Measurements of Th, U and K Concentrations in a Variety of Materials

P. Jagam and J.J. Simpson

Department of Physics University of Guelph Guelph, Ontario N1G 2W1

Abstract

Measurements have been made of the thorium, uranium and potassium concentrations in a variety of materials. The methods of direct γ -ray counting and neutron activation analysis have been employed, and cases of secular disequilibrium most notably in aluminum have been identified. Several comprehensive tables of results are provided.

Introduction

In recent years a need has grown up to find and produce materials especially low in the radioactive primordial elements thorium, uranium and potassium. Such materials are required for constructing detectors sensitive to very rare events such as double β decay or interactions of cold dark matter particles. They are also needed in the components of very large underground detectors of solar and supernova neutrinos. And of course they are needed in the construction of low-background facilities which are used to test materials for low levels of Th, U and K.

At the University of Guelph interest in determining low levels of primordial elements Th and U was stimulated by the objective of building a very large, ultra low background high purity Ge detector to search for neutrinoless double β decay of ⁷⁶Ge¹). Initially neutron activation analysis was

developed and used to select materials for the first detector. Subsequently this detector, in a low ambient background environment, was used to select materials for a second-generation, double- β decay detector and for substitution of components in the first detector as well²⁻⁵). In recent years the Sudbury Neutrino Observatory (SNO) project has created the need to determine the concentrations of radioactive elements in a wide variety of materials⁶). The methods of neutron activation analysis and direct γ -ray counting using the low-background facility developed previously have become complementary tools for this purpose.

Over the years a large number of materials have been studied by the two methods mentioned above. This paper presents a quick review of the methods used at Guelph, discusses some representative results, and provides a comprehensive list of materials and results. Most of these results have been generated on behalf of the SNO project. Other groups in the SNO collaboration, primarily at Lawrence Berkeley Laboratory, Berkeley, California and at Birkbeck College, London, England have also been involved in radioactivity measurements of materials, and supplementary reports on these measurements are available.

In addition radioactivity from Th, U and K in different geographical locations in different rock types, and in water are reported in a symposium proceedings⁷). Radioactive contamination of detector materials is also tabulated in a book by Knoll⁸). In the context of double beta decay investigations, similar information is reported in an abridged form by Avignone and Brodzinski⁹).

<u>Techniques</u>

Neutron Activation Analysis

Neutron activation analysis (NAA) is used to detect the primordial elements ²³²Th and ²³⁸U by detecting the γ rays of 27-day ²³³Pa (312 keV) and 54-hour ²³⁹Np (106 keV, 228 keV and 278 keV) following β -decay after n-capture. The sensitivity is limited primarily by the n-capture properties of other elements in the sample, and these elements also limit the universality of the

technique. In many materials sensitivities down to 1 ng/g are achievable (especially for 232 Th) and in the case of acrylics, sensitivities for 232 Th down to a few parts in 10^{12} have been achieved at Guelph. The latter will be described in a separate publication.

Neutron activation has been carried out using the McMaster University nuclear reactor. Typically samples of a few cubic centimetres and up to ten grams are irradiated in a flux of 1.5×10^{13} n/cm²-s. Samples are irradiated for up to 36 hours for ²³²Th determination and 10 hours for ²³⁸U determination; however, some materials such as acrylic can only withstand irradiation for a few hours. The integrated flux is monitored by using 0.05 g of aluminum kitchen foil whose content of ²³²Th and ²³⁸U has been standardized against well characterized thorium and uranium rock standards. These foils contain typically 100 ng/g ²³²Th and 1000 ng/g ²³⁸U. The reproducibility of the calibration foil values has been extensively checked, and variability is less than 10%. Counting of the samples and standards, after a typical cooling time of one week for U and two weeks for Th, is done with large volume (-50%) high purity Ge detectors with good resolution at low energies (down to 900 eV at 122 keV).

