
5^-57^’?/-o77
It’s Alive! - The Birth of SNOMAN

M.D. Lay, D.L. Wark, N. West
University of Oxford

December 4, 1991

1 Introduction

This document describes the work currently proceeding at Oxford on the Sudbury

Neutrino Observatory Monte carlo and ANalysis code, or SNOMAN. Our goal

has been to incorporate the design objectives and decisions reached at earlier SNO

Software Group meetings into an actual running piece of code. The hope was that

this code could then form a basis for the collaboration’s distributed software devel-

opment by serving as a template into which new routines could be plugged for testing

and development. This hope lead us to make one change to the basic structure of

the software as it had been earlier discussed. In order to increase the autonomy of

individual routines (and thus simplify their writing by different authors at different

institutions) we wanted to develop a program stucture where routines interacted only

with a central data structure and, to the extent possible, not with each other. It was

clear that combining program flow control and physics calculations within individ-

ual routines would greatly complicate this task. We therefore divided the software

into two types of routines, software control routines and physics "processors", and

from these we developed the structure for SNOMAN which will be described more

fully in the next section of this report. Further sections then describe the prototype

version of SNOMAN (which is already in excess of 2000 lines, not counting EGS4)
which we are currently running at Oxford, and our proposed plans to further de-

velop and distribute this code. To summarize, the key elements behind the design

of SNOMAN are:

o A central ZEBRA data structure describing the current event.

o A set of independent "Processors" each of which performs a single

operation on a single point in the data structure and updates the data

structure. Processors describe the detector characteristics and physics.

o A set of general control routines that scan the data structure and call

the appropriate processor.

The advantages of such a design are:

o Parallel Development of Processors.
Once the central data structure has been designed software development on

the various processors can proceed in parallel as they only interface to

this structure NOT to other processors.
o Smooth Development Cycle.

Initially each processor can be more or less a dummy and each can then

be refined as required. There is never the need for a major rewrite to

introduce a new feature.

o Access to All Data.
As the central data structure describes the complete event including

the tracking of particles, any analysis routine can look at any quantity;

there is never any need to dig a local variable out of another processor!

o Maintainable and Understandable.
Separating out control from processing leads to a simple well structured

program that should be easy to maintain and understand.

2 The Structure of SNOMAN

The data structure for SNOMAN is rooted in the concept of a ZEBRA bank. ZE-

BRA is a CERN supplied memory manager with a transparent structure and an

absolutely opaque manual. Briefly, a bank consists of a bank pointer to indicate its

position within an extended block of allocated memory, a set of links which point to

related banks, and a set of data words which contain information about the particu-

lar object which the bank represents. Both the links and the data words are accessed

using defined offsets which give their address in memory relative to the bank pointer

(for more details, see the CERN ZEBRA manual, and may the Lord have mercy on

your soul). The existing banks used by SNOMAN and their relationships are shown

in appendix I, which also shows the contents of the banks.

An event in SNOMAN then consists of a linked group of banks which the

control codes produce in order (a diagram of the routines mentioned below is given

in appendix II). First a set of routines initialize the whole code. Then the main event

loop routine EVMAIN generates event banks either by reading real events from tape

or generating them by Monte Carlo (or possibly reading in old Monte Carlo events

from tape). The Monte Carlo consists of a routine which generates source vertices

(which represent the initial neutrino interaction, or a relevant background process).

The rest of the generation process then consists of iterative calls to vertex and track

processors. A vertex is generated anytime anything happens to a particle (which

is defined broadly, for instance, a neutron, electron, or Cerenkov photon). The

vertex is linked to an incoming track and an outgoing track. A track represents the

transport of a particle within a single medium. Vertices come in four types, either

sources, interactions, boundaries, or sinks. The control routine looks at a vertex, and

given the type it represents it then calls the appropriate vertex processor which adds

an outgoing track. The control routine then calls the track processor appropriate

to a particular track to decide what kind of vertex will be at its end, which is

then generated. When a track reaches the PMT boundary, a processor is called to

determine if a PMT hit has been generated and, if so, to produce the appropriate

PMT banks. (Of course, in the case of real data, the control routine fills the PMT

banks directly from the tape). After all tracks end in sink vertices, the fitter is now

called to reconstruct the event and produce a fitter bank.

