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Abstract

Through-going muon events are analyzed as a function of their direction of travel
through the Sudbury Neutrino Observatory. Based on simulations and previous mea-
surements, muons with a zenith angle of −1 < cos(θzenith) < 0.4 are selected as
atmospheric neutrino-induced muons. A two-neutrino analysis of these events agrees
with the oscillation parameters observed by the Super Kamiokande and Minos exper-
iments, and places 2-D limits of ∆m2

23 = 1.8+7.1
−1.1 × 10−3 eV2 at the 68% confidence

level, and sin2(2θ23) > 0.33 at the 90% confidence level. In addition, the flux of
atmospheric neutrinos is measured in 1-D with a 68% confidence level to be 1.24+0.11

−0.10

times the prediction of the BARTOL group based on SNO data alone, and 1.27±0.09
times the prediction when the oscillation parameters are constrained by the Super
Kamiokande and Minos results.

Thesis Supervisor: Joseph Formaggio
Title: Assistant Professor
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Chapter 1

Introduction

In 1965, two experiments independently detected atmospheric neutrinos for the first

time. These experiments, located deep underground in South Africa [1] and India

[2], detected muons traveling horizontally, which could best be explained by the the-

oretical flux of muon neutrinos produced by cosmic rays. Since that time, many

experiments have measured these atmospheric neutrinos including the Irvine Michi-

gan Brookhaven Experiment (IMB) [3], Kamiokande [4], Frejus [5], and MACRO [6]

among others. As measurements of electron and muon neutrinos from cosmic rays

accumulated, it was found that the ratio between them was vastly different than pre-

dictions based off of cross-sections measured at accelerators. This was believed to be

caused by neutrino oscillations.

In 2005, the Super Kamiokande experiment proved that this was the case by mea-

suring the flux of electron and muon neutrinos as a function of their direction of

travel through the detector [7]. This experiment provided an excellent measurement

of the flux of low energy atmospheric neutrinos as well as the muon to tau neutrino

oscillation parameters ∆m2
23 and θ23. However because it was located in the side of

a mountain, Super Kamiokande could not measure the raw flux of high energy at-

mospheric neutrinos. It could only observe high energy muon neutrinos from below

the horizon, which have undergone oscillations. Thus the flux of high energy atmo-

spheric neutrinos measured by Super Kamiokande is correlated with the oscillation

parameters.
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The Sudbury Neutrino Detector, because of its great depth and flat overburden can

observe high energy atmospheric neutrinos both above and below the horizon, giving

it the unique ability to measure both the neutrino flux and oscillation parameters with

relatively high statistics. This thesis will detail an analysis of atmospheric neutrino-

induced events in the SNO detector.

A more precise measurement of the flux of high energy atmospheric neutrinos

would be useful in many ways. Neutrino telescopes such as AMANDA [8] and Baikal

[9] search for neutrinos coming from objects outside of our solar system. Atmospheric

neutrinos are both the calibration source and dominant background for these exper-

iments, so a better measurement of the absolute flux of neutrinos will improve their

results. In addition, the next generation of neutrino and dark matter detectors will

need estimates of the atmospheric neutrino flux to calculate their backgrounds. An

improved measurement of the flux will help them reduce the uncertainties on their

measurements. Finally, improved measurements of the atmospheric neutrino flux will

allow theorists to improve their models of cosmic ray showers which may improve

estimates of extremely high energy interaction cross-sections.
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Chapter 2

Theory

2.1 Neutrino Oscillations

Neutrino oscillations occur because neutrinos interact in their flavor eigenstates, but

propagate in their mass eigenstates. Thus if a neutrino is created in an electron eigen-

state, after traveling for some distance it will have a lower probability of interacting

in an electron eigenstate, and a higher probability of interacting in a muon or tau

state. In the standard formulation of neutrino oscillations [10], a neutrino of definite

flavor |να〉 is a superposition of neutrinos of definite mass |νi〉:

|να〉 =
∑
i

U∗αi|νi〉 (2.1)

where U is a unitary mixing matrix of the form:

U =


1 0 0

0 c23 s23

0 −s23 c23

×


c13 0 s13e
−iδ

0 1 0

−s13e
iδ 0 c13



×


c12 s12 0

−s12 c12 0

0 0 1

×

eiα1/2 0 0

0 eiα2/2 0

0 0 1


(2.2)
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where cij is shorthand for cos θij while sij is shorthand for sin θij. This equation con-

tains three mixing angles (θ12, θ23, and θ13), one charge-parity (CP) violating phase

(δ), and two Majorana phases (α1 and α2). There are no Standard Model predictions

for these parameters so they must be measured through experiments. The overall

matrix is broken into these four matrices because each matrix is evident in different

neutrino oscillation regimes. The first matrix represents mixing between the muon

and tau neutrinos through θ23. This mixing has been observed in high energy atmo-

spheric neutrino [7] and beamline experiments [11, 12]. The second matrix represents

mixing between electron and tau neutrinos through θ13, and includes the CP violating

phase. This matrix should be seen as a second order effect in any other oscillation

experiment. The third matrix represents mixing between electron and muon neu-

trinos through θ12. This mixing is observed in reactor neutrinos [13] and in solar

neutrino experiments [14, 15] through the Mikheyev-Smirnov-Wolfenstein (MSW) ef-

fect [16, 17]. The last matrix differs from the identity matrix only if neutrinos are

Majorana particles, and would show up in neutrinoless double beta decay experiments

[18].

The most precisely measured oscillation parameters come from electron neutrino

disappearance from the sun and from nuclear reactors. A global fit to these two

methods [13] yields tan2(θ12) = 0.47+0.06
−0.05 and ∆m2

12 = 7.59 ± 0.21 × 10−5 eV2 at the

68% confidence level. Muon neutrino disappearance measurements at higher energies

give the best limits on muon to tau neutrino oscillations. Super Kamiokande [7] has

measured sin2(2θ23) > 0.92 at the 90% confidence level using atmospheric neutrinos,

while MINOS [11] has measured ∆m2
23 = 2.74+0.44

−0.26 × 10−3 eV2 at the 68% confidence

level using a neutrino beam. Oscillations from electron to tau neutrinos have not been

seen, although the CHOOZ experiment [19] has placed a limit of sin2(2θ13) < 0.19 at

the 90% confidence level. Because these oscillations have not been detected, no limits

have been placed on ∆m2
13 or the CP violating phase. Neutrinoless double beta decay

has not been observed, so no limits can be placed on the majorana phases.

While in general the formula for oscillations is very complicated, a simplified two

neutrino model can be used with reasonable accuracy. This simplification works

18



Oscillation Parameter Confidence Level Source

tan2(θ12) = 0.47+0.06
−0.05 1-D 68% Solar + KamLAND [13]

∆m2
12 = 7.59± 0.21× 10−5 eV2 1-D 68% Solar + KamLAND [13]

sin2(2θ23) > 0.92 2-D 90% Super Kamiokande [7]

∆m2
23 = 2.74+0.44

−0.26 × 10−3 eV2 1-D 68% MINOS [11]

sin2(2θ13) < 0.19 2-D 90% CHOOZ [19]

∆m2
13 has never been observed.

Table 2.1: Current limits on neutrino oscillation parameters.

because ∆m2
12 and ∆m2

23 are separated by an order of magnitude and sin2(2θ13) is

small. In addition, atmospheric neutrinos have large energies, so the MSW effect

is insignificant. For atmospheric neutrino oscillations, the two-neutrino oscillation

formula is:

P (νµ → νµ) = 1− sin2(2θ23) sin2

(
1.27∆m2

23

L

E

)
(2.3)

where ∆m2
23 is the difference in squared masses of the neutrino mass eigenstates in

eV2, L is the distance the neutrino has traveled in km, and E is the neutrino energy

in GeV. In almost all cases it is fair to use this two particle mixing assumption

rather than the full three particle formalism. This equation will be used to predict

the disappearance of muon neutrinos and the appearance of tau neutrinos in the

atmospheric neutrino flux.

2.1.1 Atmospheric Neutrino Oscillations

Atmospheric neutrinos are produced in cosmic ray showers. A primary cosmic ray

from outer space (usually a proton or Helium nucleus) interacts in the upper atmo-

sphere, producing a shower of hadrons and mesons. Some of these mesons (primarily

pions and kaons) decay via the weak interaction and produce muons and muon neutri-

nos. The muons travel down through the atmosphere and are stopped after traveling

a few kilometers through the surface of the earth. In the Sudbury Neutrino Ob-

servatory (SNO), these cosmic ray muons are seen traveling downward through the

detector. The muon neutrinos travel straight through the earth because of their low

cross-section with matter. While the majority of these atmospheric neutrinos pass

19



through the earth without interacting, one will occasionally interact within the earth

to produce a muon that can pass through the SNO detector. If the neutrino was pro-

duced on the far side of the earth, the resulting neutrino induced muon will be seen

traveling upward through the detector. By measuring the flux of these upward-going

muons, SNO can measure the flux of atmospheric neutrinos.

The best measurement of atmospheric neutrinos comes from the Super Kamiokande

experiment due to its large detector volume and long livetime [7]. The Super Kamiokande

detector is a cylindrical water Cherenkov detector that contains 50 kilotons of ultra-

pure light water observed by 11146 Photomultiplier Tubes (see figure 2-1). It is

located in a mountain in Kamioka, Japan under an overburden of 2700 meters wa-

ter equivalent. Figure 2-2 shows the measured flux of electron and muon neutrinos

along with their fit to the oscillation parameters. The three leftmost plots show the

measured flux of electron neutrinos. Since there is no excess of electron neutrinos

compared to theoretical predictions, it can be inferred that the disappearing muon

neutrinos must be oscillating into tau neutrinos. The eight plots to the right show the

flux of muon neutrinos as a function of zenith angle. There are eight plots because

neutrino-induced muons with different energies produce different event topologies in

the detector. In general, the plots to the lower right have higher energy. The top

six plots on the right (µ-like and PC) come from muon neutrino interactions within

the detector, allowing neutrinos from all directions to be measured. The bottom two

plots (Upward stopping µ and Upward through-going µ) come from neutrino-induced

muons which enter the detector. Since the neutrino interaction vertex cannot be

detected, there is no way to tell the difference between a cosmic ray muon and a

neutrino-induced muon other than by its direction. Super Kamiokande is located in

the side of a mountain so cosmic ray muons can come in horizontally. Only upward-

going muons are included in these fluxes to reduce the contamination from cosmic

ray muons.

The different energy regions provide different information about the oscillation

parameters. The level of the deficit of upward going internal muon neutrino inter-

actions measures sin2(2θ23), while the slope of the upward stopping muon plot and

20



Figure 2-1: A drawing of the Super Kamiokande detector. The cutaway shows the
inside lined with photomultiplier tubes comprising a photocathode coverage of about
40%. The thin outer region is shown with a sparser density of outward facing PMTs.
Taken from [7].
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the upward through-going muon plot give the largest constraint on ∆m2
23. However,

the slope of these plots also has a component due to the raw flux of atmospheric

neutrinos. While to first order, the flux of atmospheric neutrinos should be the same

from all directions, the changing density of the atmosphere gives a shape to the at-

mospheric neutrino flux independent of oscillations. High energy muon neutrinos are

created by the decay of high energy pions and kaons. However these mesons travel

through the atmosphere, and can lose energy or be destroyed by strong interactions

with gas nuclei. This becomes a large effect when the mean free path of the me-

son is comparable to its decay length. Since the mean free path is proportional to

the density of gas atoms, mesons traveling downward through the atmosphere pro-

duce fewer high energy muon neutrinos than those traveling horizontally through the

atmosphere. Horizontal mesons produce neutrinos that are observed at cos(θzenith)

near 0, while downward mesons produce neutrinos that are observed near ±1. This

produces an excess of neutrinos near cos(θzenith) = 0 which can be seen in the no

oscillations prediction (boxes) in the PC (partially contained) plot in figure 2-2. The

same excess occurs in the upward stopping muon and upward through-going muon

distributions, and gives a shape that is similar to the effect of ∆m2
23. Thus if the

flux of atmospheric neutrinos at high energy could be independently constrained, the

limits on ∆m2
23 could be improved.

2.1.2 Measurement at SNO

Although the Sudbury Neutrino Observatory is a smaller detector than Super Kamiokande

and will thus have lower statistics, it is able to observe atmospheric neutrinos in a

region that Super Kamiokande cannot. The rate of internal neutrino interactions

scales with the volume of the detector. Since Super Kamiokande has around 20 times

the volume of SNO, SNO will not be competitive for internal neutrino interactions.