Depending on the application for the material being tested, any or all of the α , β or γ radiations emitted by the radioactive elements may be important. One aspect of NAA that must be kept in mind is that it only determines the abundance of the long-lived parent of the ²³²Th and ²³⁸U decay series. Because both of these series contain relatively long-lived radium isotopes, these series might not be in secular equilibrium in a material which has recently undergone chemical modification (either natural or man-made). Consequently the amounts of α , β and γ radiations will not in general be known precisely. For the Sudbury Neutrino Observatory the β and γ rays of ²⁰⁸Tl and ²¹⁴Bi decay are the most serious so that γ -ray counting (which also gives the intensities of the β -rays of importance) is necessary.

Direct γ-Ray Counting

A low background facility has been constructed at the University of Guelph based around a 208 cm³ intrinsic Ge detector custom made from components of low radioactivity. This detector was originally built for a search for double β decay of ⁷⁶Ge, and its background level has been improved over the years by replacement of some of its cryostat and internal parts with lower background materials and components. The crystal has 4π shielding of 6 mm Hg and 15 cm low background Pb, has a cosmic-ray veto completely surrounding the Pb shield, and is in a basement laboratory below one metre of concrete. Details of this apparatus have been described elsewhere²⁻⁴). The important feature of this low background spectrum is that its own internal background has been very well determined by running the system 305 metres underground in a salt mine.

The cavity inside the Hg shield can hold up to one-litre samples in an inverted beaker geometry (Marinelli beaker) surrounding the cryostat end-cap. Generally, samples are crushed or broken into pieces to fill the acrylic Marinelli beaker used, and MnO powder filling a beaker of the same size is used as the standard. This MnO is an in-house standard and has $4.6 \ \mu g/g^{232}$ Th and $2.9 \ \mu g/g$ U in equilibrium with their daughters, and 0.8% potassium. This standard has also been cross-checked at other laboratories. In special cases a standard will be made to match the geometry of the sample. Because the packed MnO has a density of 2.2 g/ml it is very similar to many of the samples studied and generally self-absorption corrections are not needed. This is especially true because the higher energy γ rays of the decay series are principally used to determine concentrations. In the ²³²Th series, the γ rays are at 583, 911 and 2614 keV; in ²³⁸U series, they are at 609, 1001 and 1764 keV and in ⁴⁰K, the γ -ray energy is 1461 keV.

An important feature of direct γ -ray counting of thorium and uranium is that it can detect decay series disequilibrium. In the ²³²Th decay, the 911-keV γ -ray follows ²²⁸Ra decay and precedes ²²⁸Th decay, and in the ²³⁸U series the 1001-keV γ -ray comes from ^{234m}Pa; the intensities of these γ rays relative to the others in their series is an indication of radium disequilibrium. Probably because of the long radium half-life in the ²³⁸U chain compared to the 5.76 y half-life of ²²⁸Ra in the ²³²Th chain, ²³⁸U-chain disequilibrium is much more prevalent.

Materials

A large number of materials have been tested by direct γ -counting and by NAA, and a few have been tested by both. The materials include metals, glasses and glass-making raw materials, various inorganic chemical compounds and ceramics, some photomultiplier tube components, cement and concrete components and a variety of plastics and synthetic fibres. Acrylic was part of a special project and will be described in a separate publication; it was found that acrylics can have less than 3×10^{-12} g/g of ²³²Th and ²³⁸U. In the tables the results are presented as grams of Thorium, Uranium or Potassium per gram of material. For results obtained with γ -ray counting, values for ²²⁸Th equivalent thorium (employing ²⁰⁸Tl γ -rays) and ²²⁶Ra equivalent uranium (employing ²¹⁴Bi γ -rays) are reported assuming radioactive equilibrium in the respective decay chains. The condition of radioactive equilibrium is tested by determining 228 Ra equivalent thorium (via 228 Ac 911 keV γ ray) and ²³⁸U equivalent uranium (via ^{234m}Pa 1001 keV γ -ray and ²³⁵U 186 keV γ -ray). Significant differences between corresponding values of thorium and uranium indicate radium disequilibrium. Brief discussions follow of some of the general radioactivity levels of materials found in the tables follow. Table 1, with the associated list of materials in table 2, presents concentrations determined by direct γ -counting. Table 3 gives results from NAA, while tables 4 and 5 present disequilibrium results in aluminum.