As the code currently functions there is now for each event a call to the event

analysis routine (which packs whatever information is desired into HBOOK4 ntuples

for later analysis with PAW) and the event view routine (which will do the graphics

and currently does nothing). The banks for the individual event are then wiped

and the process restarted. It may be desirable (ie, faster) to create and save all the

banks for all the events before calling these routines. This might allow the user to

interactively decide what results from each event to look at without the necessity of

re-generating the events if he decides a different paramenter is interesting, however

it will create a considerable expense in memory and perhaps paging time. The most

desirable solution may be hardware dependent, and thus may change during the ^10

year lifetime of this code. One of the advantages of the highly modular structure

we are trying to build is that this basic change in the operation of the code can be

accomplished through changing about ten lines of code, thus we are free to decide

later. It is our intent that all routines in the code can be easily swapped out and

changed, control routines as well as processors.

3 SNOMAN prototype: Objectives, Progress,
and Performance

The primary objectives were to develop a basic data structure in ZEBRA, set up

the control routines and to see what the memory and CPU requirements were.

This requires a geometry to define the boundaries so that the requisite number of

vertices and tracks are generated for each event, even though the physical processes

each represents are often ignored. One concern was the memory; each ZEBRA bank

has a 10 word (40byte) overhead.
The development was organised into version numbers. At the time of writing

there have been 3 versions:-

0.00 Source: Cerenkov photons traveling radially out from centre.

Geometry: Spherically symmetric 4 volume: D20, Acrylic, H20, PMT.

Media: All transparent; no refraction or reflection.

Detection: Dummy.
Fitting: Dummy.

0.01 Source: Monoenergetic electron randomly within 500cm of centre.

Geometry: Spherically symmetric 4 volume: D20, Acrylic, H20, PMT.

Media: All transparent; no refraction or reflection.

Detection: Black disc PMTs arranged in constant azimuthal rings.

Fitting: Minimise time chi-squared assuming straight line tracks.

0.02 Source: Monoenergetic electron randomly within 500cm of centre.

Geometry: Spherically symmetric 4 volume: D20, Acrylic, H20, PMT.

Media: All transparent; no refraction or reflection.

Detection: PMTs with correct angular response.

Fitting: Minimise time chi-squared assuming straight line tracks.

Version 0.02 also contains some rationalization of the

control structure.

A few output histograms from version 0.02 are shown in the Figures. The

performance has been studied on a VAX 4000 using the performance analyser PCA.

Some timings were repeated on the APOLLO DN1000 giving a CPU ratio:

APOLLO CPU = 2.3 * VAX CPU

3.1 Memory Requirements

The memory used is approximately linear in the number of Cerenkov photons gen-

erated. The requirement is:

200 words (800 bytes) per Cerenkov photon.

3.2 CPU Requirements

The numbers given are for the APOLLO DN1000 running version 0.01:

Initialization 3J secs
,

One Event (approx 220 Cerenkov photons) 0.23 sees

The time spent processing events is divided up roughly as follows:

ZEBRA memory management 49%
Control routines 26^

Fitting ^
Geometry 7%

EGS4 + Cerenkov photon generation 6%

PMT hit recording 3%

Note: the time is roughly linear in the number of photons produced.

As can be seen, at this stage the times are dominated by ZEBRA and the

control aspects of the code. However all future development is unlikely to have any-

significant effect in these areas.

4 Plan for Future Development

It is our opinion that SNuMAN Version 0.02 has demonstrated the viability of this

scheme, and we now intend to develop it further. In the short term, we will try to

further enhance the modularity of the subroutines and minimize their interactions.

For instance, in the current code if one changed over to a different fitter it would

be necessary to also redo the event analysis and HBOOK initialization routines to

include the different parameters that the new fitter would produce. While some such

problems are inevitable, we are trying to reduce them to an absolute minimum. For

instance, all processors know when they are being called for the first time, thus all

processors are expected to initialize themselves on the first call. However they cannot

easily know when they are being called for the last time, thus the author must supply

a routine TMPROC (where the name PROC varies for each routine) which acts as

an entry point to terminate the routine gracefully. We are also working on what

banks will be necessary for the various interaction routines to communicate with

PHINTL. We want to put a fair amount of time into thinking about the best way to

do such things now. because once the code is distributed to the collaboration such

conventions will quickly tend to become entrenched, making later changes painful.