However the rate of through-going neutrino-induced muons is proportional to the

area of the detector, and Super Kamiokande has only 5 times the area of SNO and

a similar livetime. More importantly, SNO is located deep underground under a flat

overburden. Because of this, cosmic ray muons coming in at large angles lose all of
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their energy before they reach the detector. This means that SNO has a region from

0 < cos(θzenith) < 0.4 in which it can observe through-going neutrino-induced muons

that Super Kamiokande could not. These neutrinos will not have traveled far enough

to oscillate, so this region will measure the raw flux of atmospheric neutrinos. This

measurement of the flux of atmospheric neutrinos will be useful in refining models of

the atmospheric neutrino flux and improving estimates of backgrounds in neutrino

oscillation, dark matter, and neutrino telescope experiments.

2.2 Atmospheric Neutrino Flux

In order to measure neutrino oscillations, the flux of atmospheric neutrinos must

be known. Groups such as Honda, et al. [20] and the BARTOL group [21] have

calculated the expected flux of atmospheric neutrinos. These calculations use the

measured flux of primary cosmic rays as an input and simulate cosmic ray showers

to estimate the flux of atmospheric neutrinos. The simulations attempt to model

the solar system correctly by taking into account including solar modulation, the

geomagnetic cutoff, bending of showers due to the earth’s magnetic field, and the

location of different detectors [22]. They also attempt to use the most up to date

cosmic ray fluxes and cross-sections. There are, however, significant uncertainties

associated with the caluclations. Different models for hadron production in high

energy collisions produce different numbers of pions and kaons at different energies.

Differences in simulations lead to around a 10% uncertainty in the expected flux of

atmospheric neutrinos [23]. The measured flux of cosmic rays also has uncertainties.

As seen in figure 2-3, the flux of cosmic rays is well measured at low energies by

the AMS (Alpha Magnetic Spectrometer) [24] and BESS (Balloon-borne Experiment

with Superconducting Spectrometer) [25, 26] experiments. However at higher energies

there are fewer measurements and significantly larger uncertainties on the flux. This

leads to a 15% uncertainty on the expected flux of atmospheric neutrinos at SNO

[23].

These uncertainties are not only on the overall normalization of the atmospheric
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Figure 2-2: Atmospheric Neutrino Flux as a function of zenith angle measured by the
Super Kamiokande experiment [7]. The crosses represent the measured flux while the
boxes represent the no oscillation prediction and the lines represent the best fit flux
including oscillations.
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neutrino flux, but also on the energy scaling of the flux. However these energy scaling

uncertainties are difficult to include in the analysis, and are most important for preci-

sion measurement of the oscillation parameters. Since SNO is expected to have lower

statistics than Super Kamiokande, SNO’s measurement of the flux of atmospheric

neutrinos will be more important than it’s measurement of the oscillation param-

eters. In order to perform this measurement, the neutrino flux calculated by the

BARTOL group (see figure 2-4) will be used as the input atmospheric neutrino flux,

and uncertainties on the energy scaling will be ignored. The measurement of the flux

of atmospheric neutrinos will thus be a measurement of how much the normalization

of the BARTOL flux must be changed to fit SNO’s data.
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Figure 2-3: Spectrum of cosmic rays seen by various experiments [24, 25, 27, 26, 28,
29, 30, 31]. Fits to this spectrum [32] are used as an input to calculate the flux of
atmospheric neutrinos. Taken from [23].
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Chapter 3

The SNO Detector

The SNO Detector is a large water-Cherenkov detector optimized for observing solar

neutrinos. The detector is filled with heavy water which provides two unique inter-

action mechanisms for studying solar neutrinos. In the first interaction, the charged

current interaction (νe+d→ p+p+e−), an electron neutrino interacts with a deuteron

to produce two protons and an energetic electron which is observed in the detector.

In the second interaction, the neutral current interaction (νx + d → p + n + νx), a

neutrino of any flavor scatters off of a deuteron, breaking it apart. The neutron is

then captured on another nucleus and that capture is detected in a variety of ways

depending on the phase of SNO. A third interaction, the elastic scattering interac-

tion (νx + e− → νx + e−), is also present. In this interaction, a neutrino interacts

with an electron, giving it more energy so that it can be detected. Any flavor of

neutrino can participate in this interaction through the exchange of a Z boson, but

electron neutrinos may also exchange a W boson, making this reaction more sensi-

tive to electron neutrinos. Previous results from SNO ([14] and [33] among others)

have demonstrated that the total flux of solar neutrinos as measured by the neutral

current interaction is consistent with the standard solar model. However the flux of

electron neutrinos as measured by the charged current and elastic scattering reactions

is around three times lower, indicating that electron neutrinos from the sun oscillate

into other neutrino flavors.

The SNO experiment has been described in great detail in journal articles [34,
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33, 14] and theses [35, 36, 37]. This section will review the aspects most relevant

to the atmospheric neutrino analysis. The detector consists of 1 kiloton of heavy

water contained in a 6m radius acrylic sphere (see figure 3-1). The acrylic sphere

is surrounded by an array of photomultiplier tubes (PMTs) at a radius of 850 cm.

Ultra-pure light water fills the volume between the acrylic vessel and the PMTs. The

detector is located in a cylindrical cavity in the rock. The volume between the cavity

walls and the detector is filled with light water, and observed by 91 outward-looking

PMTs. These PMTs serve as a muon veto for the solar neutrino analysis. The

detector is nearly spherically symmetric except for the neck. The neck is a 6.8m tall,

1.5m diameter cylinder at the top of the detector used to deploy calibration sources.

There are no PMTs in the neck, except for 4 PMTs at the top which are used to veto

light leaks.

The heavy water region is observed by 9438 20 inch diameter Hamamatsu R1408

PMTs which provide 31% photocathode coverage. This is extended to 54% through

the use of 27 cm light concentrators mounted around the PMTs (see figure 3-2). The

PMTs are run at approximately 2kV, for a gain of 107. Each PMT is independently

triggered by a programmable threshold crossing discriminator. Once the discriminator

fires the PMT charge is recorded using two integrator circuits set at high and low

gains. Each circuit is read out twice, at early and late times. Three quantities are

measured: the high gain integrated charge at short (QHS) and long (QHL) times, and

the low gain integrated charge at long times (QLL). The global trigger system sums

the total number of hit PMTs and their charge at all times using analog electronics.

The system has multiple triggering modes, the most important of which for this

analysis is the NHIT trigger. If enough PMTs fire (roughly 20 for most solar neutrino

data taking), the trigger system sends a global trigger signal to all of the readout

cards and records the time between the discriminator firing and the global trigger

as well as QHS, QHL, and QLL. If fewer PMTs fire than the trigger threshold, the

charge and timing of those PMT hits are discarded.

The detector is located in the Creighton mine in Sudbury, Ontario, Canada at a

depth of 2072 m under a flat overburden. This corresponds to 5891±94 meters water
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Figure 3-1: The SNO detector inside of the rock cavity. The black triangles represent
the PMT support structure, while the the dark grey region represents the acrylic
sphere and neck. Taken from [34].

Figure 3-2: A view of the SNO photomultiplier tubes. Note the flower petal-like
reflectors around each PMT. These serve to increase the photocathode coverage of
the detector by 75%.
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equivalent. Only very energetic cosmic ray muons can reach this depth, resulting in a

rate of 3 cosmic ray muons passing through the detector per hour. In addition, these

muons come in almost vertically. Almost no cosmic ray muons are expected to come

in with θzenith less than 66 degrees.

The SNO detector went through three distinct phases in order to reduce systematic

uncertainties on the solar neutrino measurement. In the first phase, pure heavy water

(D2O) was used as both the target and the detector medium. Neutrinos of all three

flavors interact with the deuteron via the neutral current weak interaction, releasing

a neutron. The neutron is subsequently captured on another deuteron, producing

tritium and releasing a photon. SNO’s neutral current measurement is thus a neutron

counting experiment. In the second phase, salt was added to the heavy water. The

35Cl in the salt has a larger neutron capture cross-section and releases a higher energy

photon, which changes the systematics of the neutral current measurement. Finally,

in the third phase, independent 3He proportional counters (NCDs) were added to the

detector. These counters detect neutrons by the reaction 3He + n → p + 3H. The

energy released in this interaction is carried by the proton and triton, which ionize

electrons in the gas, producing a pulse on the wire running through the center of

the counters. Since these detectors are read out by oscilliscopes rather than PMTs,

they have completely different noise profiles and dead times, and thus uncorrelated

systematic uncertainties.

Data from all three phases will be used in the atmospheric neutrino analysis. The

D2O phase data was collected from November 2nd, 1999 to May 28th, 2001. The Salt

phase data was recorded between July 26th, 2001 and August 28th, 2003, while the

NCD phase data was collected between November 27th, 2004 and November 28th,

2006. The data is collected in runs that range from 30 minutes to 96 hours in length.

Runs that are flagged with unusual circumstances (presence of calibration sources,

detector maintenance, high noise rates, etc.) are removed from the analysis. The

livetime of the data set is measured using a GPS-synchronized 10 MHz clock on a

run-by-run basis. The uncertainty of the livetime is estimated by comparing with

a 50 MHz system clock. Corrections to the livetime are made due to certain data
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Phase Livetime

D2O 337.262 ± 0.019 days
Salt 499.425 ± 0.016 days
NCD 392.560 ± 0.005 days

Table 3.1: Livetime for the atmospheric neutrino analysis for each phase.

selection cuts. The total livetime used in the atmospheric neutrino analysis is 1229.30

± 0.03 days. Table 3.1 shows the breakdown of that livetime by phase.

3.1 Muon Response

While the SNO detector was designed to observe low energy solar neutrinos, it can also

track high energy muons. A muon track at SNO has a few distinguishing features.

First, muons are the highest energy particles seen at SNO, and thus they deposit

the most energy. While a typical solar neutrino interaction may fire 30 PMTs, a

muon that grazes the edge of the detector will fire hundreds of PMTs, and a muon

that travels through the center of the detector may fire every PMT. Secondly, muons

produce Cherenkov radiation along their entire track. This shows up as a filled in

circle of hit PMTs as can be seen in figure 3-3. For muons that graze the edge of the

detector, the light concentrators around the PMTs add a triangular region next to

the circle as can be seen in figure 3-4. In addition the Cherenkov light travels directly

from the muon, so the timing of the PMT hits gives information about the path of

the muon. Finally, the muon deposits a significant amount of energy near its track,

which produces an ”entry wound” and ”exit wound” of high charge PMTs which are

not visible in the figures.
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Figure 3-3: A muon track in the SNO detector visualized using the XSNOED event
viewer. This muon came from the upper front right, passed near the center of the
detector, and exited to the lower back left. The color represents the timing of each
PMT hit. Yellow PMTs were hit earlier, while green were hit later.
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Figure 3-4: A muon track in the SNO detector visualized using the XSNOED event
viewer. This muon came from the upper front left, stayed near the edge of the
detector, and exited to the lower front right. Note the orange triangular feature
in the center of the top picture. This is characteristic of muons with large impact
parameters, and is caused by the light concentrators on the PMTs.
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Chapter 4

Muon Fitter

The FTI muon fitter fits for a through-going muon track [35]. It uses the distribution

of hit PMTs along with their charge and timing in a likelihood fit for four quantities:

the muon’s direction, impact parameter, deposited energy, and a time offset. The

likelihood is defined as:

L =
∏
PMTs

[
∞∑
n=1

PN(n|λ)PQ(Q|n)PT (t|n)

]
(4.1)

Where λ is the expected number of photons for that PMT, PN(n|λ) is the poisson

probability of seeing n photons hit the PMT, PQ(Q|n) is the probability of seeing

charge Q given n photon hits, and PT (t|n) is the probability of observing a PMT

trigger at time t given n photon hits.

The heart of the fitter lies in the first probability term, which is calculated based

on Monte Carlo simulations. Chris simulated muons at 108 impact parameter points

with random directions through the detector. Based on these simulations, he created

lookup tables for how many photons are expected to hit a PMT at a given posi-

tion with respect to a muon with a certain impact parameter. These lookup tables

essentially fit the impact parameter and track direction to line up the Cherenkov ring.

The second term further refines the fit by including the charge information from

the PMTs, and allows an estimate of the total energy deposited by the muon, cor-

recting for offline PMTs and the neck of the detector. This probability was calculated
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by simulating multiple photon hits on all of the PMTs in SNO. For a given number

of photon hits (n), the resulting charge (Q) distribution is fit to a two-sided gaussian.

The three parameters from these fits are then plotted as a function of photon hits

and fit again, resulting in [35]:

PQ(Q|n) =

{
Nexp

(
−(Q−Q̄)2

2σ2
1

)
Q < Q̄

Nexp
(
−(Q−Q̄)2

2σ2
2

)
Q > Q̄

(4.2)

N =

√
2S√

π(σ1 + σ2)
(4.3)

Q̄ = −2.3531 + 0.83075n (4.4)

σ1 = −1.7565 + 0.7807
√
n (4.5)

σ2 = 1.1351 + 0.77393
√
n (4.6)

where S is a scale factor determined by the histogram binning. Figure 4-1 demon-

strates that this fit model agrees very well with the simulations for many photon hits,

and acceptably for few photon hits.

