 and 8.4 show the posterior

distributions for the signals and systematic parameters, respectively. The MCMC was run

with 200,000 steps and the first 40,000 were discarded as burn-in.
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Figure 8.2: ‘Diagnostic’ plots for the energy+NoverA fit to the one-third data. Panels (a)
and (b) show the fit in energy and NoverA. Panel (c) shows the negative log-likelihood as
a function of step in the MCMC, the vertical line shows where the burn-in cut was placed
(at 40,000 of 200,000 steps). Panels (d) and (e) show the auto-correlation function for
the signals as well as the neutron and alpha deformation parameters. Panel (f) shows the
auto-correlation function (ACF) for 4 of the linear combination parameters that are used
to build the NNNA pdfs.
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Without Systematics With Systematics No Prior

neutrons 409(29) 398(30) 398(30)
alphas 1447(58) 1499(64) 1471(59)
nnna0 44(24) 46(31) 38(31)
nnna26 92(59) 36(37) 41(42)
neutron energy scale fixed 1.005(03) 1.007(03)
alpha energy shift fixed 0.010(27) 0.033(22)
neutron NoverA scale fixed 1.082(23) 1.095(22)
alpha NoverA scale fixed 1.044(10) 1.046(09)
Energy Fit Quality 33/24(9%) 30/24(20%) 28/24(25%)
NoverA Fit Quality 84/94(76%) 89/94(62%) 85/94(72%)

Table 8.3: Fit to one-third neutrino data using energy+NoverA.
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Figure 8.3: Posteriors for the signals as determined by fitting one third of the NCD data
set.
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Figure 8.4: Posterior distributions for the systematic parameters for the fit of the one
third data using energy and NoverA. It is again noted that the alpha energy shift is not
constrained very well, as was found in the blind data set. However, the MCMC algorithm
properly marginalizes over this multi-modal posterior distribution.
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8.3.4 Comparison with Published Result

The results from this thesis are now compared to N
1

3

NCD, the number of neutrons determined

in section 8.2 for the case where the PMT data were excluded. In order to obtain statistical

and systematic contributions to the uncertainties from the results in this thesis, a com-

parison was made between the number of neutrons extracted with and without systematic

uncertainties. The difference in quadrature is identified with the systematic uncertainty.

Table 8.4 shows a summary of the number of neutrons determined on the one-third data

set using energy, NoverA and energy+NoverA with statistical and systematic contributions

included. The numbers are compared with N
1

3

NCD. The systematic uncertainty in the the

NoverA-alone number also includes a contribution to take into account the discrepancy

between the number of neutrons that was obtained with and without the prior constraint

(the uncertainty was increased by adding in quadrature half of the difference in neutron

numbers between the case with and without priors).

Table 8.4 shows that the number of neutrons determined with the methods in this thesis

are in good agreement with the number that was published. A comparison of the central

values shows that the number of neutrons agrees within the (uncorrelated) systematic uncer-

tainties of each method. The fit using only energy from this thesis is in excellent agreement

with that performed for the published analysis and yielded comparable uncertainties. Fur-

thermore, it is demonstrated that the use of energy+NoverA has resulted in a substantial

decrease in the total uncertainty in the number of neutrons. The gain has been obtained due

to the statistical accuracy of the method being presented in this thesis which has increased

because of the inclusion of a second observable. The total uncertainty has gone down from

10.7% (using the energy analysis of the published data) to 7.5% using the energy+NoverA

analysis on the one-third data set. The next section extrapolates the results from this thesis

to the full data set and determines the impact on the solar neutrino flux determination.
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Source Neutrons Stats Sys. Total

N
1

3

NCD 410 44 9 44 (10.7%)
Energy Alone 406 39 9 40 (9.9%))
NoverA Alone 387 48 23 53 (13.7%)
Energy+NoverA 398 29 8 30 (7.5%)

Table 8.4: Comparison of neutron numbers obtained in this thesis with an analysis similar
to the one that was published except for the exclusion of the PMT data (first row).