This work will be in preparation for the release of Version 1.00 to the whole

collaboration, hopefully sometime in the late spring. It is our intent that Version 1.00

will come complete with all routines necessary to make a completely functional bare-

bones SNO Monte Carlo. In other words it will be able to generate all interesting

categories of events, produce light from them, propagate it through a reasonably

realistic geometry and detect it with a reasonably accurate representation of the

PMTs. Thus an author developing the actual code for, say, Fresnel scattering or

neutron propagation from neutral current events will be able to plug their code into

a frame which is debugged and gives a least a rough idea of how the rest of the

detector simulation code will react to any changes they make. Of course, to produce

the code on this time scale will require many approximations to be made, but we

are not promising code which produces physics results, only a skeleton to build such

code on. Our current biggest worry is the PMT beta-gamma events. The concern

is that ZEBRA overheads are so high that with current technology SNOMAN will

be unable to simulate events any faster than nature produces them. All we can

currently say about that is we are working on it and will let you know. Version

1.00 will also include a manual which gives fairly detailed information on how it is

put together, and the individual routines will be commented to the point that they

will be usefully self-documented (believe it or not, some of our existing code even

conforms to this oft-quoted but seldom realized ideal, hopefully it all will before it

is distributed).
We also need to interact with the rest of the collaboration so that the code

management process which we decide to use is in place and operating by the time .

that Version 1.00 is ready for distribution. It is particularly important that a referee

system be instituted whereby each piece of code must be tested and approved by

someone other than the author so that new routines will hopefully contain somewhat

fewer bugs. We must also develop a system by which we decide, in the case of more

than one routine being available, which will be used in the SNO-wide standard code.

5 Appendix I

5.1 SNOMAN: Data Structures

This shows the structural relationship between the banks; a bank indented to level

n is supported by the bank that is indented to a level n-1.

EV Event bank.
. EGS4 EGS4 bank. One for each track passed to EGS4.

. VX Vertex bank.

. . TK Track bank.

. PM PMT bank. One for each PMT that fires.

PH PMT hit bank. One for each hit.

. FT Fitter bank. One for each event.

5.2 EV - Event bank

Description
Holds all information global to one event.

Reference Links
None.
Structural Links

-4 -KEVFT FT Fitter bank.

-3 -KEVPM PM First PM bank.

-2 -KEVVX VX
’

First VX bank.

-1 -KEVEGS EGS4 First EGS4 bank.

Status Bits Note: Any status bit parameters are defined to work with bit functions

such as IAND and BTEST.
Data Words

All data words are integer.

+1 KEVRUN Run Number.

+2 KEVEVN Event Number.

+3 KEVRTP Run-Type-Code (see Run Type codes).

+4 KEVDTE Date.
+5 KEVTIM Time (seconds past midnight).

+6 KEVNSC Nano-sec time (since last completed second).

+7 KEVNPM Number of PMTs that fired.

+8 KEVRNS Initial random number seed (MC events only).

5.3 EGS4 - EGS4 bank. One for each track passed to

EGS4

Description
Records all required information returned from one call to EGS4 for a gamma

or electron. Not all tracks and vertices generated by EGS4 are stored in the data

structure. The convention used is that the electron or gamma passed to EGS4 is

a track of zero length and ends at an EGS4 vertex. For each Cerenkov photon

generated an outgoing electron track is produced that terminates at a Cerenkov

photon vertex.

Reference Links
-1 -KEVVX VX EGS4 vertex

Structural Links
None.

Status Bits

Note: Any status bit parameters are defined to work with bit functions

such as IAND and BTEST.
Data Words

All data words are floating point.

+1 KE4NCE Number of Cerenkov photons generated

+2 KE4EDP Total Energy deposited m Medium 1

+3 KE4RNG Total Distance traveled by the electron

4-4 KE4NST Number of steps within EGS4

5.4 VX - Vertex bank

Description
There is one VX bank for each "event" in the life of a particle; the VX repre-

sents a state transition. See also the EGS4 bank. VX banks are assigned to groups;

all members of a group are linked together via reference links. The only purpose

of this grouping is to speed up processing e.g. to ignore Cerenkov photon creation

vertices when scanning for sink vertices. What constitues a groups has yet to be

defined.