The third term in the likelihood refines the fit by including the PMT timing. For

each PMT, the time residual can be calculated as:

tres = tPMT − t0 −
d1

c
− d2

21.8cm/ns
(4.7)

where tPMT is the recorded PMT time, t0 is a the time offset term in the likelihood

fit, d1 is the distance the muon travels before emitting the Cherenkov photon, c is

the speed of light in vacuum, and d2 is the distance the Cherenkov photon traveled.

The Cherenkov photon is assumed to have an angle of 42◦ with respect to the muon

track, making d1 and d2 well-defined. With this definition of the time residual, the

timing probability term becomes:

PT ∼
1

σ
√

2π
e
−t2res
2σ2 (4.8)

38



This equation is then modified to include estimates of prepulsing, late light, and

dark noise as a function of the number of expected photon hits [35]. Figure 4-2

demonstrates that for multiple photon hits, the prepulsing probability rises while the

probability of late light decreases.

FTI minimizes the likelihood function for the impact parameter, direction, de-

posited energy, and timing offset using the method of simulated annealing. After

the minimization, the likelihood is discarded, and a set of data quality measurements

are calculated based on the fit track. These data quality measurements are used in

section 6.3 to select through-going muon events.

4.1 Muon Fitter Performance

The FTI muon fitter is found to have good reconstruction accuracy on simulated

muons. Figure 4-3 shows the misreconstruction angle between the Monte Carlo gen-

erated muon direction (~ug) and the reconstructed muon direction (~ur):

θmr = cos−1(~ug · ~ur) (4.9)

This is fit to:

p(x) = Aθ(fe−
θ2

2σ2 + (1− f)e
− θ2

2(mσ)2 ) (4.10)

The extra factor of θ is due to phase space arguments. The fit parameters are:

σ = 0.4◦, f = 0.99, and m = 4. Although the tails are non-gaussian, this fit gives a

reasonable estimate for the uncertainty due to angular misreconstruction. One possi-

ble source of this width is multiple scattering. Figure 4-4 shows the misreconstruction

angle vs the multiple scattering angle:

θms = cos−1[(~pex − ~pg) · ~ug] (4.11)

~pg is the generation point of the muon while ~pex is the point where the monte carlo

muon left the SNO detector. This plot shows that while there is a correlation between
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Figure 4-1: Comparison of simulated PMT charge distributions (black) to the model
from equation 4.2 (red) used in the FTI fitter [35].

Figure 4-2: Distribution of PMT hit times for multiple photon hits. The black curve
shows the distribution of hit times for a single photon hit. The bump at -20 ns
comes from PMT prepulsing, while the distribution from 20 ns to 40 ns comes from
reflections in the detector and physics processes such as Rayleigh scattering. Taken
from [35].
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Figure 4-3: FTI Muon Fitter angular misreconstruction of Monte-Carlo muon tracks.
The fit parameters are given in table 4.1
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Figure 4-4: FTI angular misreconstruction vs multiple scattering angle for simulated
events. There is a correlation between multiple scattering and misreconstruction for
scattering angles larger than 1◦. However there is not enough multiple scattering to
account for the misreconstruction width seen in figure 4-3.
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Mean Width Weight Width
of of Main of Secondary of Secondary

Gaussians Gaussian Gaussian Gaussian

Angular
0.4◦ 1% 1.6◦

Misreconstruction
Impact Parameter

-0.08 cm 3.0 cm 1.2% 21 cm
Misreconstruction

Table 4.1: Accuracy of the muon fitter based on Monte Carlo simulations. The forms
of the gaussians are given in equations 4.10 and 4.12

multiple scattering and misreconstruction, multiple scattering is not the dominant

effect. Eighty percent of the muons were scattered by less than 0.1◦, and those muons

have the same misreconstruction width as before. Thus the 0.4◦ width is intrinsic to

the fitter.

The impact parameter reconstruction accuracy is shown to be very good in fig-

ure 4-5. This is fit to the sum of two gaussians:

p(x) = A(fe−
(x−µ)2

2σ2 + (1− f)e
− (x−µ)2

2(mσ)2 ) (4.12)

where the fit parameters are µ = −0.08 cm, σ = 3.0 cm, f = 0.988, and m = 7.

It is possible that misreconstruction in angle is correlated with misreconstruction in

impact parameter. However figure 4-6 demonstrates that the two are uncorrelated.

Based on these simulations, the muon fitter is extremely accurate. The direction

of the muon is reconstructed to better than 0.5◦, while the impact parameter is

reconstructed to better than 3 cm in a 17 m diameter detector. These reconstruction

accuracies are very reasonable for an atmospheric neutrino analysis.
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Figure 4-5: FTI impact parameter misreconstruction of Monte-Carlo muon tracks.
The fit parameters are given in table 4.1
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Figure 4-6: FTI angular misreconstruction vs impact parameter reconstruction. This
pattern is consistent with x times a gaussian multiplied by a gaussian, implying that
the parameters are uncorrelated.
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Chapter 5

External Muon System

The SNO External Muon System (EMuS) is intended to provide a cross-check on the

accuracy of the FTI muon fitter independent of Monte Carlo simulations. In order to

accomplish that objective, a tracking detector was installed above the SNO detector.

This section will detail the physical properties of the detector, the methods used to

reconstruct tracks, and the agreement between the FTI fitter and the reconstructed

tracks.

The External Muon System consists of a series of 128 single-wire chambers ar-

ranged into four planes and triggered by 3 large scintillator panels (See Figure 5-3).

The panels have been reused from the KARMEN experiment, and consist of Bicron

BC412 scintillator read out at each end by four 2 inch Photonis XP2262 Photomulti-

plier Tubes (PMTs). Figure 5-1 shows the geometry of the panels. The wire chamber

cells and electronics were provided by the University of Indiana, Bloomington, IN.

Each cell is 7.5 cm wide and has square cross-section with the corners trimmed, pro-

viding a near-octagonal shape. The cells are 2.564 meters in length and possess a

single 50 µm diameter tungsten wire running through the center. The wire is held at

a positive potential of 2500 V (2700 V) while running on the surface (underground)

for electron drift and collection. A gas mixture of 90% Ar-10% CO2 has been used

in order to achieve high efficiency and stability, and to meet safety regulations for

underground operations.

When a muon passes through the system, it deposits energy in the scintillator and
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Figure 5-1: The layout of the scintillator panels used in the EMuS detector. The red
cylinders represent the readout Photomultiplier Tubes.
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ionizes atoms in each of the wire chambers it passes through. The scintillator converts

the energy into light that is then detected by the PMTs in a fast process (∼ns). In the

wire chambers, the high voltage draws the ionization electrons to the wire in a slow

drift process (∼µs). The drift time is proportional to the closest distance between

the muon track and the wire, allowing for track reconstruction. The measured drift

time for each wire is the time difference between when the scintillator fires and when

the drift electrons reach the wire.

The scintillator consists of three large rectangular panels (3.5 m x 70 cm x 5 cm)

which cover the active region of the detector. Each scintillator panel is observed at

either end by multiple PMTs run in parallel. The signals from the PMTs were sent

to a CAMAC Analog to Digital Converter (ADC) and a discriminator. If both ends

of a panel fire in coincidence, a start signal is sent to the wire readout modules, and

the ADC modules record the pulse-height of each PMT.

Each wire chamber is monitored by an individual Front-End Electronics (FEE)

card which outputs an ECL signal if a pulse is detected on the wire. The ECL signal

is sent to a CAMAC Time to Digital Converter (TDC) for readout. The TDC cards

have 1024 bits of output with 4 ns per bit, giving them a time window of 4.1 µs. The

FEE cards are very sensitive, and can easily be triggered by noise back-propagating

along the readout cables. The CAMAC readout is very noisy, which means that

when the readout cables are plugged directly into the TDC, the signal is swamped

by noise. In order to minimize this problem, the readout cables were sent through an

ECL-NIM-ECL converter which filtered out the majority of the noise. Even with this

work-around, noise problems were still present. These problems were due to electrical

pickup, and thus very geometry dependent. To fix these remaining problems, FEE

cards were traded out and cables moved until the noise was brought to a minimum.

At SNO, the EMuS system is deployed in the ALIMAC region of the detector,

which is due west of the neck of the detector in PSUP coordinates (see figure ??).

Due to space and solid-angle considerations, the planes are inclined at a 55◦ angle

with the lower end to the west. A survey was performed to find the absolute position

of each of the wires with respect to the SNO detector [38]. The survey was able to
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locate all of the wires to within 0.67 cm. The dominant sources of uncertainty are

summarized in table 5.1. The largest uncertainties come from the method used to

locate the detector with respect to SNO. The master survey point used to locate the

SNO detector was not visible from the EMuS system. However points on the detector

were surveyed when SNO was installed [39], and these points were measured by the

EMuS survey and used as reference points. However the two surveys disagreed slightly

on the distance between the reference points, introducing a 0.53 cm uncertainty on

the X-Y coordinates of the EMuS detector. In addition, the reference point used for

the Z-coordinate of the detector was only known to ±1/8 in, introducing a 0.32 cm

uncertainty. Other uncertainties on the locations of the wires included uncertainties

on the floor level, the placement of the wires within the modules, the spacing between

wires, and the gaps between the modules. These uncertainties do not apply equally

to all wires, and have a maximum value of 0.30 cm.

5.1 Time to Radius Conversion

When a muon passes through a wire chamber, it deposits energy [10]. While most of

that energy goes into heating the gas and metal, some of it ionizes gas atoms, creating

electron-ion pairs. Since we have applied a high voltage across the wire chamber, the

electrons will be accelerated towards the wire, while the ions will travel towards the

walls. As the electrons move through the gas, they will random walk toward the

wire with a characteristic drift velocity [40]. This drift velocity means that electrons

generated close to the wire will get to the wire earlier than ones that were generated

SNO X-Y Coordinate 0.53 cm
SNO Z Coordinate 0.32 cm
Floor Level1 0.17 cm
Wire Placement 0.08 cm
Wire Spacing1 0.18 cm
Gaps Between Modules1 0.14 cm
Time to Radius Conversion 0.28 cm
Overall 0.74 cm

Table 5.1: Uncertainties associated with wire positioning.
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Figure 5-2: Location of the EMuS system on the SNO deck.
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Figure 5-3: A view of the side of the EMuS setup. The numbers indicate the order
of channels.

Figure 5-4: A view of the back side of the EMuS setup. The numbers indicate the
order of channels.
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farther away. Once the electrons get close to the wire, they gather enough energy

between collisions to ionize other gas atoms, thus creating an avalanche of electron-ion

pairs. This avalanche provides the gain that allows a one-electron signal to be seen,

and should be roughly the same for electrons generated anywhere in the chamber.

Thus while the output pulse from a wire should be essentially the same wherever

the muon goes, the timing of the start of the pulse indicates the radius of closest

approach of the muon. If the conversion function between timing and radius (r(t))

is known, the tracking resolution of the detector can be smaller than the size of the

wire chambers.

The Garfield gas simulation [41] was used to generate expected r(t) curves as a

function of gas pressure and applied voltage. The code was not able to perfectly

model the shape of the wire chambers so two similar geometries were used to check

the effects of this imperfect modeling: a circle with radius 3.75 cm, and a regular

octagon with a longest radius of 4.06 cm. Simulated electrons were generated at 10

points along the longest radius, and the mean drift time for each point was calculated.

Figure 5-5 shows that the that the two r(t) curves agree to within 2%. A parabolic

fit to this data is accurate to 5%.

In order to directly measure the r(t) curve, the EMuS system was run on the

surface at Bates Laboratory. Tracks were selected that pass through two adjacent

chambers on two parallel planes. Since the channel numbers are known, an estimate

of the angle of the muon trajectory can be calculated. Once the angle is known, the

radii of closest approach are related as:

R1 +R2 = D cos θ (5.1)

First, a series of data cleaning cuts are applied to remove hit pairs that are ob-

viously noise: The sum of the hit times are plotted against their difference for each

angle (see Figure 5-6). Random coincidences form an upside-down triangle, while

paired hits form a parabola. For each angle, pairs of events with a very low or very

high sum of times were cut. Then a trial r(t) function (ρ(t) = at2 + b) is used to
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Figure 5-5: Drift time as a function of starting radius for simulated electrons. The
quadratic fit is accurate to 5% at the maximum simulated radius.
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Figure 5-6: Timing relationships between adjacent tubes with a muon angle of 60◦.
Correlated events should fall on a parabola. The red points are random coincidences
and were cut out of the analysis.
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estimate R2 as a function of the time from the other chamber:

R′2 = D cos θ − ρ(t1) (5.2)

A least-squares parameter B is constructed from these variables:

B = (ρ(t2)−R′2)2 (5.3)

B is then minimized with respect to a and b, and the resulting r(t) curve is shown in

Figure 5-7. This fit seems to work nicely since slices in time show a gaussian shape.

