20-April-1990

LBL's Radioactive Survey Results to Date20-Ap(see separate report for Schott Glass and Schott liner results)

Sample	Description	Weight (<u>gm) U (ppm)</u>	Th(ppm)	<u>K(percent)</u>	other(as labelled)
1 (NaI)	Furnace Liner from Tanner	968	0.285±0.057	0.210±0.019	0.016±0.003	-
	white chalky fire-brick(?)		• -			
2 (NaI)	Philips PMT components	150	0.136±0.017	0.402±0.053	0.524±0.003	-
	enough for 3 tubes see separate list for full component listing					
3 (NaI)	Corning spacers from (2)	14.2			5.33±0.08	-
4 (NaI)	Burle PMT components					
	Ceramic wafers (all white+green coated)	372	0.21±0.02	0.28±0.06	0.016±0.003	-
	Ceramic wafers (all white)	86	0.41±0.06	0.23±0.20	0.017±0.010	-
	Internal Hardware (enough for 2 PMT)	250	0.26±0.02	0.58±0.06	0.053±0.003	-
	Pin end assemblies (3): wires, ceramic ring	gs 260	0.68±0.02	0.26±0.06	1.05 ± 0.01	-
	broken glass ends		·			
	Kovar (from 2.5 PMT) cut pieces	1150	0.002±0.003	0.036±0.008	0.0033±0.004	~2pCi ⁶⁰ Co
	Ceramic Posts (96)	187	1.24±0.05	2.49±0.15	0.076±0.007	-
	off-white, glazed					
5 (NaI)	Bases with pins (10) black plastic	373	0.92±.02	5.67±0.08	0.051±0.004	-
	(I believe these are Ham)					
6 (NaI)	Large Ham PMT assemblies (1 of four)	764	0.19±0.01	0.22±0.02	0.021±0.001	-
7 (NaI)	Raw Materials from Omega Reflector					
	Magnesium Fluoride	184	3.77±0.12	1.16±0.28	0.049±0.016	-
	Aluminium					
	Compound X (Pr-O)					
		-				
8 (Ge)	Omaga Paflactor Sampla	0.435	0.5	0.5	-	-
0 (Ge)	Omega Reflector Sample	0.455	0.5 0.63±0.05(²³⁴ Th)	<0.01(²²⁸ Ac)	_	
	(see attached note regarding this sample)		$0.83\pm0.09(234 \text{mPa})$	0.36±0.02(208Tl)		
	inis sample)		<0.003(214Bi)	0.00±0.04(-**11)		
			~~~~)~~~··DI/			

SNO-STR-90-61

1

Note 1: Measurements based on NaI counting. These measurements, above items 1-7, were done in a hurry-up fashion with the NaI(TI) scintillation crystal  $\gamma$ -spectrometer at the LBL Low Background Facility. More accurate quantitative results can be obtained with our Ge-crystal systems, but will take much longer. These NaI results reflect the apparent uranium concentration, based on the ²²⁶Ra content of the samples, the apparent thorium concentration, based on the ²²⁸Th content and the true potassium concentrations.

Since the measured U-series and Th-series nuclides give rise to most of the potentially interfering g-rays, this information is directly useful to establishing limits on permissible concentrations.

Conversions to pCi quantities are:

1.0 g U = 0.336 pCi U 1.0 g Th = 0.109 pCi Th

Note 2: Some explanation is in order regarding Item 8, the Omega Reflector Sample. The U-values obtained from the ²³⁴Th and ^{234m}Pa are reliable indicators for ²³⁸U, provided the measurement is done at least 3 months following the most recent serious chemistry. The U-values obtained from ²¹⁴Bi are reliable indicators for ²²⁶Ra ONLY, and need have nothing to do with the true U-content. In this case, we believe the aluminium-chemistry is highly selective to remove RADIUM, while allowing some (or all) of the THORIUM and URANIUM to pass through into the final product.

The Th-values obtained from ²²⁸Ac are reliable indicators of ²²⁸Ra ONLY, unless it is know the sample has not undergone *serious* chemistry for about 20 years. We do not have a direct measure of ²³²Th content through  $\gamma$ -ray spectrometry. The Th-values obtained from ²⁰⁸Tl are reliable indicators of ²²⁸Th ONLY, with time constraints as mentioned above. If the aluminium is very young --if the ²²⁸Ac lines are virtually absent-- then the ²⁰⁸Tl determination will give nearly the correct ²³²Th value. (²²⁸Th half-life is 1.9 years.) In the present case, ²²⁸Ac lines are virtually undetectable, and so the ²⁰⁸Tl measurement should be reasonably accurate (always an underestimate).*(except, see below). Incidentally, this sample has the lowest relative ²²⁸Ac activity (compared to ²⁰⁸Tl line intensities) of any aluminium sample we have ever measured!

I do have a thought concerning the strange disagreement between the INAA and Direct Counting methods for ²³²Th content of these aluminiums. I refer to the apparent (large) excess ²²⁸Th compared to ²³²Th. Recovery of metallic aluminium requires a process that formerly employed a natural mineral called cryolite. I believe the process now uses artificially produced "cryolite". It is possible this manufactured cryolite brings the excess ²²⁸Th. Suppose the making of cryolite uses a chemistry which retains RADIUM, but excludes THORIUM. The *excess* ²²⁸Th grows into the cryolite (from ²²⁸Ra). Then, in the aluminium recovery, the RADIUM is excluded but the THORIUM is retained (²²⁸Th); hence, the strange ratio of the two thorium isotopes.

I think this possibility needs clarification. It suggests we may be making serious overestimates (in the long term) for

2

intensity of the 2614 keV  $\gamma$ -ray, based on ²⁰⁸Tl determinations. Such a study should follow the production of both aluminium and cryolite (or maybe some other component?) form raw materials right through to finished products. An LBL/Guelph collaboration sounds good to me.

3

signed Al Smith