Reference Links

-4 -KVXVXG VX Next member of same group.

-3 -KVXPH PH If incoming track produces a PMT hit.

-2 -KVXTKI TK Of incoming track (or 0 if vertex class is Source).

^trnrtural Links .

-1 -KVXTK TK First outgoing track (or 0 if vertex class is bink)

Status Bits
Note: Any status bit parameters are defined to work with bit functions

such as IAND and BTEST.
1 KVXSRC Source

2 KVXBOU Boundary

3 KVXINT Interaction

4 KVXSNK Sink

Note: more than one of the above may be set, e.g. a boundary may also prove

to be a sink. If the bit is set it implies that the VX has been processed by the

appropriate vertex routine.

Data Words
All data words are floating point.

+1 KVXCLS Class: = 1 Source, = 2 Boundary, = 3 Interaction, = 4 bmk

For a VX that has more than one of the status bits corresponding

to these classes, the class will be the highest one.

4-2 KVXINC Interaction-Code (see Interaction codes)

+3 KVXPSX Position X.

+4 KVXPSY Position Y.

+5 KVXPSZ Position Z.

+6 KVXTIM Time in sees since event time (in EV).
+7 KVXIDM First Media-Code: medium of incoming track. See section 1.

+8 KVXIM2 Second Media-Code (= First medium if not boundary)

+9 KVXBNX Boundary normal X, (only defined if Boundary status bit set)

+10 KVXBNY Boundary normal Y, (")
+11 KVXBNZ Boundary normal Z, (fl)

5.5 TK - Track bank

Description �

j j
�

���Describes the transport of one particle between its start and end vertices.

Formally the information in the TK bank refers to the particle at its end vertex.

For most tracks the quantities will be invarient along the track but one exception

is that EGS4 will produce electron tracks at the point at which they interact to

produce Cerenkov photons. The direction of such a track will not correspond to a

straight line joining its start and end vertices.

Inference Links

-1 -KTKVX VX Track end vertex.

Structural Links
None.

Status Bits
Note: Any status bit parameters are defined to work with bit functions

such as IAND and BTEST.
Data Words

All data words are floating point.

+1 KTKIDP Particle-ID-Code (see Particle codes).

+2KTKDRXDirection cosine X.

+3KTKDRYDirection cosine Y.

+4KTKDRZDirection cosine Z.
+5KTKENEEnergy.
+6KTKIDMMedia-Code (see Media codes)
+7KTKPL1Polarisation 1.

+8KTKPL2Polarisation 2.

5.6 PM - PMT bank. One for each PMT that fires

Description
���One~bank for each PMT that fires. The hits described in the PH banks may

not all be resolvable. The PM bank holds the combined result of all PHs.

Reference Links
None.
St.rnrtural Links

-1 -KPMPH PH First PMT hit.

Status Bits
Note: Any status bit parameters are defined to work with bit functions

such as IAND and BTEST.
Data Words

All data words are floating point.

+1 KPMNUM PMT number (Give access to PMT tables)
+2 KPMPSX Position X.
+3 KPMPSY Position Y.
+4 KPMPSZ Position Z.
+5 KPMETM Earliest time of any hit in the PH chain of hits.

+6 KPM... Description of the total PMT signal. To be defined but must be

capable of holding real data as well as MC.

5.7 PH - PMT hit bank. One for each hit

Description
One for each hit on PMT.
Reference Links
-1 -KPHVX VX VX whose incoming track produced hit.

Structural Links
None.

Status Bits
Note: Any status bit parameters are defined to work with bit functions

such as IAND and BTEST.
Data Words

+1
+2
+3

All data words are floating point.
KPHTIM Time.

Pulse type: =1 clean, = 2 noise, = 3 pre-pulse, = 4 after-KPHTYP
KPHHEI Pulse height.

5.8 FT - Fitter bank. One for each event

Description
One bank generated for each event by fitter

T^pfprpnce Links
C;t.rnrtnral Links

None.
Status Bits
Note: Any status bit parameters are defined to work with bit functions

such as IAND and BTEST.
Data Words

All data words are floating point.