<u>Glasses</u> Most glasses tested are found to have thorium content in the range 200-700 ng/g and uranium (²²⁶Ra) in the range 100-500 ng/g, with the exception of specially prepared low activity glasses. There is no evidence of radium disequilibrium. Potassium levels are much more variable, ranging from 20 μ g/g to 6 x 10⁴ μ g/g.

Some of the radioactivity in glass comes from erosion of the furnace containing the melt, and one standard furnace liner measured contained 120 μ g/g Th and 150 μ g/g U. To produce low activity glass, therefore, requires that attention be paid to the furnace liner besides careful selection of raw materials.

<u>Ceramics</u> Ceramics are the second major contributor to radioactivity in most photomultiplier tubes. They are often found to contain $\mu g/g$ levels of thorium and uranium, and potassium at the level of 0.1 to 1 mg/g. Occasionally low activity ceramics are found, but to our knowledge no major research effort has gone into adapting low activity ceramics for photomultiplier tubes.

<u>Cements and Concretes</u> A few Portland type cements were measured and they have levels of thorium and uranium in the μ g/g range. Since cement makes up about 20% of typical concrete, lower activity concrete can be produced with low-activity aggregate. Dolomite from Haley, Ontario, quartz from Timmins, some serpentinized Mg pyroxide from Quebec and an ultra basic rock from the Soviet Union which were tested would provide low background aggregates for concrete.

Very low background shielding blocks were made for the Sudbury Neutrino Observatory project out of Haley dolomite with a sulfur and special polymer (SRX) binder (called SulfurcreteTM). <u>Aluminum</u> Aluminum is an important metal structurally, for detector housings and for reflectors or concentrators on photomultiplier tubes. Thorium and uranium levels in aluminum have been determined by NAA and γ -counting, and some have been analyzed by both methods. Except for specially-refined aluminum, parent ²³²Th and ²³⁸U tend to be in the 100 ng/g and the 1000 ng/g range respectively. The γ -counting measurements indicate that radium is strongly depleted in aluminum, unless the aluminum is old in which case ²²⁸Ra in the thorium chain grows back in. In three cases where both NAA and γ -counting were carried out on the same sample, ²²⁸Th was found to be strongly enhanced, in one case more than a factor of six higher than the equilibrium level of the ²³²Th parent. It is not known if this property is associated with most aluminums or not, although we

note that it appears to be the case even with household foil.

<u>Other Metals</u> Most other metals that we have tested have no detectable thorium or uranium above our sensitivity level, either in NAA or γ -counting, which is at the few ng/g level generally. In addition, an upper limit on the thorium and uranium (²²⁶Ra) levels of OFHC Cu (Cu alloy 101) of 30 pg/g has been obtained from a double β -decay experiment in which the cryostat and the shielding blocks were made of this copper⁵).

Acknowledgement

This work has greatly benefited from the assistance and advice of R. Lewis, P. Moorhouse, N. Tamblyn, L. Hahn and J.-X. Wang. The authors are grateful to the Natural Sciences and Engineering Research Council of Canada for support.

References

- J.J. Simpson, P. Jagam, J.L. Campbell, H.L. Malm and B.C. Robertson, Phys. Rev. Letts. 53 (1984) 141.
- H.L. Malm, M.M. Watt, I. Bostock, J.L. Campbell, P. Jagam and J.J. Simpson, Nucl. Instr. and Meth. 223 (1984) 420.
- P. Jagam, J.J. Simpson, J.L. Campbell, B.C. Robertson and H.L. Malm, Nucl. Instr. Meth. A239 (1985) 214.
- P. Jagam, G.E. Aardsma, L.J. Hahn, B.C. Robertson and J.J. Simpson, Proc. Int. Symp. on Nuclear Beta Decays and Neutrino, Osaka, Japan (1986) eds. T. Kotani, H. Ejiri and E. Takasugi (World Scientific, Singapore, 1986) p. 111.
- P. Jagam, J.J. Simpson, B.C. Robertson, L.J. Hahn and G.E. Aardsma, Nucl. Instr. and Meth. A267 (1988) 486.
- 6) G.E. Aardsma, et al., Phys. Lett. B 194 (1987) 321.
- The Natural Radiation Environment, Eds. J.A.S. Adams and W.M. Lowder, University of Chicago Press, 1964.