8.4 Conversion Between Number of Neutrons and Neutrino

Flux

This section introduces the inputs and the method by which the conversion between the

solar neutrino flux and the number of neutrons detected in the NCDs can be achieved.

These are then used to convert between the number of detected neutrons and the neutrino

flux. The number of neutrons produced in SNO can be calculated by the SNO Monte Carlo

simulation package [25] using a neutrino flux. The number of neutrons produced per day

in SNO from solar neutrinos is determined to be 12.963 ± 0.065 neutrons/day [83] for a

neutrino flux of 5.145 ×10−6s−1cm−2. The number depends on the neutral-current (NC)

cross-section for neutrinos on deuterium, the number of deuterium targets and is integrated

over the live-time of the detector including effect from the eccentricity of Earth’s orbit. This

number can then be scaled according to different predictions for the neutrino flux, or used

to determine the neutrino flux from a number of neutrons detected per day in SNO.

Neutrons from the NC reaction are produced uniformly throughout the heavy water

volume. The probability for uniformly produced neutrons to capture in the NCD array was

determined using the data from the distributed 2005 24Na calibration source and was found

to be 0.211 ± 0.007 ([38, 62]). The live-fraction of the scopes along with the efficiency of

the data-cleaning cuts (including the removal of the six bad strings) results in a 92.3± 0.4%

[83] probability for captured neutrons to be detected within the full energy range (0.2 MeV

- 1MeV). The live-time of the NCD phase was determined to be 385.15 ± 0.14 days [84].
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Contribution Value Uncertainty

Predicted Flux [10−6s−1cm−2] Φ %
Neutrons produced per day ×12.963±0.065

5.145 0.5%
Number of live days × 385.17 ± 0.14 0.036%)
Capture Efficiency × 0.211 ± 0.007 3.318%
Detection Efficiency × 0.923 ± 0.004 0.433%

Multiplicative Factor (X) ×188.9978 ± 6.395 3.383%
Detected background neutrons in 385 days (B) + 198.76 ± 25.5 12.8%

Total number of neutrons detected in NCDs Φ×X+B

Table 8.5: This table shows how to convert a neutrino flux, Φ, into a number of predicted
neutrons detected in the NCD phase, in the full energy range, by using a multiplicative
factor, X, and the number of background neutrons, B.

Finally, the number of detected neutrons will include those produced from the solar

neutrinos as well as background neutrons from radioactivity and atmospheric neutrinos.

The number of detected background neutrons (including capture and detection efficiencies)

for the entire NCD phase was determined [83] to be 198.76 ± 25.5 (detected neutrons within

the full energy range) . All these contributions are summarized in Table 8.5, which shows

how a neutrino flux can be converted into a total number of neutrons detected in the array

for the entire NCD phase.

In order to estimate the impact of the results from this thesis on the measurement of

the neutrino flux, the neutron numbers from this thesis are scaled up by a factor of three.

Neutron numbers for the entire NCD phase can then be converted into neutrino fluxes

using the procedure outlined in Table 8.5. An ‘expected’ uncertainty in the total number of

neutrons is introduced in order to estimate the increased statistical accuracy that would be

obtained by performing the analysis on the entire data set. This is achieved by scaling the

statistical uncertainty by
√

3 and the systematic uncertainty by 3, similarly to what was

done to scale down the number from the published analysis. A ’conservative’ uncertainty

was obtained by assuming that the total uncertainty scales by a factor of 3 and is not

affected by the increase in statistics.