+1 KFTXE Fit value of the x coordinate

+2 KFTYE Fit value of the y coordinate

+3 KFTZE Fit value of the z coordinate

4-4 KFTTE Fit value of the event time

+5 KFTDXE Error on the x coordinate

+6 KFTDYE Error on the y coordinate

-)-7 KFTDZE Error on the z coordinate

+8 KFTDTE Error on the event time

+9 KFTIPM Number of PMTs hit

+10 KFTICT Number of interatkms of MRQMIN

+11 KFTCHI Final fit Chi**2

10

6 Appendix II

6.1 SNOMAN: Software Structure

The major routines called in the current SNOMAN structure are:

MAIN
. INMAIN
..INZEBR
. . INHBK
. . INPMT
. EVMAIN
. . EVREAD
. . . READEX
. . . READMC
. . MCMAIN
. . . MCGENR
. . . MCEVLV
.... VXMAIN
..... VXSRC
..... VXBOU
...... VXNULL
..... VXINT
...... VXEGS4
....... HATCH
....... EGSINP
....... SHOWER
....... EGSOUT
........ TKNULL
........ VXNULL
...... VXCERN
......VXNULL
..... VXSNK
...... VXNULL
... . TKMAIN
..... GEBOU
..... PHINTL
.....TKNULL
. . EVFITR
. . . MRQMIN
.... MRQCOF
. . EVVIEW
..EVANAL
. TMMAIN
. . TMHBK
. . TMZEBR

11

which are:

MAIN Main routine.

INMAIN Initialisation main routine.

INZEBR Initialise ZEBRA and bank definitions.

INHBK Initialise HBOOK.
INPMT Initialise PMT hit routine in VXSNK.

EVMAIN Event loop main routine.

EVREAD Read experiment or MC data file.

READEX Read experiment data file.

READMC Read MC data file.

MCMAIN MC event generation.
MCGENR MC Event generation (EV -4- seed VXs and TKs)

MCEVLV MC Event evolution.

VXMAIN VX processor main routine.

VXSRC VX processor for source vertices.

VXBOU VX processor for boundary vertices.

VXINT VX processor for interaction vertices.

VXEGS4 VX processor for EGS4 tracks.

HATCH EGS4 initialisation.
EGSINP Load EGS4 with current track.

SHOWER EGS4 track processing.
EGSOUT Add Cerenkov interaction to event D/S.
VXCERN VX processor for Cerenkov photon production.

VXSNK VX processor for sink vertices, PMTs

TKMAIN TK processor main routine.

GEBOU Geometry: Distance to next boundary.

PHINTL Physics: Interaction length.
EVFITR Event reconstruction.
MRQMIN Levenberg-Marquart minimising main routine.

MRQCOF Levenberg-Marquart minimising step.

EVVIEW Event display.
EVANAL Event analysis.
TMMAIN Termination main routine.

TMHBK Terminate HBOOK.
TMZEBR Terminate ZEBRA.

The following are called from more than one routine:

TKNULL Null TK processor (propagate to null interaction)

VXNULL Null VX processor (outgoing track = incoming track)

These routines are very useful as they handle all the ZEBRA code needed to

create the banks with the appropriate links. They can then be used to create banks

whose data words can then be filled by other routines.

12

..^^^w^:^
� �/.:�: .i^^a-^.-
�

�� * :�*�. "’^^y^w-4’"’1 �

�

. .^�^^�^^��^�^.�::.;:.

»�»*’,*.. ��’.\-
’";. l^.^-;/

� :�,’;:.� i-vSc?*^;.^^y2S’^� ;�� *’�’" ^^sS’-^V^1’^^’’ �’�vj^-.’^^^^^^A^:^^.-’-
^�’.’�^.^?^^^^ � -

200 500

RUT VS REVENT

400

SccJ-^ i’(u^ 0-? ^^

F� , |, i .& nu^L^ o ^ "^TS:.. Z, H^0^^ ol
.

:

0

200 100 0 100 200

YDEV VS XDEV

(^ ^ ^-^^^^^^ej:jF,.. ^. ^-^ ^