The maximum width of these slices is 0.243 cm, which is taken as the uncertainty of

the r(t) conversion at the surface. The width of those gaussians is likely determined

by the inaccuracies in the estimates of θ. A more in depth analysis using 3-tube

hits could likely give a smaller width. However, the current width gives a position

uncertainty that is half as small as the uncertainty from the survey. Thus it was not

investigated any further.

The fit also gives a negative time offset of 72.3 ns which is likely due to electronic

delays. The PMT trigger signal has to go through a series of logic units before it

gets to the TDC modules, which could easily delay it by this much. This problem

could be fixed by adding more cable between the FEE cards and the TDC modules,

however this was not done due to time and space concerns. In the end, this delay

means that a muon that passes within 5 mm of the wire may not trigger a hit. This

inefficiency means that 35% of events which should have hit 4 chambers will only

hit 3, while 36% of events which should hit 3 chambers will hit 2 or fewer, and thus

be excluded from the analysis. While this will decrease the number of reconstructed

events, it should not significantly change the reconstruction accuracy.

Figure 5-7 shows that the reconstructed r(t) curve and the Garfield prediction are

consistent for the running conditions at the surface. However running conditions were

slightly different underground. Garfield simulations were used to estimate the mag-

nitude of that change. The Garfield curves for underground and surface conditions

were fit to parabolas (t = dr2) and the ratio of d-parameters taken. The extracted
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Figure 5-7: Drift time as a function of radius for data taken on the surface of the
earth. The color axis indicates the number of events reconstructing with the given
radius and time. The horizontal error bars are gaussian fits to slices in time. The
vertical error bars are Garfield simulations of the drift time.
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ρ(t) curve was scaled by this ratio, yielding:

ρ(t) = 1.92
√
t(µs) + 0.072± 0.28 cm (5.4)

5.2 Data Selection

In order to find events that went through both SNO and the EMuS system, a num-

ber of data quality checks were made. First, the trigger rate for each channel was

analyzed. It was found that three channels never fired, while another three channels

fired almost continuously. These channels were disconnected half-way through the

experiment because they were not providing useful data, and were removed from the

analysis. In addition, it was found that some channels had multiple hits in a single

event. In those cases the hit with the lowest time was assumed to correspond to the

muon.

Multi-channel events are constructed by combining the hit information from the

4 wire planes and the PMTs. When the computer read out the CAMAC crate, it

assigned a time to each module based on when it was read out. It took an average of

100 µs to read out each module, so an event could consist of five blocks of data with

event times spanning 500 µs. On the surface, the event builder handled this feature

by gathering together any events in a 1 ms window, and assigning them the time of

the earliest event. Underground, where the muon rate is much lower, this window

was expanded to 1 s.

In order to qualify as a muon hit, an event had to pass a number of cuts. First,

wires on three or four of the planes had to fire. Second, the event had to have fewer

than 30 wires fire. An event with more than 30 hit wires is most likely caused by

electrical pickup, and would be difficult to reconstruct even if it was caused by a

muon. Third, the event had to take place in a quiet run. The EMuS system acquired

data during all types of SNO runs, including runs when sources were being moved.
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Some of these runs are extremely noisy, with multiple wires hit for every trigger. If

the average number of hit wires per event in a run was greater than one, all events

in that run were cut. These cuts left 62 EMuS events.

To correlate these event with the SNO detector, all of the events were examined

by hand with the XSnoED event viewer. Of the 62 candidate events, 32 corresponded

to a muon track in SNO, while 16 corresponded to an event where a muon passed

next to SNO and was seen by the outward looking tubes. Of the 32 muon tracks, 30

were reconstructed by the SNO muon fitter (FTI), and will be analyzed. The EMuS

system ran for 94.6 days of livetime, giving a rate of 0.32 reconstructed coincident

events per day.

5.3 Reconstruction

A Monte Carlo based method is used to reconstruct events in the EMuS system. For

each event, random tracks are generated and the likelihood of each track is calculated.

The most likely tracks are then used to estimate the agreement between SNO and

the EMuS system for each event. Finally, the levels of agreement from all 30 tracks

are used to estimate the accuracy of the FTI muon fitter.

To generate random tracks, the FTI track corresponding to each EMuS event is

used as a seed, and a coordinate system is developed based on that track. The origin

of the coordinate system is the point on the track closest to the center of SNO. The

z direction is the direction of the track. The x and y directions are perpendicular to

the z direction and to each other. The track is then randomly varied by: rotating the

track direction about the x axis, rotating the new track direction about the z axis,

and shifting the closest point in the x and y directions. The random tracks generated

in this way cover all possible tracks close to the original track.

Once a random track has been produced, its likelihood must be calculated. The

likelihood algorithm is based on calculating the closest distance between the line that

defines the muon track and each of the wires that fired (the impact parameter b). In

order to calculate b, four vectors must be known: ~µp, a point on the muon track, µ̂d,

56



a unit vector in the direction of the muon track, ~wp, a point on the wire, and ŵd, the

direction of the wire:

b = (~wp − ~µp) ·
ŵd × µ̂d
|ŵd × µ̂d|

(5.5)

The negative log likelihood value (hereafter referred to as the likelihood) for each

random track is calculated as:

L =
∑

wires i

[bi − ρ(ti)]
2

σ2
(5.6)

where ρ(ti) is the expected radius given the TDC time recorded for the wire and σ

is the wire position uncertainty. Wires with a likelihood greater than 25 have their

likelihood artificially reduced to prevent noise hits from biasing the likelihood. Each

track is given a weight:

w = e−(L−Lmin) (5.7)

where Lmin is the smallest likelihood value calculated for any track in that event.

In figure 5-8, the locations of the best fit tracks are projected onto the two most

important parameters for the FTI fitter: the change in impact parameter and the

angle between the FTI track direction and the random track direction. In these

parameters, the FTI track is at (0,0). The inverted triangle shape is characteristic

of all of the events, and is actually the projection of an inverted cone. This occurs

because there is a high correlation between changes in angle and changes in impact

parameter1.

Because this analysis gives a set of possible tracks instead of a single track, an

assumption is made that the FTI track has either the correct direction or the correct

impact parameter. However if the the angular misreconstruction distribution is large,

assuming that the track direction is correct will lead to a large increase in the width of

the extracted impact parameter distribution. Figure 5-9 shows that this is the case.

1It is as if the EMuS system is a dart board, and the random tracks are darts. If the direction of
the dart is changed slightly, it can still hit the bull’s eye as long as the throwing position is shifted
to compensate.
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The top two plots show the angular and impact parameter distributions given by

comparing the true and reconstructed tacks in the Monte Carlo. The bottom plots

show the same distributions if a correlation between angle and impact parameter

similar to that expected in the EMuS system is added, and the assumptions of correct

impact parameter or direction are used. This simulation is accomplished by changing

the original track parameters bi and θi into bnew and θnew:

θnew = |θi +
bi sin(θrand)

S| sin(θrand)|
| (5.8)

bnew = bi − θiS sin(θrand) (5.9)

The constant S has a value of 22 cm/degree and comes from the fact that the EMuS

detector is around 12 m away from the center of the SNO detector. Thus a 1◦ an-

gular misreconstruction should be indistinguishable from a 22 cm impact parameter

misreconstruction. θrand is a random angle introduced because the angular misre-

construction comes from a two-dimensional distribution while the impact parameter

distribution is only one-dimensional.

A likelihood fit using two gaussians has been adopted as the main fitting method.

The impact parameter misreconstruction distribution is fit to the form:

p(x) = A(fe−
(x−µ)2

2σ2 + (1− f)e
− (x−µ)2

2(mσ)2 ) (5.10)

where A is a normalization constant, µ is the mean, σ is the width of the first

gaussian, f is the weight fraction of the first gaussian, and m is the width of the

second gaussian divided by the width of the first. The angular misreconstruction

distribution is similarly fit to:

p(x) = Aθ(fe−
θ2

2σ2 + (1− f)e
− θ2

2(mσ)2 ) (5.11)

Figure 5-9 demonstrates that two gaussians reproduce the Monte Carlo distri-

butions well using the standard likelihood fitting method. However this method

introduces two extra floating variables. When fitting the low statistics EMuS data,
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these extra variables are likely to make the fit unstable. So the f and m parameters

were fixed based on fits to the Monte Carlo distributions, thus reducing the number

of free parameters. For the impact parameter distribution, f was fixed at 0.988 and

m was fixed at 7. For the angular distribution, f was fixed at 0.990 and m was fixed

at 4.

Figures 5-10 and 5-11 show the results of applying the two gaussian fit to the

EMuS data. The fit angular width is 0.61◦ ± 0.06◦. This means that the EMuS sys-

tem has measured an angular misreconstruction distribution that is 50% larger than

predicted by SNOMAN. Section 8.3 will estimate the effect of this misreconstruction

on the atmospheric neutrino analysis. The fit impact parameter mean is 4.2 ± 3.7

cm, while fit impact parameter width is 18± 3 cm. As demonstrated by simulations,

the correlation between angular and impact parameter misreconstruction renders the

EMuS measurement of impact parameter misreconstruction unreliable at best. In this

analysis, the mean of the impact parameter distribution is found to be consistent with

zero, while the width is found to be 1.65 times larger than predicted by SNOMAN if

correlations are taken into account. It is likely that this is a direct result of the fact

that the angular misreconstruction distribution is 1.5 times larger than predicted by

SNOMAN.
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Figure 5-8: Angular disagreement vs impact parameter disagreement between the
FTI fitter and the EMuS system for the most likely tracks. The color scale indicates
the density of possible tracks weighted by their probability.
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Figure 5-9: Results of fitting the angular and impact parameter distributions using
two gaussians and ROOT’s likelihood fitting method. The top plots show the results
of fitting the distributions directly from SNOMAN Monte Carlo. Based on these fits,
the size and relative width of the second gaussian is fixed as described in the text. The
bottom plots show the results of using these two gaussian fits on SNOMAN Monte
Carlo including the expected correlations due to the EMuS analysis.
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gaussian is 0.61◦ ± 0.06◦. The second gaussian has a fixed weight fraction of 1.1%,
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Figure 5-11: Fit to EMuS impact parameter misreconstruction data. The fit mean
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Chapter 6

Analysis

6.1 Analysis Overview

The majority of the neutrino-induced muons seen by SNO are produced in the sur-

rounding rock, and are identified as produced by neutrinos due to their direction of

travel. When the muons enter the detector from the rock, their production point and

original energy are unknown. Thus the oscillation probability cannot be measured

as a function of neutrino energy. However, using Monte-Carlo simulations, the rate

of through-going muons as a function of their direction can be used to extract the

oscillation parameters.

In order to do this, Monte-Carlo neutrinos and muons are generated with the cor-

rect livetime and detector conditions assuming no neutrino oscillations. This gener-

ates an expected muon flux as a function of zenith angle. For a given set of oscillation

parameters, the Monte-Carlo events are re-weighted, producing a different muon flux

as a function of zenith angle. The measured number of muons as a function of zenith

angle is then compared to these predictions, and a maximum likelihood fit is used to

extract the oscillation parameters and overall flux of atmospheric neutrinos.

The beauty of this method is that the detector efficiency is already built into the

analysis. For example, the neck of the detector does not have PMTs, making it more

difficult to reconstruct muons going straight up. If the reconstruction efficiency drops

by 10% for muons going straight up, the resulting deficit of measured muons could be
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mistaken for a change in the oscillation parameters. But with this Monte-Carlo based

method, the expected number of muons should show the same deficit, removing the

confusion.

Although the fitting procedure is relatively easy, creating and validating the

Monte-Carlo simulations is much more difficult. If a source of events that look like

through-going muons is left out or the Monte-Carlo simulations are significantly dif-

ferent from the real data, the extracted oscillation parameters will be wrong. In

addition, the systematic uncertainties associated with the Monte-Carlo simulations

must be included in the fits. This section will detail the codes used to generate the

Monte-Carlo, the cuts used to isolate a through-going muon sample, the procedures

used to ensure data-Monte-Carlo agreement, the methods used to estimate uncertain-

ties, and finally the fitting method itself.