Table 8.6 shows the neutrino fluxes inferred from the methods presented here, compared
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with predictions from standard solar models (BP2000 [3], BS2005(OP) [4], BPS2008(GS

and AGS)[48]), the previously published analysis and the analysis similar to the published

analysis that excluded the PMT data, to which the results from this thesis are expected to

be most similar. The BP2000 solar model is the solar model that was current when SNO’s

first published results came out, BS2005(OP) was the current solar model at the time

that the NCD data were published (and contained new opacity models) and BPS2008 (GS

and AGS) are the latest solar models that have been split into a high and low metallicity

model, respectively. This division has allowed for the uncertainty in the neutrino flux

to be reduced, since it does not contain a contribution from the knowledge of the metal

abundance. The high metallicity model is consistent with helioseismological measurements,

but inconsistent with recent abundance measurements. The low metallicity model includes

the new abundances but disagrees with the solar acoustic measurements. It is clear that

SNO’s measured neutrino flux is approaching an accuracy that can allow to distinguish

between these different solar models and contribute to the resolution of the ‘solar metallicity

problem’.

As previously observed, the main benefit from this analysis is the substantial improve-

ment in the statistical accuracy of the neutrino flux. The systematic uncertainties are not

affected very much as they are dominated by the knowledge of the neutron background

and the multiplicative factor. With the expected scaling of the statistical uncertainty, the

results presented in this thesis would reduce the total uncertainty in the 8B neutrino flux

from 8.5% to 6.8% . It is difficult to make a precise statement about the central value of

the neutrino flux obtained from the analysis in this thesis, due to the statistical inaccuracy.
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Source Neutrino Flux (stat.) (sys.) (total)
10−6s−1cm−2

BP2000 5.05 0.91(18%)
BS2005(OP) 5.69 0.91(16%)
BPS2008(GS) (high metallicity) 5.94 0.65(11%)
BPS2008(AGS)(low metallicity) 4.72 0.52(11%)
Published 5.54 0.32 0.35 0.47(8.5%)
Publication Analysis, no PMTs 5.45 0.39 0.22 0.45(8.3%)
Energy (conservative uncertainty) 5.39 0.62 0.25 0.66(12.2%)
Energy (expected uncertainty) 5.39 0.36 0.25 0.42(7.8%)
Energy+NoverA (conservative uncertainty) 5.27 0.46 0.24 0.50(9.5%)
Energy+NoverA (expected uncertainty) 5.27 0.27 0.24 0.36(6.8%)

Table 8.6: . Comparison of neutrino fluxes from this analysis with the previously published
analysis and the SSM predictions. The number from this thesis have been calculated with
an expected uncertainty that assumes that the statistical accuracy would improve by a
factor of

√
3. Results from this thesis should be compared to the value obtained from the

analysis that is similar to the published analysis but excludes the PMTs (fourth line). In all
cases, the systematic uncertainties are dominated by the contributions from the background
neutrons and the multiplicative factor.

8.5 Summary

This chapter presented an analysis of one third of the data from the NCD phase. It was

shown that the combination of energy and NoverA in a maximum-likelihood analysis re-

sulted in a smaller uncertainty in the number of detected neutrons compared to the previous

publication of this data. The uncertainty on the neutrino flux from this new analysis is ex-

pected to be 6.8% compared to the 8.5% uncertainty on the previously published result.
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Conclusion

The aim of this thesis was to provide an independent analysis of the data from the pro-

portional counters from the third phase of SNO. This analysis differed significantly from

previous work as pulse shape information was used to distinguish neutrons from alphas and

instrumental backgrounds (NNNA events, ‘non-neutron-non-alpha’). The work in this the-

sis built on the previous use of shaper energy in a maximum-likelihood analysis to include

a pulse-shape observable in the likelihood.

After introducing the NCD array, electronics and calibration (chapter 2), this thesis

covered the physics of pulses in proportional counters to motivate the use of pulse shapes

to distinguish neutrons from other events (chapter 3).