 G.F. Knoll, Radiation Detection and Measurement, John Wiley and Sons, N.Y., 1979, Ch. 20.
F.T. Avignone III and R.L. Brodzinski, Progress in Particle and Nuclear Physics 21 (1988) 99-191, refer to table II.

TABLE 1				
in <u>Materials</u>	via	direct	γ-ray	counting

Radioactivity Levels

ប U K SAMPLE TITLE Th non Ra-226 via Ra-226 (ng/g) $(\mu g/g)$ (ng/g)(ng/g) 14 ± 2 65 ± 8 37 ± 19 30 ± 4 Alumina 1 12 ± 2 10 ± 4 Alumina 2 22 ± 6 680 ± 80 17 ± 10 41 ± 50 12 ± 3 < 1 Alumina 3 780 ± 30 Bakelite Base(Black)1 4070 \pm 60 670 ± 100 55 ± 10 3 ± 18 7 ± 2 60 ± 4 Borax 1 175 ± 40 20 ± 27 30 ± 10 46 ± 5 Borax 2 8 ± 3 10 ± 4 0 ± 10 < 18 Borax 3 75 ± 75 38 ± 4 123 ± 25 40 ± 4 Borax 4 Borax 5 145 ± 9 19 ± 28 36 ± 3 40 ± 4 6 ± 6 40 ± 17 8 ± 1 10 ± 4 Boric acid 1 24 ± 21 2 ± 2 10 ± 4 Boric acid 2 5 ± 5 10 ± 4 3 ± 31 2 ± 3 1 ± 7 Boric acid 3 < 5 60 ± 20 4 ± 6 Cables 1 2800 ± 800 1580 ± 40 Cement 1 3120 ± 100 2350 ± 75 1223 ± 68 4069 ± 541 2362 ± 54 2360 ± 80 Cement 2 4242 ± 104 1091 ± 38 7450 ± 130 2012 ± 540 Cement 3 808 ± 72 61 ± 8 80 ± 20 156 ± 70 Ceramic 1 436 ± 128 150 ± 20 Ceramic 2 2350 ± 150 545 ± 15 1340 ± 70 1932 ± 224 2100 ± 50 110 ± 20 Ceramic 3 610 ± 200 Ceramic 4 2160 ± 280 3270 ± 210 200 ± 30 130 ± 10 220 ± 20 Ceramic 5 140 ± 20 320 ± 60 190 ± 60 Ceramic 6 1090 ± 40 890 ± 70 2230 ± 100 Ceramic 7 960 ± 30 1200 ± 200 290 ± 20 Ceramic 8 2460 ± 140 720 ± 180 Ceramic 9 3870 ± 190 130 ± 50 170 ± 40 Ceramic 10 50 ± 20 690 ± 90 200 ± 43 90 ± 30 Circuit Board 1 561 ± 15 419 ± 83 76 ± 5 900 ± 20 Concrete 1 470 ± 20 290 ± 16 680 ± 110 512 ± 12 Concrete 2 40 ± 4 5 ± 7 32 ± 17 11 ± 3 Dolomite 1 15 ± 10 22 ± 21 11 ± 3 40 ± 4 Dolomite 2 325 ± 25 350 ± 100 96 ± 3 160 ± 10 Dolomite 3 30 ± 4 2 ± 3 < 10 4 ± 2 Dolomite 4 6 ± 3 12 ± 2 50 ± 4 29 ± 14 Dolomite 5 10 ± 4 2 ± 3 16 ± 14 13 ± 1 Dolomite 6 3400 ± 1000 $(1.5\pm0.3)\times10^{5}$ $(1.2\pm0.3)\times10^{5}$ Furnace Liner 1 **Furnace Liner 2** 167 ± 9 185 ± 5 190 ± 20 130 ± 10 90 ± 10 110 ± 10 Furance Liner 3 90 ± 10 140 ± 10 150 ± 30 Furnace Liner 4 406 ± 147 240 ± 20 10210 ± 110 600 ± 30 Glass 1 400 ± 50 467 ± 108 402 ± 12 80 ± 10 Glass 2 425 ± 25 530 ± 129 420 ± 15 60 ± 10 Glass 3 Glass 2+3 400 ± 30 500 ± 100 380 ± 15 70 ± 10 297 ± 15 186 ± 51 260 ± 10 80 ± 10 Glass 4+5 90 ± 10 290 ± 30 175 ± 50 275 ± 10 Glass 5 1390 ± 20 860 ± 30 1338 ± 114 1090 ± 20 Glass 8