6.2 Simulations

The SNO muon group has identified six sources of events that could look like through-

going muons:

1. cosmic ray muons

2. through-going neutrino-induced muons

3. stopping muons

4. muon neutrino interactions inside the detector

5. electron neutrino interactions inside the detector

6. instrumental backgrounds (light-based or electronic)

The first five are physics-based and can be simulated. Instrumental backgrounds

cannot be simulated, but they often come in bursts of more than four events in 2

seconds. These bursts are used to estimate the amount of noise contamination in

section 6.3.3.
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The physics-based sources are simulated in three different Monte Carlo routines

based on the codes necessary to produce them. The first code simulates primary cos-

mic ray muons that reach SNO. It includes through-going and stopping muons. The

second code simulates electron, muon, and tau neutrino interactions in the surround-

ing rock with the proper fluxes. Almost all of the events that reach the detector from

this simulation are neutrino-induced muons that either pass through the detector or

stop in it. The final routine simulates neutrino interactions in the SNO detector and

the water shielding surrounding it. All three neutrino types are simulated, producing

samples of through-going and stopping muons as well as internal electron and muon

neutrino interactions.

6.2.1 Cosmic Ray Muon Simulation

This simulation is based on the MUSIC muon propagation code [42]. MUSIC is an

event-by-event Monte Carlo that propagates muons through rock in three dimen-

sions. It models the energy loss and direction change from continuous processes such

as ionization and multiple scattering as well as from rare stochastic processes such as

bremsstrahlung, inelastic scattering, and pair production. MUSIC properly accounts

for the energy and angular distributions of cosmic ray muons as well as their expected

rate. MUSIC has been extensively validated in other experiments, and its parame-

terizations are found to be accurate to within 1% for water-equivalent depths of 5-10

km [43]. However uncertainties in the flux of high energy muons and muon-nuclear

cross-sections dominate for these high energy muons.

Once a simulated muon reaches the top of the SNO detector, it is passed to the

SNOMAN detector Monte Carlo. SNOMAN simulates the propagation of the muon

and generates secondary particles and Cherenkov photons. All photons are tracked

through the detector until they are absorbed or detected. If a photon is detected,

SNOMAN uses run-by-run calibrations to simulate the charge and timing seen by the

detector. For muons, SNOMAN simulates all of the dominant processes including:

ionization (Bethe-Bloch), multiple scattering, Cherenkov radiation, bremsstrahlung,

moller scattering (δ rays), pair production, photo-neutron production, deep inelastic
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scattering, muon capture, and muon decay.

SNOMAN has been validated intensively at low energies for the solar neutrino

analysis [34, 44, 45]. These checks mean that the detector geometry, calibrations,

and the Cherenkov radiation routine have been well tested. The muon group has also

performed extensive data - Monte Carlo comparisons for cosmic ray muon samples,

and good agreement is seen. The specific comparisons are detailed in section 6.3.

Good data - Monte Carlo comparisons mean that the dominant processes including

ionization, Cherenkov radiation, moller scattering, muon capture, and muon decay

are well modeled. The remaining subdominant processes have not been validated.

6.2.2 Rock Neutrino Interaction Simulation

This simulation uses the NUANCE V3 neutrino interaction code [46] to generate

neutrino-induced muons which enter the SNO detector. The electron and muon neu-

trino fluxes as a function of detector zenith angle from the BARTOL group [21] are

used as an input to NUANCE. In addition, a tau neutrino flux equal to that of the

muon neutrinos is used in order to correct for tau neutrino appearance. NUANCE

uses this flux to generate neutrino interactions in the rock surrounding SNO. It in-

cludes cross-sections for many neutrino interaction modes including quasi-elastic, res-

onance, deep-inelastic, coherent, diffractive, and elastic scattering. The muon group

has verified these cross-sections and adjusted their parameters to match the standard

calculations used by Super Kamiokande and K2K.

The largest cross-section for neutrino-induced muons comes from deep-inelastic

scattering. The uncertainty on this process is well-constrained by high-energy neu-

trino beamline experiments to be ±3% [47, 48, 49] which contributes a 2.3% uncer-

tainty to the flux of atmospheric neutrinos. Another important reaction is one in

which a single pion is resonantly produced. This is incorporated in NUANCE as

a modified Rein and Sehgal model [50]. The uncertainties on this cross-section are

around 20%, however this mode is not as dominant, so it only gives a 2.1% uncertainty

on the flux. The other major process that produces muons is neutrino quasi-elastic

scattering. This process is modeled according to the Llewellyn Smith Formalism [51],
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with the Smith and Moniz fermi gas model [52] used for nuclear effects. Uncertain-

ties associated with this cross-section produce a 0.8% uncertainty on the atmospheric

neutrino flux. In addition recent measurements by K2K [53] and MiniBooNE [54]

give a higher value of the axial mass than previously measured. While this is likely

due to outdated nuclear models, this uncertainty on the axial mass is included as its

own systematic. This gives an uncertainty on the flux of 1.2%.

If a muon is produced in the final state, NUANCE propagates the muon to the

SNO detector using the muon propagation algorithm PROPMU [55]. Although this

algorithm is not as well-developed as MUSIC, it is incorporated into NUANCE and

agrees with MUSIC to within a few percent. Once the muon reaches the edge of the

SNO cavity, it is passed to SNOMAN for final simulation.

6.2.3 Internal Neutrino Interaction Simulation

This simulation also uses NUANCE V3, but skips the muon propagation step. In this

simulation, all of the final state particles from the NUANCE simulation are passed

to SNOMAN. Since SNOMAN simulates both the detector and the water shield, this

simulation will include through-going neutrino-induced muons as well as neutrino

interactions inside of the detector volume.

6.3 Analysis Cuts

The analysis cuts are designed to remove all of the muon-like events that are not

through-going muons. While in principle it is possible to cut on the minimum likeli-

hood from the FTI fitter, it was found that the likelihood was highly correlated with

the number of PMT hits, making a likelihood cut difficult. Instead a set of data qual-

ity cuts were developed to differentiate through-going muon events. The cuts can be

generally divided into low-level cuts, which mostly remove instrumental background

events, and high-level cuts, which use the track fit parameters to remove stopping

muons and neutrino interactions inside the detector. These cuts are summarized in

table 6.1 and are explained in detail in the following section.
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Level Cut Value

Low

Event Reconstruction
NHit > 250
No Retriggers

Bursts < 4 Events in 2 Seconds
Neck Tubes < 4 Fire
NCD Run Boundary PMTs and NCDs Must Be Online
Calibrated PMTs > 500
Raw QRMS > 4.5 GSU
Raw TRMS < 38 ns

High

Impact Parameter < 830 cm
Fit Number of Photoelectrons > 2000 pe
dE/dx > 200 MeV/cm
Cherenkov Cone In-time Ratio > 0.85
Fraction of Cherenkov

> 0.7
Cone PMTs That Fire
Linear Discriminant > 0.6

Table 6.1: The analysis cuts used to isolate through-going muon events from instru-
mental backgrounds, stopping muons, and internal neutrino interactions

6.3.1 Low Level Cuts

Fitter Event Selection

The FTI fitter requires a significant amount of computing power to find the best muon

track. Thus it makes sense not to run the fitter on events which are obviously not

muons. Muon events are expected to produce a lot of light, so only events with more

than 250 hit PMTs are sent through the muon fitter. In addition, due to PMT effects

and reflected light, many events produce secondary events soon after the original

event. These events are almost always detector noise, and so all events within 5 µs

after another event are cut by the retrigger cut, and are not reconstructed with the

FTI fitter.

Burst Cut

Many detector noise events including flashing PMTs, bursting bubbles, and electronic

pickup are known to come in bursts of a few events per second. If four or more events

passing the retrigger cut with greater than 250 hit PMTs occur within 2 seconds, all
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of the events are classified as burst events and are removed from the analysis. Since

through-going muon events should not occur in bursts, the data tagged by the burst

cuts gives a sample of noise events which can be used to test the discriminating power

of the rest of the cuts. Tests using this sample will be detailed in section 6.3.3.

Neck Tube Cut

Another source of detector noise is light generated in or leaking through the glove

box on top of the detector. The glove box is where calibration sources are deployed,

and is at the top of the neck of the detector. Any light generated in the glove box is

not visible to any PMTs except those at the bottom of the detector. So these events

are likely to look like a ring of light on the bottom of the detector, which could be

reconstructed as a downward muon. In order to veto these events, four small PMTs

were installed at the top of the neck. If all four PMTs fire in coincidence with a

detector event, the event is cut out of the muon analysis.

NCD Run Boundary Cut

In the NCD phase, a cut was implemented to make sure that both the PMTs and

the Neutral Current Detectors were online before physics data was taken. Any event

that occurs before the first or after the last NCD event in a run is removed. Although

the NCDs are not used in the atmospheric neutrino analysis, this cut only removes

0.07% of the NCD phase livetime and is more conservative.

Calibrated PMTs

By studying Monte Carlo simulations of cosmic ray muons and through-going neutrino-

induced muons, it was found that no muons fired less than 500 calibrated PMTs2.

Thus a cut is placed that a muon must have greater than 500 calibrated PMTs.

2A calibrated PMT is one which was online and had good charge and timing calibration constants
according to the SNO database.
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Raw QRMS

Muons deposit a large amount of light in the PMTs closest to their exit point and

much less light away from the Cherenkov cone. Since light is converted into charge in

the PMTs, this should show up as a large spread in the amount of charge the PMTs

see. Thus a cut was designed to look for the Root Mean Squared (RMS) of the charge

seen on the PMTs. Using simulations, it was decided that QRMS should be greater

than 4.5 gain scaled units3.

Raw TRMS

Some instrumental background events were found to have very flat PMT hit time

distributions, which led to a cut on the RMS of the PMT hit times with respect to

the data acquisition trigger. By comparing burst data and simulations, it was found

that a cut of TRMS < 38 ns removed a significant fraction of the noise events.

6.3.2 High Level Cuts

Impact Parameter

The impact parameter of a muon track is the distance of closest approach of the muon

to the center of the detector. Thus a cut on the impact parameter defines the fiducial

area of the detector. Originally the fiducial area was going to be the heavy water

volume inside of the Acrylic Vessel for an impact parameter cut of 600 cm. However

it was found that SNOMAN simulates muons very well out to large radii, and the

impact parameter cut was extended out to 830 cm out of a possible 850 cm. Past 830

cm, there is very little light, and the light concentrators on the PMTs make the hit

pattern very different from that of standard muons.

Fit Number of Photoelectrons

The FTI muon fitter fits for the expected number of detected photons (FNP) given

a standard detector as described in section 4. This calibrates out offline PMTs and

3A gain scaled unit is the calibrated charge expected for a single photoelectron for each PMT.
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the neck of the detector. Based on simulations, it was found that no muons with an

impact parameter less than 830 cm had FNP > 2000.

dE/dx

Because muons are minimum ionizing particles, they should produce an amount of

light proportional to their track length in the detector. Muons can also produce

delta-rays which produce their own Cherenkov radiation, so it is possible for a muon

to produce more light than the minimum. A procedure was implemented to cut out

events that do not produce enough light for their track length. This should help

remove stopping muons, internal neutrino interactions, and muons that are misrecon-

structed to smaller impact parameters.

This cut was designed to cut out values of deposited energy divided by track

length that were too small. However it was found that this ratio is dependent on

the impact parameter in a non-trivial way. So this dependence was factored out

using simulations. In particular, the fit number of photoelectrons (FNP) divided by

path length (l) was plotted against impact parameter squared (b2) for a sample of

simulated muons with minimum ionizing energies (simulated dE/dx between 220 and

230 MeV/m). This was then fit to two parabolas, one in the heavy water region, and

one in the light water region. An estimate of dE/dx was then constructed as:

dE

dx
= 230

FNP/l

P (b2)
(6.1)

where P (b2) is the result of the fit. Due to changes in the detector optics over time,

this procedure was done over 6 time regions, 2 during the D2O phase, 3 during the

salt phase, and 1 for the NCD phase. It was found that the fit for the NCD phase

was based on old simulations and had to be updated. Once this was done, the

distribution of dE/dx agreed well between phases. With this calibrated estimate of

dE/dx, a simulation-based cut was placed at dE/dx > 200.

71



Cherenkov Cone In-time Ratio

The best way to distinguish a Cherenkov cone from a circular instrumental back-

ground event is to look at the timing of each of the detector hits. In the FTI fitter,

an estimate is made for the time that each PMT should fire, and the difference

between the real time and the estimated time is calculated as the time residual (see

section 4. Unfortunately, the distribution of time residuals was found to differ slightly

between data and Monte Carlo, making the time residuals a poor choice for a precise

analysis cut. However another cut was defined which is able to compensate for these

differences and provide a precise cut for removing instrumental backgrounds.

In this cut, only PMTs inside of the Cherenkov cone are considered. The number

of PMTs with time residuals less than 5 ns are divided by the total number of PMTs

that fired. Isotropic noise events should have a different timing profile that Cherenkov

radiation, and thus many of the PMTs should fail this cut. For real muon events, this

ratio should be close to 1, while for isotropic noise events, it can be much smaller.

Because 5 ns is larger than the shift between data and Monte Carlo, this cut works

for both. Based on simulations, the cut was set at CITR > 0.85.