The Queen’s Grid Fitter (QGF) was then characterized as a means of measuring the

‘NoverA’ observable for each event (chapter 4). The probability density functions of NoverA

were then obtained for neutrons, alphas, and NNNAs in chapter 5. Systematic uncertainties

in these distributions were handled in different ways, depending on the amount of data

available for determining the pdfs. In the case where many data were available (such as for

neutrons and alphas), average pdfs were determined and then deformed with either a scaling

or shifting of the x-axis. The scaling and shifting parameters were allowed to float in the

fits, but were constrained by calibration data for neutrons and a combination of calibration
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and Monte Carlo data for alpha particles.

The pdfs for the NNNA type of events had large uncertainties in each bin due to the

small amounts of data that were used to generate them. The work in this thesis presented a

novel method for dealing with the systematic uncertainties arising from these ‘low statistics’

pdfs. This was achieved by defining the pdfs as histograms with uncertainties in each bin.

A set of 10 ‘new’ pdfs were then drawn from the histograms with uncertainties by randomly

sampling a value in each bin and creating a new pdf. In order to introduce bin to bin

correlations (as would be expected for a physical process), these pdfs were smeared with a

gaussian resolution function. The resulting 10 pdfs were then used in a linear combination

and the coefficients of that linear combination were floated as free parameters. This novel

technique allowed for the integration over possible pdf shapes as well as the determination

of a best fit pdf from the data. The problem of pdfs determined from low statistics can

often be a problem in particle physics when Monte Carlo data is used to model rare events.

In those cases, even large amounts of Monte Carlo data may not have the desired statistics

to model the distributions for rare processes and the techniques presented here may be of

use.

In chapter 6, the details of an extended maximum-likelihood analysis were introduced.

It was shown that a Bayesian approach using the Markov-Chain Monte Carlo (MCMC)

technique was suitable for performing an analysis of the NCD data using energy and NoverA

as observables. Test of the MCMC-based analysis were then performed on sets of Monte

Carlo data to test for any biases (chapter 7). The tests were then extended to a blind data

set and showed that the new technique, which integrated NoverA into the likelihood, gives

consistent results compared to an analysis that used only energy but results in a smaller

uncertainty in the number of detected neutrons.

In chapter 8, the extended maximum-likelihood analysis was applied to one third of the

data from the proportional counters in the NCD phase. This analysis used both energy and

NoverA as observables to determine the number of detected neutrons in the NCDs. The
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analysis presented here determined that the one-third data set contains 398 ± 29 (stat.) ±

9 (sys.) neutrons. This can be directly compared to an analysis that is analogous to the

published result but which excluded data from the PMTs and determined that the one-third

data set contains 410 ± 44 (stat.) ± 9 (sys.) neutrons, where systematic uncertainties are

uncorrelated between the two analyses. The addition of the NoverA observable has resulted

in a substantial decrease in the statistical uncertainty in the number of neutrons and is

the main result from this thesis. The work presented here has thus conclusively shown

that the use of the pulse shapes from the proportional counters results in a more precise

measurement of the number of detected neutrons in the NCD phase of the SNO experiment.

Assuming that the statistical uncertainty scales by a factor of
√

3 the analysis from

this thesis alone results in a 6.8% uncertainty in the total 8B solar neutrino flux, compared

with 8.5% uncertainty quoted in the previously published result [38]. This result will have

an impact on further constraining solar models and in particular, can help solve the ‘solar

metallicity problem’, where the 8B neutrino flux differs by 21% between high and low

metallicity solar models. Increased accuracy in the NC flux of the NCD phase will lead to

a better determination of the CC flux and the CC/NC ratio, which will result in a more

accurate value of θ12. A better knowledge of θ12 will lead to a more robust determination of

θ13, which will set the scale for CP-violation in the lepton sector. Phenomenological models

that predict the values of the mixing angles will also be further constrained. The inclusion

of the analysis presented here to a combined analysis of all three phases of SNO will lead

to even more accurate results and, ultimately, the most precise value of the total active

neutrino flux and θ12 ever determined.

Finally, the last chapter of this thesis provided some conclusions and a brief summary,

much like this one.
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