	SAMPLE TITLE	Th	U non Ra-226	U via Ra-226	к
		(ng/g)	(ng/g)	(ng/g)	(µg/g)
	Glass 9	840 ± 40	850 ± 200	1085 ± 10	70 ± 10
	Glass 10	246 ± 20	101 ± 38	129 ± 5	300 ± 10
	Glass 11	340 ± 25	335 ± 90	360 ± 7	350 ± 10
	Glass 12	1150 ± 20	1500 ± 600	1500 ± 30	1120 ± 20
	Glass 13	63 ± 15	158 ± 62	93 ± 4	60 ± 10
	Glass 14	115 ± 18	271 ± 44	201 ± 8	140 ± 10
	Glass 15	604 ± 67	371 ± 120	351 ± 25	180 ± 10
	Glass 16	588 ± 55	644 ± 152	357 ± 32	210 ± 20
	Glass 17	615 ± 81	598 ± 149	355 ± 29	180 ± 20
	Glass 18	635 ± 79	496 ± 139	330 ± 27	170 ± 10
	Glass 19	460 ± 61	457 ± 106	377 ± 24	80 ± 10
. •	Glass 20	454 ± 81	522 ± 159	422 ± 31	110 ± 10
	Glass 21	423 ± 71	597 ± 141	315 ± 28	90 ± 10
	Glass 22	441 ± 72	440 ± 148	411 ± 31	100 ± 10
	Glass 23	400 ± 67	535 ± 124	341 ± 27	100 ± 10
	Glass 24	244 ± 29	159 ± 72	147 ± 46	350 ± 30
	Glass 25	108 ± 54	352 ± 108	88 ± 15	220 ± 30
	Glass 26	382 ± 30	402 ± 107	264 ± 15	3660 ± 60
	Glass 27	520 ± 33	692 ± 136	968 ± 22	7160 ± 70
	Glass 28	688 ± 72	519 ± 283	775 ± 35	61250 ± 330
	Glass 29	66 ± 19		76 ± 10	30 ± 10
	Glass 30	314 ± 20	304 ± 91	457 ± 15	80 ± 10
	Glass 31	40 ± 5	89 ± 33	81 ± 3	270 ± 10
	Glass 32	218 ± 9		265 ± 6	210 ± 10
	Glass 33	211 ± 11		725 ± 11	1070 ± 20
	Glass 34	18 ± 4		18 ± 4	25 ± 5
	Glass 35	20 ± 4	·	22 ± 5	30 ± 5
	Glass 36	20 ± 6		1 ± 1	< 5
	Glass 37	72 ± 15		55 ± 7	20 ± 10
	Glass Solder 1	39 ± 7		25 ± 3	20 ± 5
	Gypsum 1	225 ± 25	750 ± 250	725 ± 25	920 ± 20
	Indium 1	6 ± 7	0 ± 30	1 ± 2	10 ± 4
	KMnO ₄ 1	30 ± 22	300 ± 190	12 ± 10	245700 ± 300
	Lime 1	40 ± 10	59 ± 36	40 ± 3	100 ± 10
	MnO ₂ 1	52 ± 9	< 14	8 ± 2	10 ± 4
	Mn-coated beads 1	30 ± 60		' 29 ± 14	47000 ± 300
	Molecular Sieve 1	2280 ± 110	10280 ± 440	710 ± 40	1830 ± 90
	Molecular Sieve 2	2780 ± 80	1020 ± 340	1200 ± 50	3180 ± 100
	Nepheline syenite la	875 ± 50	308 ± 174	385 ± 15	37600 ± 120
	Nepheline syenite 1b	875 ± 50	1041 ± 354	355 ± 25	37800 ± 230
	Nepheline syenite 2	150 ± 10	39 ± 96	36 ± 3	76230 ± 90
	Nepheline syenite 3	200 ± 30	136 ± 117	36 ± 7	77320 ± 90
	Polymer 1	145 ± 25	118 ± 57	55 ± 5	250 ± 10
	Polymer 2	160 ± 10	109 ± 34	50 ± 4	90 ± 4
	PVG I	19 ± 4	43 ± 47	42 ± 7	20 ± 3
	Quartz I		< 9	3 ± 1	1 ± 4
-	Quartz Z	70 T C		38 ± 4	10 ± 5
	Quartz J Postdus 1	27 I 0 005 4 05	501 1 00	104 ± 20	20 ± 5
	Pock 1	000 I 20 .	JUL I 82 91 - 22	90 I 0	10 ± 10
	RUCK I	2V I 0	41 I 33	VIZ	· 1U I 4