Fraction of PMTs in the Cherenkov Cone That Fire

Through-going muons produce a tremendous number of Cherenkov photons which

cause almost every PMT within the Cherenkov cone to fire. Stopping muons and

neutrino-induced muons do not travel the entire length of the detector, and thus

should not fill in the entire Cherenkov cone. Thus the fraction of PMTs in the

Cherenkov cone that fire (the RICH parameter) is a powerful tool for rejecting stopped

muons, internal neutrino interactions, and instrumental backgrounds. This parameter

works well for central muon events, but it was found that the light concentrators

reduced this ratio for events at large impact parameters. In order to fix this, PMTs

illuminated by the first and last 50 cm of the track are excluded from the calculation.

Based on simulations, a cut is placed that this trimmed RICH parameter (TRICH)

must be greater than 0.7.
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Linear Discriminant

In order to check that the above cuts were effective, all of the events in the D2O

phase were scanned by hand using the XSNOED event viewer. It was found that the

vast majority of the events were through-going muons, but that a small number of

internal neutrino interactions and instrumental events such as bubbles and flashing

PMTs had made it through the cuts. These events had abnormally large PMT time

residuals which are captured by the RMS of the time residuals (CRMS). It was also

found that the large values of CRMS were correlated with the Cherenkov cone in-time

ratio (CITR). Using that information, a linear discriminant created: D = 3.1 - CITR -

CRMS. Events with D near zero have are likely to be instrumental backgrounds, while

events with D near one are likely to be through-going muons. Based on simulations,

a cut of D > 0.6 was chosen.

6.3.3 Phase Stability of Cut Variables

Figures 6-1, 6-2, and 6-3 show the normalized distributions of the cut variables in each

phase for neutrino-induced muon simulations, cosmic ray muon simulations, and real

data respectively. In each figure, the distribution of the cut variable has been drawn

with all other cuts applied. While the distributions change from phase to phase,

near the cut values, the distributions are very stable between phases. Based on these

plots, it is reasonable to use the same cuts for all three phases. Tables 6.2 and 6.3 also

demonstrate that the cuts are stable between phases by looking at the efficiencies of

the cuts across phases. Table 6.3 demonstrates that the cuts do an excellent job of

removing internal neutrino interactions and instrumental backgrounds flagged by the

burst cut. In fact, only 3 events from the burst cut sample made it through the cuts,

and these appear consistent with cosmic ray muons coincident with an instrumental

burst.

Table 6.2 shows that the total efficiency4 of the cuts on simulated cosmic ray

4The efficiency is defined as the number of through-going muons with simulated impact parameter
less that 830 cm that pass the cuts divided by the total number of through-going muons with
simulated impact parameter less than 830 cm.
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Cut
Cosmic Rays

Neutrino-Induced
Muons

D2O % Salt % NCD % D2O % Salt % NCD %

Calibrated PMTs 100.0 100.0 100.0 100.0 100.0 100.0
Raw QRMS 100.0 100.0 100.0 99.9 99.8 99.8
Raw TRMS 100.0 100.0 100.0 99.9 99.8 99.8
Impact Parameter 99.4 99.4 99.5 99.1 99.2 99.1
FNP 99.4 99.4 99.5 99.1 99.2 99.1
dE/dx 99.4 99.2 99.3 96.9 96.4 95.3
CITR 99.4 99.2 99.3 96.9 96.4 95.3
TRICH 99.3 99.2 99.3 96.7 96.3 95.2
Linear Discriminant 99.0 98.8 99.1 96.5 96.0 95.1

Table 6.2: Cumulative cut efficiencies for through going muon simulations. Only
muons with a simulated impact parameter less than 830 cm are included in the
calculation.

muons is stable at 99%, while the efficiency for simulated neutrino-induced muons is

relatively stable at around 96%. The efficiencies are not the same for these two types

of through-going muons because their energies are different. This shows up in the

dE/dx estimate. The neutrino-induced muon sample has lower energies, and thus a

larger portion of the muons are close to stopping. These sometimes produce a low

estimate of dE/dx, giving the dE/dx estimate a longer tail at low values. The dE/dx

cut was based on the cosmic ray muon simulation, and so this longer tail is cut by the

dE/dx cut. While it would be nice to move this cut to a lower value, it was approved

by the collaboration before this feature was found, and will not be changed. This is

reasonable because the loss of efficiency is very small.

6.3.4 Data - Monte Carlo Agreement of Cut Variables

Figure 6-4 shows the normalized cut variable distributions for the cosmic ray muon

simulations and the real data. Since the real data is dominated by the cosmic ray

muons, this is the best data - Monte Carlo comparison. Most of the variables show

good agreement, but a few such as QRMS and the Linear Discriminant demonstrate

shifts between the two distributions. In order to measure these shifts, the simulated

distributions were shifted until they lined up with the data distributions. The agree-
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Figure 6-1: Phase stability of cut variables for simulated neutrino-induced muons.
The black histograms are for D2O, red for salt, blue for NCD, and the cut values are
represented by the green lines. While some of the distributions change shape between
phases, near the cut values, all variables are stable.
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Figure 6-2: Phase stability of cut variables for simulated cosmic ray muons. The black
histograms are for D2O, red for salt, blue for NCD, and the cut values are represented
by the green lines.

Cut
Internal Neutrino

Burst Data
Interaction MC

D2O % Salt % NCD % D2O % Salt % NCD %

Calibrated PMTs 64.8 66.5 67.3 30.28 11.24 32.58
Raw QRMS 29.2 29.2 28.6 1.83 0.79 0.40
Raw TRMS 21.6 22.5 22.7 1.14 0.36 0.14
Impact Parameter 16.7 17.7 17.9 1.10 0.36 0.14
FNP 15.2 15.7 15.7 1.09 0.23 0.05
dE/dx 7.0 7.1 6.7 0.04 0.11 0.02
CITR 4.1 4.1 4.0 0.03 0.00 0.02
TRICH 4.0 4.0 4.0 0.03 0.00 0.02
Linear Discriminant 2.7 2.8 2.9 0.03 0.00 0.02

Table 6.3: Cumulative rejection efficiencies for internal neutrino interaction simula-
tions and burst data. Only events that pass the event reconstruction cuts are included
in the calculation.
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Figure 6-3: Phase stability of cut variables for data. The black histograms are for
D2O, red for salt, blue for NCD, and the cut values are represented by the green lines.
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Cut
Shift Value

Cut Value
D2O Salt NCD

Calibrated PMTs 125 135 35 > 500
QRMS 1.45 1.5 1.55 > 4.5 GSU
TRMS -1.6 -1.2 -1.3 < 38 ns
Impact Parameter -0.1 0.0 0.3 < 830 cm
Fit Number of Photoelectrons 350 900 700 > 2000 pe
dE/dx 9.5 8 9 > 200 MeV/cm
CITR 0.003 0.0045 0.0035 > 0.85
TRICH -0.004 -0.003 -0.004 > 0.7
Linear Discriminant 0.11 0.2 0.165 > 0.6

Table 6.4: Amounts that the simulated cut variable distributions must be shifted to
agree with the data distributions. A positive value indicates that the data distribution
is at higher values than the simulated distribution.

ment between the two distributions was measured by a χ2 test, and the best fit point

was the minimum χ2 value. Table 6.4 shows the size of the best fit shifts with respect

to the cut values. While some of the shifts are large compared to the cut values, they

are all shifted away from the cut values. This means that any change in the cut effi-

ciencies due to these shifts are likely to be small. However these possible changes need

to be included in the signal extraction routine, and will be incorporated as systematic

errors in section 8.2.
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Figure 6-4: Comparison of cut variables for simulated cosmic ray muons (red) and
data (blue) for the NCD phase. While most of the distributions agree well, a few such
as QRMS and the Linear Discriminant show a definite shift between data and Monte
Carlo.
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Chapter 7

Signal Extraction

The signal extraction method is a grid-based binned likelihood fitter. A three dimen-

sional grid of possible ∆m2
23, sin2(2θ23), and flux multiplier values is created. For

each of those points, an expected results histogram is created using the Monte Carlo.

The likelihood of the data given that expected histogram is calculated and modified

by floating the systematic parameters using the analytical pulls technique. Finally

the three dimensional grid of likelihoods is used to calculate the best fit point and

the confidence interval contours.

In order to create the expected histograms for each grid point, the Monte Carlo

simulations are looped over. If the Monte Carlo event passes the analysis cuts, it is

added to the expected histogram with a weight of:

wj for νe and ν̄e

wj[1− sin2(2θi) sin2(1.27
∆m2

iL

E
)] for νµ and ν̄µ

wj sin2(2θi) sin2(1.27
∆m2

iL

E
) for ντ and ν̄τ

(7.1)

where wj is the weight (based on Monte Carlo statistics) of run type j (i.e. 1
500

for

upward rock neutrino interactions), θi and ∆m2
i are the are the oscillation parameters

at the given grid point, L is the distance the neutrino traveled in the simulation, and E

is the energy of the simulated neutrino. The event is binned based on its reconstructed
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Dimensions 68% 90% 99%

1-D 1 2.69 6.64
2-D 2.3 4.61 9.21

Table 7.1: Likelihood Cutoff Values for Contours

direction rather than its true simulated direction to take into account the resolution

of the muon fitter. If the fitter behaves similarly on data and Monte Carlo, no

correction needs to be made for angular misreconstruction. The expected histogram

is then multiplied by the flux normalization factor of the grid point, and the cosmic

ray muon background is added to produce the final expected signal histogram for the

grid point.

Once an expected histogram is created for each grid point, the likelihood is cal-

culated. The likelihood used in this analysis is twice the standard binned likelihood

value. It is calculated as:

L = 2
∑

bins k

[
Nk ln

Nk

Ek
+ Ek −Nk

]
(7.2)

where Nk is the number of events in bin k in the data histogram and Ek is the

number of events in bin k in the expected histogram. This likelihood does not include

any systematic uncertainties. In order to include these uncertainties, a change in

the likelihood is calculated using the analytical pulls technique. After the changed

likelihood is calculated for all grid points, the best fit point is found by scanning over

all the points. Contours are then drawn around all points with L < Lmin +CL where

CL is given in table 7.1.

7.1 Analytical Pulls Technique

The Analytical Pulls Technique was originally developed for χ2 based analyses [56],

and has been extended to likelihood based analyses by the SNO collaboration [57].

This section will review the technique and demonstrate how it applies to the atmo-

spheric neutrino analysis.
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First, define the set of systematic uncertainties as ~α where the expected values

of the uncertainties have been accounted for (<~α>= 0) and the error matrix is σ−2.

Define the observed number of events in each bin as ni, the expected number of events

in each bin as µi(~α), and the expected number of events with the systematics equal

to zero as µi. With these definitions, the log likelihood (including the factor of 2) can

be calculated as:

Ltotal = 2
∑
i

[ni ln
ni

µi(~α)
+ µi(~α)− ni] + ~αT · σ−2 · ~α (7.3)

If the systematics are small, the expected number of events can be expanded to

first order as:

µi(~α) = µi(1 + ~βTi · ~α) (7.4)

where ~βi is defined as:

~βi =
1

µi

∂µi
∂~α
|~α→0 (7.5)

Using a second-order expansion in ln(1 + x), the likelihood can be expanded as:

Ltotal = L0 + ∆L

L0 = 2
∑
i

ni ln
ni
µi

+ µi − ni

∆L = −2
∑
i

(ni − µi)~βTi · ~α + ~αT · (σ−2 +
∑
i

ni~βi × ~βTi ) · ~α

(7.6)

Minimizing ∆L with respect to ~α gives:

~αmin =
∑
i

~βTi (ni − µi)S−2 (7.7)

where S2 is the new error on the systematic parameters ~α:

S2 = σ−2 +
∑
i

ni~βi × ~βTi (7.8)

Substituting ~αmin back into equation 7.6 yields a compact form for the change in
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likelihood:

∆L = −~αTminS2~αmin (7.9)

The beauty of this method is that by assuming that the effect of the systematics

vary linearly with the size of the systematics, we can turn a problem involving mini-

mizing in nsys dimensions into a problem involving inverting a nsys× nsys matrix. In

the atmospheric neutrino analysis, the ~βi terms are calculated by varying each of the

systematics by their expected 1σ uncertainties, and approximating the derivative as

the change in the bin contents:

βji =
µi − µji
µi

(7.10)

Where µji is the expected number of counts in bin i if systematic j is changed by

1σ. The atmospheric neutrino analysis floats eight systematics using the analytical

pulls technique. These will be summarized in section 8. In order to verify that the

technique works properly, the likelihood as a function of systematics was calculated

independently using equation 7.2 where Ek is replaced by Ek ·
∏
sys l

βlkαl. It is found

that the analytical pulls technique calculates the correct change in likelihood to within

5%. Figure 7-1 shows the likelihood calculated in this manner as a function of each

of the systematics parameters at the best fit point. The minimum of each likelihood

curve lies at the extracted best fit point, demonstrating that the technique has found

the minimum likelihood value.