.

SAMPLE TITLE	Th	ប	U	
		non Ra-226	via Ra-226	
	(ng/g)	(ng/g)	(ng/g)	(µg/g)
Rock 2	106 ± 5	79 ± 27	66 ± 5	170 ± 10
Rock 3	78 ± 5	48 ± 30	23 ± 2	140 ± 10
Salt 1	3 ± 2	8 ± 15	1 ± 1	40 ± 4
Salt 2	6 ± 7	4 ± 46	2 ± 4	80 ± 1
Sand 1	2160 ± 50	442 ± 199	300 ± 25	1200 ± 40
Sand 2	5050 ± 50	2400 ± 150	1062 ± 20	90 ± 10
Sand 3	415 ± 25	102 ± 70	158 ± 6	270 ± 10
Sand 4	790 ± 30	800 ± 100	575 ± 20	170 ± 10
Sand 5	20 ± 6	23 ± 16	10 ± 1	30 ± 4
Sand 6	390 ± 10	200 ± 75	140 ± 3	380 ± 10
Sand 7	43 ± 10	20 ± 18	15 ± 2	20 ± 4
Sand 8	320 ± 15	258 ± 60	140 ± 7	50 ± 10
Sand 9	322 ± 14	373 ± 21	263 ± 11	< 10
Sand 10	255 ± 12	107 ± 37	130 ± 5	70 ± 4
Sand 11	249 ± 10	125 ± 31	122 ± 4	90 ± 4
Sand 12	22 ± 3	36 ± 17	6 ± 2	140 ± 10
Scintillator Paint 1	19 ± 60		40 ± 30	80 ± 40 [°]
Silica 1	2650 ± 100	753 ± 257	440 ± 20	1430 ± 60
Silica 2	560 ± 25	194 ± 145	200 ± 15	550 ± 30
Silica 3	375 ± 25	785 ± 215	200 ± 15	43800 ± 170
SS Welding Wire 1	3 ± 1		< 1	< 5
SS Welding Rod 1	< 1		< 1	< 5
Stainless Steel 1	< 1		< 1	< 5
Stainless Steel 2	14 ± 6		5 ± 3	10 ± 5
Stainless Steel 3	< 3		4 ± 2	< 5
Sulfurcrete 1	17 ± 2	9 ± 10	14 ± 1	30 ± 4
Sulphur 1	2 ± 5	19 ± 13	2 ± 1	10 ± 4
Sulphur 2	20 ± 4	16 ± 15	9 ± 1	20 ± 4
Tubing 1	< 15		< 8	< 5
Tubing 2	< 15		< 8	< 5
ZnS 1	23 ± 6	753 ± 57	15 ± 3	20 ± 5
ZnS 2	130 ± 80		140 ± 40	130 ± 50

i

• • •

.

• ·

.

.

· .