7.2 Signal Extraction Validation

In order to validate the signal extraction code, two simulations were run to test

whether the signal extraction recovers the correct best fit point, and whether the

contours correctly account for statistical fluctuations. In the first simulation, con-

tours are generated for a fake data set at the MINOS best fit point (∆m2 = 0.002625,

sin2(2θ) = 1, flux multiplier =1) without statistical fluctuations or systematic uncer-

tainties. This means that the fake data distribution is set exactly equal to the Monte

Carlo prediction for that set of parameters and that the signal extraction routine does
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Figure 7-1: Likelihood as a function of systematic parameter. Each curve shows the
effect of changing the given systematic parameter while keeping the other systematic
parameters and oscillation parameters at their best fit points from the analytical
pulls technique. The fact that each curve has a minimum at zero indicates that
the analytical pulls technique works. The correspondence between pull number and
systematic is given in table 8.3.
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not include systematics. Then many fake data sets are generated with the same oscil-

lation parameters, but including statistical fluctuations. The best fit point (without

systematics) from each of these fake data sets is then compared to the contours.

Figures 7-2, 7-3, and 7-4 show the contours overlaid with the results of 1000 fake

data sets. These demonstrate that the general shape of the contours agrees with

the distribution of of best fit points. In order to test the statistical validity of the

68%, 90%, and 99% contours, the percentage of best fit points within the contours

was calculated in each of the three presentation planes. The percentages are roughly

74%, 94%, and 99.8% respectively for all of the planes, larger than expected. The

most likely reasons for this are that many of the best fit points lie on the edge of the

signal extraction region, which may make them appear in the wrong contour, and

that the fake data set without statistical fluctuations may overestimate the width of

the contours. In a data set with statistical fluctuations, the best fit point will have

roughly half of the data points below the prediction and roughly half above. This

makes the likelihood curve steeper than when all of the data points lie exactly on

their predictions. Thus it seems reasonable that this 68% contour contains more than

68% of the best fit points.

In the second simulation, fake data distributions without statistical fluctuations

are created for randomly chosen ∆m2, sin2(2θ), and flux normalization parameters.

The standard signal extraction routine including systematics is then run on the fake

data and the best fit point compared to the simulated value. Figures 7-5, 7-6, and

7-7 show the results of these comparisons for each of the three parameters.

Figure 7-5 demonstrates that the signal extraction does not work well for very low

values of ∆m2. For these values, the energy above which neutrinos do not oscillate

becomes very low, and therefore few neutrinos will oscillate. Thus it becomes difficult

to tell the difference between cases with a low ∆m2 and large sin2(2θ) and cases with

a large ∆m2 and small sin2(2θ). Luckily, these problems do not occur in the region

where Super Kamiokande and MINOS expect the best fit point to be. In this good

region, the signal extraction accuracy is around 10% for the oscillation parameters,

which is better than the expected statistical uncertainty.
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Figure 7-2: Contours from a fake data set without statistical fluctuations overlaid
on the best fit points from 1000 fake data sets including statistical fluctuations. The
68%, 90%, and 99% contours contain 75.4%, 93.8%, and 99.8% of the best fit points
respectively.
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Figure 7-3: Contours from a fake data set without statistical fluctuations overlaid
on the best fit points from 1000 fake data sets including statistical fluctuations. The
68%, 90%, and 99% contours contain 72.5%, 94.2%, and 99.7% of the best fit points
respectively.
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Figure 7-6 shows the signal extraction accuracy on sin2(2θ) as a function of simu-

lated sin2(2θ). The signal extraction accuracy is ±0.03, which is significantly better

than the expected statistical uncertainty. Figure 7-7 shows the signal extraction ac-

curacy on the flux multiplier. The signal extraction comes within 2% of the input

flux multiplier, which is again better than the expected statistical uncertainty.

These two studies demonstrate that the signal extraction routine finds the correct

best fit point and draws statistically correct contours.

7.3 Super Kamiokande and MINOS Constraints

In order to perform a global atmospheric neutrino analysis and set better limits on

the flux of atmospheric neutrinos, the likelihood surfaces from other experiments

must be included. The current best measurements of sin2(2θ23) and ∆m2
23 come from

Super Kamiokande and MINOS. The best constraint on sin2(2θ23) comes from Super

Kamiokande’s angular distribution analysis [7], while the 2008 MINOS result [11]

gives the best constraints on ∆m2
23. Super Kamiokande’s L/E analysis [58] constrains

∆m2 better than its angular distribution analysis, but not as well as MINOS. Thus

the two results that will be included are Super Kamiokande’s angular distribution

analysis (figure 7-8) and the MINOS result (figure 7-10).

Since likelihood maps are not readily accessible for these two results, two-dimensional

gaussian approximations to their likelihood curves have been created. Two-sided

gaussian approximations to the likelihood space were created and the parameters

varied by hand until the 68% and 90% contours of the approximations were as close

as possible to the digitized points. Although both papers used χ2 techniques with

confidence levels set at slightly different χ2 values, the approximation uses the likeli-

hood method with 68% set at 2.30, 90% set at 4.61, and 99% set at 9.21 as required

for 2-D distributions.
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The functional form of the log-likelihood approximation to the Super K results is:

L = 4.61
(x− xcenter)2

s2
x

+ 4.61
(∆m2 −∆m2

center)
2

s2
∆m2+

(∆m2 ≥ ∆m2
center)

+ 4.61
(∆m2 −∆m2

center)
2

s2
∆m2−

(∆m2 < ∆m2
center)

(7.11)

where x = sin2(2θ). The first term is a gaussian approximation of the sin2(2θ)

uncertainty, while the second and third terms are a two-sided gaussian approximation

of the ∆m2 uncertainty. The s parameters in this fit are not standard deviations.

They are the 90% confidence level equivalent of the standard deviation, and can be

converted into standard deviations by dividing by
√

4.61. Figure 7-9 displays the

results of this approximation. ∆m2
center, s

2
∆m2+, and s2

∆m2− were adjusted so that

the 90% contour (green) matched the data well while the 68% contour (blue) was

reasonably correct. The values obtained are summarized in table 7.2.

The functional form of the log-likelihood approximation to the MINOS results is

Parameter
Super

MINOS
Kamiokande

xcenter 1 1
sx 0.072 0.295

∆m2
center 1.9× 10−3 2.6× 10−3

s∆m2+ 1.46× 10−3 7.4× 10−4

s∆m2− 3.6× 10−4 4.4× 10−4

α 2.8× 10−3

Table 7.2: Gaussian fit parameters for oscillation parameter constraints from Super
Kamiokande and MINOS.
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slightly more complicated:

L = 4.61
(x− xcenter)2

s2
x

+ 4.61
(∆m2 − (∆m2

center + α(1− x)))2

s2
∆m2+

· (∆m2 ≥ ∆m2
center + α(1− x))

+ 4.61
(∆m2 − (∆m2

center + α(1− x)))2

s2
∆m2−

· (∆m2 < ∆m2
center + α(1− x))

(7.12)

where α is a correlation term. This is simply the previous two-dimensional gaussian

function with the addition of a correlation between sin2(2θ) and ∆m2. The results

of the approximation displayed in figure 7-11 are summarized in table 7.2. These

constraints will be used to improve the measurement of the atmospheric neutrino

flux.
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Figure 7-8: Contour plot from Super Kamiokande [7].
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Figure 7-9: The colored dots indicate the results of digitizing figure 7-8. The lines
are the 68% (blue), 90% (green), and 99% (red) contours obtained from a gaussian
approximation to the log-likelihood surface.
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Figure 7-10: Contour plot from MINOS [11]
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Figure 7-11: The colored dots indicate the results of digitizing figure 7-10. The lines
are the 68% (blue), 90% (green), and 99% (red) contours obtained from a gaussian
approximation to the log-likelihood surface.
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Chapter 8

Systematic Uncertainties

To take into account uncertainties in the simulations and the parameters that went

into them, systematic uncertainties will be added to the signal extraction routine.

In particular, in order to allow the systematic uncertainties to change the shape of

the cos(θzenith) distribution, the dominant uncertainties are included as ~βi terms in

the analytical pulls technique (see section 7.1), where the ~βi terms are calculated by

varying each of the systematics by their expected 1σ uncertainties, and approximating

the derivative as the change in the bin contents:

βji =
µi − µji
µi

(8.1)

Where µji is the expected number of counts in bin i if systematic j is changed by 1σ.

This section will document the systematic uncertainties that have been evaluated for

the atmospheric neutrino analysis.

8.1 Cross-Section Uncertainties

One of the largest uncertainties associated with all neutrino oscillation experiments

is the uncertainty on previously measured neutrino interaction cross-sections. The

uncertainties on the cross-sections are detailed in section 6.2.2, along with their es-

timated impact on the total flux of neutrinos. For this analysis, the effects of these
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uncertainties were treated in more detail as floating systematics. In each case, a sec-

ondary simulation was run with the cross-section in NUANCE modified by the 68%

uncertainty, and the cos(θzenith) distribution based on this altered simulation was cal-

culated. With the new distribution, the ~βi terms for each systematic were calculated

using equation 8.1.

8.2 Data - Monte Carlo Based Uncertainties

Section 6.3.4 demonstrated that there are significant shifts between the data and

Monte Carlo distributions of some of the cut variables. These shifts could change the

efficiencies of the cuts, and thus need to be accounted for as systematic uncertain-

ties. To evaluate these uncertainties, the cos(θzenith) distribution of neutrino-induced

muons is produced with the cuts at their nominal values and at the shifted values.

Some of the variables such as the number of calibrated PMTs and TRMS have the

cut value far enough from the distribution that shifting the distribution does not

change the cut efficiency. However three of the variables show a definite change in

efficiency due to the shift seen between data and Monte Carlo. Figure 8-1 shows the

fractional change in the cos(θzenith) distribution due to the change in efficiency caused

by shifting the dE/dx distribution. Notice that it is much larger for upward going

neutrino-induced muons than for downward going ones. This is likely due to the neck

of the detector. While the muon fitter does its best to compensate for the neck, if

too many photons are missed because of the neck, the estimate of the dE/dx will be

low. This is one case where not floating this systematic could lead to an incorrect

measurement of ∆m2 or sin2(2θ). Figures 8-2 and 8-3 show the effects of shifting

the QRMS and Linear Discriminant distributions. In both cases the systematic shows

no structure with respect to cos(θzenith) except for the upward-going bin in the Lin-

ear Discriminant. Once again, this is most likely due to the neck of the detector.

These three systematics lead to an overall uncertainty in the atmospheric neutrino

flux of 2.5%, 0.4%, and 2.1% respectively, putting them well in line with the other

systematics.
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Figure 8-1: Percent change in the cos(θzenith) distribution due to shifting the dE/dx
simulation distribution to match that of the data.
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Figure 8-2: Percent change in the cos(θzenith) distribution due to shifting the QRMS

simulation distribution to match that of the data.
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Figure 8-3: Percent change in the cos(θzenith) distribution due to shifting the Linear
Discriminant simulation distribution to match that of the data.
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8.3 Uncertainty Due To Measured Angular Mis-

reconstruction

One uncertainty that could have a large impact on the oscillation parameters in the

atmospheric neutrino analysis is the angular reconstruction accuracy of the muon

fitter. If the accuracy is on the order of the bin size of the cos(θzenith) histogram, it

will be very important to include this smearing in the expected histogram. Since the

atmospheric neutrino analysis is based off of SNOMAN Monte Carlo, it has the an-

gular and impact parameter misreconstruction distributions of the simulations built

in. However the EMuS analysis has measured the angular misreconstruction distribu-

tion to be 50% wider than predicted by SNOMAN. In order to estimate the effect of

this systematic on the atmospheric neutrino analysis, a study was performed on the

SNOMAN upward muon Monte Carlo. For each event, the misreconstruction angle

was multiplied by 1.5 to get a new muon direction. Figure 8-4 shows the fractional

change in each bin due to this systematic. Since the fractional change in any bin is

less than 1.2% in the analysis region, has no distinct shape, and is not expected to

change the overall atmospheric neutrino flux, this systematic is insignificant compared

to cross-section and other detector response uncertainties.