•

•

•

TABLE 2 Code to Materials tested by direct γ -ray counting

Alumina l	Calcined Alumina (Alcan)
2	Hamamatsu CERA Hudrata
	CERA hydrace
Bakelite Bas	se for PMT (Hamamatsu)
Borax l	Anhydrous Borax (Miscellaneous)
2	US Anhydrous Borax
3	US Borax Gran Sq.
4 5	US Annydrous Borax
C	MISCEITANEOUS
Boric Acid	L US Anhydrous Boric Acid HP
	2 Hamamatsu
	3 Miscellaneous
Cables 1	Coaxial cables
Cement 1	White Portland Cement Type 10 (Federal White Cement)
2	Richmond Cement
2	Bath Cement
Ceramic 1	Dynode Ceramic Squares (RCA)
2	Mauve Ceramic Ring (RCA)
3	White Ceramic Ring (RCA)
. 4	PMT Ceramic (Burle)
5	White PMT Ceramic (Burle)
6	Green PMT Ceramic (Burle)
/	Ceramic Posts for PMT (Burle)
0 0	Croop Ceremics (FMI)
10	White Ceramics (EMI)
10	
Circuit Boa	rd 1 Flexible circuit board
Concrete 1	Bath Concrete
2	Borated Concrete
Delenter 1	This is a second below (Helen (Helen)
Dolomite 1	Whitish-grey Dolomite (Haley, Ont.)
2	Bluigh Dolomite (Heley, Ont.)
5	West Dolomite (Haley, Ont.)
5	Middle Dolomite (Haley, Ont.)
6	East Dolomite (Haley, Ont.)
Furnace Lin	er 1 "ZAC-stone" (Schott)
	2 Special liner (Schott)
	5 Quarzal liner #1 (Schott)
	4 QUATZAL LINET #2 (SCHOLL)

Glass	1	RCA Glass Slides				
	2	ZW3468 dark PMT glass, Hamamatsu				
	3	ZW3468 clear PMT glass, Hamamatsu				
	4	ZW4693 dark PMT glass, Hamamatsu				
	5	ZW4693 clear PMT glass, Hamamatsu				
	6	ZW4751 dark PMT glass, Hamamatsu				
	7	ZW4751 clear PMT glass, Hamamatsu				
	8	Schott Glass 8245				
	9	Schott Glass 8020				
	10	2 Gencom glass plates, (Thorn EMI Gencom)				
	11	Cullet glass, (Kimble)				
	12	Philips Glass				
	13	Schott Glass 8246-1				
	14	Low-Rad Glass Type 1001, EMI				
	15	IWAKI 7740				
	16					
	17					
	18					
	19	H-32, Hamamatsu				
	20					
	21					
	22					
	23	Philips Class 6				
	24	Philips Glass 0 Philips Class 211				
	25	Hamamateu Class H.50				
	20	Hamamatsu Glass H-50				
	28	Burle Schott 8250				
	29	Schott 8246.2				
	30	ACMT UV1008. CIRCON Corp.				
	31	ACMI B472. CIRCON Corp.				
•	32	K-7003-D (Iwaki), from Hamamatsu				
	33	SKS-48 (Akagawa), from Hamamatsu				
	34	Schott 8246-3				
	35	Schott 8246-4				
	36	Glass 300				
	37	Russian Glass, Philips				
Glass	Solde	r 1 Generic				
Gypsu	n 1	Generic				
Indiu	n 1	Indium Scrap				
KMn04	1	University of Guelph				
Lime :	L	CaOMgO Lime, Haley				
Mn-coa	ated b	eads 1 Acrylic beads, Secam Canada				
MnO ₂	1	Manganese Oxide				
Molec	ular S	ieve 1 Nuclear Diodes				
		2 Union Carbide type 5A				