8.4 Impact Parameter Bias Uncertainty

In order to estimate the uncertainty on the fiducial area of the detector, we must

have an estimate of the uncertainty on the impact parameter reconstructed by the

muon fitter. To do this, a study was performed comparing the impact parameter

distributions from data and Monte Carlo. In the study, the data distribution was held

constant while the Monte Carlo distribution was shifted by a multiplicative scaling

factor (fib′ = fib ∗ (1 + scale)). For each shift, the χ2/dof was calculated, and the

1σ uncertainty was defined as the shift for which the χ2/dof becomes the minimum

value plus 1 as seen in figure 8-5. Table 8.1 shows the extracted 68% confidence limits

on a possible scaling difference for each of the three phases. To be conservative, the
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Figure 8-4: Percent change due to increased angular misreconstruction. The fractional
change is less than 1.2% in the atmospheric neutrino analysis region (cos(θz) < 0.4).
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D2O -0.25% +0.45%
Salt -0.23% +0.48%
NCD -0.30% +0.45%

Table 8.1: 68% confidence level limit estimates obtained by comparing data and
Monte Carlo impact parameter distributions.

largest of these uncertainties (0.48%) was chosen as the systematic uncertainty on

the impact parameter. The majority of data and Monte Carlo used in this study

comes from comic ray muons, which have very high energies. The neutrino-induced

muons which will be studied in the atmospheric neutrino analysis have significantly

lower energies and are slightly harder to reconstruct. Based on Monte Carlo studies,

the impact parameter misreconstruction should be 20% worse for neutrino-induced

muons than for cosmic ray muons. Thus the impact parameter uncertainty is 0.58%

for neutrino-induced muons, which becomes a 1.2% uncertainty on the fiducial area

of the atmospheric neutrino analysis.

8.5 Solar Modulation

The solar wind prevents low energy cosmic rays from reaching the surface of the

earth. Over the many years of SNO data taking, the sun went from a solar minimum

to a solar maximum, changing the strength of the solar wind. This solar modulation

could change the number of low energy atmospheric neutrinos, which would in turn

change the extracted oscillation parameters. The BARTOL group [21] has produced

simulations for solar minimum and solar maximum. The difference between those

predictions is shown in figure 8-6. Figure 8-7 shows the simulated energies of the neu-

trinos that produce muons observed in the detector. More than 80% of the neutrinos

observed by SNO are above 10 GeV, where there is no solar modulation. Almost all of

the remaining neutrinos are above 3 GeV, where there is less than 5% change between

solar minimum and solar maximum. Thus there is less than 1% expected change in

the flux due to solar modulations. Seasonal variations in the cosmic ray flux are also

expected to produce around a 1% uncertainty on the atmospheric neutrino flux.

104



Monte Carlo Scale Multiplier
0.99 0.995 1 1.005 1.01

m
in

2
Χ

 −
 

2
Χ

0

2

4

6

8

10

12

14

16

18

20

22

24

Figure 8-5: χ2/dof as a function of multiplicative scale factor between data and
Monte Carlo impact parameter distributions. The lines correspond to 68% and 90%
confidence limits on a possible impact parameter scale change.
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8.6 Other Uncertainties

The remaining uncertainties are generally small, and are not easily categorized. The

largest of these is the uncertainty on the PROPMU muon transport code [55], which

produces a 2% uncertainty on the flux of atmospheric neutrinos. Similarly, the SNO-

MAN Monte Carlo has uncertainties that contribute a 0.3% uncertainty to the flux.

Uncertainties on the density of the surrounding rock are estimated to produce a 0.3%

uncertainty on the flux, while the stability of the clock used to calculate the livetime

of the detector produces a 0.002% uncertainty.

8.7 Summary

The above systematic uncertainties are summarized in table 8.2. The four cross-

section uncertainties and the three data-Monte Carlo based uncertainties are included

as floating systematics which are allowed to change the shape of the cos(θzenith) distri-

bution. The remaining uncertainties are combined into a 2.6% flat floating systematic.
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Figure 8-7: Energies of simulated neutrinos which produce muons observed in SNO.

Systematic Uncertainty Change in Flux
Detector Related
Detector Propagation Model ±0.3%
Angular Resolution ±0.1%
Impact Parameter Bias ±1.2%
Livetime ±0.002%
Energy Loss Model* ±2.5%
PMT Charge Model* ±0.4%
Linear Discriminant Cut* ±2.1%
Cross Section
Axial Mass* ±1.2%
Quasi-Elastic* ±0.8%
Resonance Production* ±2.1%
Deep Inelastic Scattering* ±2.3%
Muon Propagation Model
Rock Density ±0.3%
Transport Model ±2%
Seasonal Variation ±1%

Table 8.2: Systematic uncertainties associated with the atmospheric neutrino analysis.
The uncertainties marked with a * are treated as floating systematics in the analytical
pulls technique, and are allowed to change the shape of the expected distribution. The
other uncertainties are combined into a flat 2.6% uncertainty on the flux which is used
in the analytical pulls technique.
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Chapter 9

Results

A total of 514 events are recorded with −1 < cos θzenith < 0.4 in the 1229.30 days

of livetime. Of these, 201 are observed in the range 0 < cos θzenith < 0.4 in which

the neutrinos should not oscillate. The corresponding atmospheric neutrinos fluxes

in this region and below the horizon (cos θzenith < 0) are 3.48 ± 0.25 (stat.) ±0.12

(sys.) ×10−13 cm−2s−1sr−1 and 2.17± 0.12 (stat.) ±0.08 (sys.) ×10−13 cm−2s−1sr−1

respectively.

The measured flux of through-going muons as a function of zenith angle is dis-

played in figure 9-1. The blue line represents the expected flux without oscillations

while the red line shows the best fit expectation including the floating systematics.

The best fit parameters are sin2(2θ23) = 1, ∆m2
23 = 1.8× 10−3 eV2, and the flux mul-

tiplier equals 1.24. Table 9.1 shows the values of the floating systematic parameters

at the best fit point. The fact that all of the extracted values are within ±1 indicates

that the the floating systematics are not altering the shape of the distribution signifi-

cantly. Figures 9-2, 9-3, and 9-4 show the results of the three-dimensional oscillation

fit projected onto the three possible correlation planes. In each case, the likelihood is

minimized with respect to the missing variable. Figure 9-2 demonstrates that SNO

sees a slight correlation between sin2(2θ23) and ∆m2
23. This plot is used to extract

the 2-D confidence levels for the oscillation parameters: ∆m2
23 = 1.8+7.1

−1.1 × 10−3 eV2

at the 68% confidence level, and sin2(2θ23) > 0.33 at the 90% confidence level. The

best fit point is consistent with the Super Kamiokande and MINOS results, although
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Systematic Systematic Extracted Extracted
Number Name Value Uncertainty

1 Axial Mass -0.021 0.986
2 Deep Inelastic Scattering 0.005 0.943
3 Pion Resonance 0.025 0.953
4 Quasi Elasctic 0.014 0.993
5 Dedx -0.116 0.929
6 Qrms -0.065 0.998
7 Linear Discriminant -0.548 0.941
8 Flat Systematics -0.139 0.926

Table 9.1: Best fit values for the floating systematics. A value of 1 would indicate
that the systematic has fit to 1σ away from its originally estimated value. If the
extracted uncertainty is much less than 1, the systematic is well constrained by the
data.

not competitive with them. In addition, the fact that sin2(2θ) = 0 is excluded at the

99% confidence level indicates that SNO has ruled out the no oscillation hypothesis.

Figure 9-3 shows that there is a correlation between ∆m2 and the flux multiplier as

expected. This implies that constraining ∆m2 based on other measurements should

lead to an increase in the precision of the flux measurement. Figure 9-4 demonstrates

that sin2(2θ) and the flux multiplier are mostly independent.

Figures 9-5, 9-6, and 9-7 show the one-dimensional projections of each of the

variables with the others minimized. These are used to extract the one-dimensional

limits on the oscillation parameters: sin2(2θ23) > 0.53 at 90% confidence, ∆m2
23 =

1.8+1.8
−0.8 × 10−3 eV2 at 68% confidence, and the flux multiplier equals 1.24+0.11

−0.10 at 68%

confidence.

In order to improve the flux measurement, a global analysis is performed, in-

cluding constraints from Super Kamiokande and MINOS as detailed in section 7.3.

Figure 9-8 shows the sin2(2θ) - ∆m2 contours from this combined analysis. The best

fit oscillation parameters using 2-D confidence intervals are ∆m2
23 = 2.5+0.4

−0.3 × 10−3

eV2 at the 68% confidence level and sin2(2θ23) > 0.936 at the 90% confidence level.

The added data from SNO does not significantly shrink the contours from their pre-

vious levels. However the constraints on the oscillation parameters do significantly

change the flux multiplier measurement as shown in figure 9-9. With the constraints,
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the best fit flux multiplier lies at 1.27+0.09
−0.09 using 68% 1-D confidence levels.
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Figure 9-1: Measured flux of through-going muons as a function of zenith angle com-
pared with the expectations for no oscillations and the best fit oscillation parameters.
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Figure 9-2: Allowed regions in oscillation parameter space based on the SNO data.
The likelihood has been minimized with respect to the flux multiplier. The confidence
levels are 68% (blue), 90% (black), and 99% red. The black dots represent the 90%
confidence contour from Super Kamiokande, while the black triangles represent the
90% confidence contour from MINOS. Since the 99% contour excludes sin2(2θ) = 0,
the no oscillation hypothesis is excluded.
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Figure 9-3: Allowed regions in oscillation parameter space based on the SNO data.
The likelihood has been minimized with respect to sin2(2θ).
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Figure 9-4: Allowed regions in oscillation parameter space based on the SNO data.
The likelihood has been minimized with respect to ∆m2.
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Figure 9-5: Likelihood curve for ∆m2
23 based on SNO data. The likelihood has been

minimized with respect to sin2(2θ) and the flux multiplier. The black lines correspond
to the 68%, 90%, and 99% confidence levels.
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Figure 9-6: Likelihood curve for sin2(2θ23) based on SNO data. The likelihood has
been minimized with respect to ∆m2 and the flux multiplier. The black lines corre-
spond to the 68%, 90%, and 99% confidence levels.
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Figure 9-7: Likelihood curve for the flux multiplier based on SNO data. The likelihood
has been minimized with respect to sin2(2θ) and ∆m2. The black lines correspond to
the 68%, 90%, and 99% confidence levels.
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Figure 9-8: Allowed regions in oscillation parameter space based on a global analysis
of SNO data, Super Kamiokande, and MINOS. The likelihood has been minimized
with respect to the flux multiplier. The dashed black line represent the 90% confidence
contour obtained using only the Super Kamiokande and MINOS constraints.
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Figure 9-9: Likelihood curve for the flux multiplier based on SNO data with oscillation
parameters constrained by the Super Kamiokande and MINOS results. The likelihood
has been minimized with respect to sin2(2θ) and ∆m2.
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Chapter 10

Conclusions

This measurement of the flux multiplier will be useful in many ways. First it adds a

constraint that may help theorists improve estimates of the atmospheric neutrino flux.

Although this measurement is an integrated flux rather than a measurement of the

energy spectrum of the atmospheric neutrinos, it can help constrain the normalization

of the high energy atmospheric neutrino flux. In addition, as cosmic ray measurements

such as Auger, Telescope Array, and AMS reduce the uncertainties on the flux of high

energy cosmic rays, this constraint may help tune the high energy strong interaction

cross-sections that go into the atmospheric neutrino flux simulations.

Secondly, this constraint on the atmospheric neutrino flux will improve searches

for extra-solar neutrinos at neutrino telescopes such as AMANDA, Ice Cube, and

Baikal. These experiments search for extremely high energy neutrino interactions

which should only come from extra-solar sources. The atmospheric neutrino flux

is a background to these processes, so a precise measurement of the high energy

atmospheric neutrino flux will allow them to remove this background much more

efficiently.

In addition, this measurement may help dark matter experiments reduce their

backgrounds from neutrino interactions by giving a more precise estimate of the

atmospheric neutrino flux. Atmospheric neutrinos can be very energetic and could

cause a recoil in a dark matter experiment that would be indistinguishable from

dark matter. For that reason, the flux of atmospheric neutrinos must be well known
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so that the rate of these interactions can be subtracted. In addition, atmospheric

neutrinos produce muons at all depths in the earth, limiting the effectiveness of

going deeper underground to reduce the muon background. This measurement clearly

demonstrates that neutrinos are an irreducible source of muons which can produce

neutrons and radioactive elements through spallation.

Finally, this measurement could be used in a combined analysis with Super Kamiokande

to further constrain the atmospheric neutrino oscillation parameters. Such an anal-

ysis would involve creating a joint likelihood based on a given atmospheric neutrino

flux. Super Kamiokande floats many parts of the neutrino flux in order to properly

account for the uncertainty on the flux, while SNO does not. This means that a

straight-forward combination of the likelihood spaces will not yield the correct likeli-

hood. Instead, the two analyses would have to be run with the same neutrino fluxes.

In addition, systematic uncertainties from the different neutrino interaction models

would need to be included. While this would be a complicated analysis, it has the po-

tential to improve the constraints on the atmospheric neutrino oscillation parameters

without any new data.
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