Nepheline syenite 1 Indusmin 2 North Cape 3 North Cape PVC 1 Generic Polymer 1 SRX polymer 2 SRX Polymer used in Sulfurcrete Sample Minnor XLA01 Quartz Quartz 1 2 Powder UHP 20 3 Powder UHP 50 Residue 1 Air-cooled Residue, Chromasco Rock 1 Russian black rubble 2 Russian aggregate 3 Serpentinised Mg pyroxide Windsor Iodized Table Salt Salt 1 Coarse Pickling Salt 2 Sand 1 Midland Treated Sand, Indusmin 2 Fine FeSi 3 Flint, Indusmin 4 Fluorspar 5 Corning sand 6 Russian binder material 7 Hamamatsu Boric Sand 8 Silicic Sand Hamamatsu 9 Acid Washed Quintus Sand 10 German Sand 11 Sand (MAM2) 12 Quartz Sand Scintillator Paint 1 Generic Silica 1 Midland-Silica-325M St. Canut Silica-325M 2 3 Minex-4 SS Welding Wire 1 SS Welding Rod 1 316L Stainless Steel 1 Alloy 304 plates 2 Alloy SUS304, PMT parts (Hamamatsu) 3 Alloy NMBA, PMT parts (Hamamatsu) Sulfurcrete with Haley Dolomite, Sulfurcrete Prod's Inc. Sulfurcrete 1 Sulphur 1 Yellow sulphur disks 2 Sulphur used in Sulfurcrete

Tubing 1	Tygm R3603		
2	Polyclear		
7-5 1	BDH 755		

.

ZnS 1 BDH ZnS 2 Generic

.

. :

• .

	2	<u>Generic Materials tested by NAA</u>		
		232	ſħ	238 _U
		(ng	3/g)	(ng/g)
<u>Aluminum Al</u>	loys			
	1100	20	00	
	2011	19		630-870
	2024	10	0-180	511
	3002	<1	000	1000
	5252	<2	200	3100
	5657	<2	200	1300
	6061	10)0-170	930
	Cominco 6 9's	4		14
	MRC ITHP	0	5-4	1-3
	Kingston Ind.	NY <2	200	2300
<u>Plastics</u>	0			·
	Fiber Glass	50)00	N/A
	Nylon Rod	0.	. 6	N/D
	Polycarbonate	1		<1.5
•	Teflon Rod	0.	, 6	0.7
	Sheet	0.	. 2	0.2
	Powder	<1	L	N/D
	Film	<0).010	<0.017
	Vespel	2		1
<u>Synthetic</u>				
	FROMY (brown)	23	125	350
	(white)			150
	Neoprene	16	- :2	N/D
	Viton	80)	162
	Keylar rone	0	, 36+0 18	<0.07
•	Spectra rope	0.	25+0 10	0 17+0 13
	Vectran rope 1	0.	68+0 12	0.1/10.13 0.14+0.01
	2	0.	61±0.24	0.17 ± 0.01
Miscellaneo	-			
<u>magocrianco</u>	<u>uy</u>			•
,	Activated Charc	oal <2	2-18	1-11
	Concrete 1	65	51	320
	2	36	575	1480
	Rock Salt	2.	.6	<65
	Boron Nitride	47	70	N/D
<u>Metals</u>				
	110 0.	-1		-20
	110 CU	[>		<20
	UFHC CU	[>	L > /.	<2U N /D
	te-Cu	<2	14 N C	N/U
	ng	<0		N/A
	11	<	L 4	N/A
	rd	<1	L	< y
*				

.

TABLE 3

See also text.

•

NAA		Direct γ -Counting		
Sample No.	²³⁸ U (ng/g)	(²³⁸ U + ²³⁴ Pa) (ng/g)	equivalent	²²⁶ Ra equivalent (ng/g)
Alcan 66250 HO Alloy	350 ± 36	410 ± 80		< 4
Omega Mirror Alloy 1350	890 ± 89	940 ± 200 740 ± 40		< 20 < 5
Reynolds Kitchen Foil	1110 ± 110	990 ± 60		< 25

TABLE 4Determination of U Series Disequilibrium in Aluminum

TABLE 5

Determination of Th-series Disequilibrium in Aluminum

NAA		Direct γ-Counting		
Sample No.	²³² Th (ng/g)	²²⁸ Th equivalent (ng/g)	²²⁸ Ra equivalent (ng/g)	
Alcan 66250 HO Alloy	67 ± 3	440 ± 10	< 6	
Omega Mirror Alloy 1350	118 ± 4	400 ± 20 180 ± 10	13 ± 20 < 10	
Reynolds Kitchen Foil	61 ± 2	180 ± 25	30 ± 20	

