SNO-STR-92-055

TENSILE CREEP TESTING OF ABS PLASTIC FINAL REPORT

by Harold Leung Student Assistant Lawrence Berkeley Laboratory Berkeley, California 5 June 1992

TENSILE CREEP TESTING OF ABS PLASTIC FINAL REPORT

by Harold Leung

ABSTRACT

In order to ensure proper design specifications for the ABS plastic components in the construction of the Sudbury Neutrino Observatory, the ABS resins must be tested for time dependent deformation, or creep. Since the components will be submerged in deionized water for at least ten years, creep properties need to be analyzed in a water environment. The data obtained from the material tests will help characterize the creep strain and rupture times at various stress levels. In addition, extrapolating the data will determine the creep properties during and at the end of the Sudbury Neutrino Observatory (SNO) experiment. In conclusion, the results of these creep tests will give one confidence that the ABS plastic is designed not to creep rupture during the SNO experiment.

ii

CONTENTS

A	bstract	ii
1.	0 Introduction 1.1 Objective 1.2 Motivation 1.3 Theoretical Background	
2.	0 Experimental System 2.1 Procedure 2.2 Data Acquisition	5
3.0	0 Results and Discussion 3.1 Creep Strain and Rupture 3.2 Water Absorption	8
4.(0 Summary and Conclusions	
Re	eferences	
Lis	st of Appendices	14
	Appendix A Typical Properties of ABS Plastic Appendix B	15
	Specifications for the LVDT	17
	Appendix C Sample Calculation of Strain Appendix D	
	Creep Strain and Rupture Plots	21
	Appendix E Tap Water Evaluation	
	Appendix F Table Summary of Tests	
	Appendix G Raw Data for Creep Tests	40
	Appendix H Absorption Test Schematic and Raw Data	
La	st Page	

FIGURES

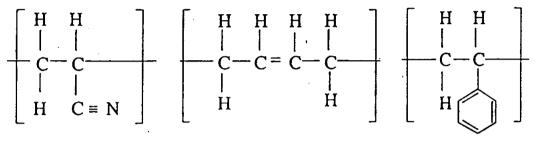
Figure 1 - The general chemical structure of ABS plastic2
Figure 2 - Variations in the Rubber Content to Change the Properties of ABS Plastic3
Figure 3 - The straight line plots for ABS plastic in the piping industry compared with the ABS plastic that will be used for the SNO experiment4
Figure 4 - Schematic of the Stainless Steel Chamber for Tensile Creep Testing6
Figure 5 - A detailed schematic of the data recording system
Figure 6 - The percent creep strain for three different tensile stresses9
Figure 7 - The creep rupture for ABS plastic under various tensile stresses10

1.0 Introduction

1.1 Objective

This report documents the information necessary to ensure that the General Electric Cycolac (GPM5600) ABS plastic components are designed to exceed the ten year life of the experiment at the Sudbury Neutrino Observatory. The ABS plastic is tested for time dependent deformation, or creep, in a deionized water environment. In particular, the ABS plastic is tested using constant stresses ranging between 2400 and 4000 psi resulting in rupture times between 20 and 1600 hours. Although the tests performed in this experiment do not exceed 1600 hours, the rupture data is extrapolated to the ten year (87600 hours) life of the SNO experiment. From these material tests, the creep strain and the rupture times at various stresses are used to characterize the specific properties of the GE ABS plastic. In addition to studying creep in deionized water, some other conclusions are made comparing the deionized water tests to those in air and tap water. The results of these tests will ensure that creep rupture will not occur during the SNO experiment.

1.2 Motivation


Many of the components that house the photomultiplier tubes such as the hex cells and back baffles are made of ABS plastic. Over the ten year duration of the SNO experiment, the plastic components will be submerged in deionized water and subjected to applied stresses. Since the stresses will be applied over a period of ten years, time dependent deformation is the primary process that must be investigated. Therefore, several material tests need to be performed that will allow us to determine the creep properties of ABS plastic when immersed in deionized water.

1.3 Theoretical Background

Creep is the time dependent plastic deformation of a material when subjected to a constant stress. In addition to time, some other variables that influence creep are the temperature and environment. For example, as the temperature rises, the plastic will tend to soften, and the time to creep-rupture significantly decreases. Similarly, the environment may react with the properties of the material to cause overall rupture time to decrease. Thus, to study creep also means to analyze the variables that influence it, which, in turn, motivates the need for short term testing in order to predict long term effects.

Acrylonitrile-Butadiene-Styrene (ABS) is a name given to a family of thermoplastics. ABS plastics are generally known for their overall engineering properties such as good mechanical and impact strength as well as ease in manufacturing. Most importantly though, ABS plastics are relatively inexpensive. Some of the existing applications for ABS plastic includes pipes, fittings, automobile parts, liners as well as computer housings and shieldings.

The chemical structure units for ABS plastic are shown in Figure 1.

A: polyacrylonitrile

B: polybutadiene

S: polystyrene

Figure 1 - The general chemical structure of ABS plastic¹.

where acrylonitrile provides heat and chemical resistance, butadiene contributes impact strength, and styrene adds rigidity. To vary the characteristic creep properties when manufacturing, the amount of butadiene rubber content can be changed. See Figure 2 for details.

¹W.F. Smith, <u>Principles of Materials Science and Engineering</u>

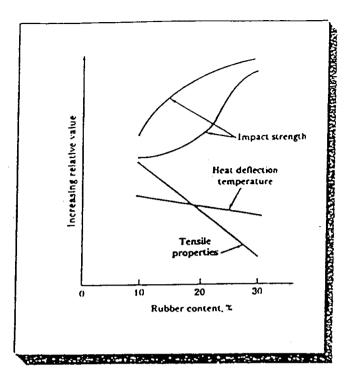


Figure 2 - Variations in the Rubber Content to Change the Properties of ABS Plastic. (After G.E. Teer, ABS and Related Multipolymers, in "Modern Plastics Encyclopedia," McGraw-Hill, 1981-1982)

As a result of a change in rubber content, the ABS plastic can be designed to meet almost any need.

The ABS plastic pipe industry has done extensive research that will help study creep rupture in water. Several experiments on over 1200 sets of data, obtained with thermoplastic pipe and piping assemblies tested with water, natural gas, and compressed air, have been performed, and none of the recommended compounds have exhibited knee-type plots. In other words, for each experiment, all of the stress versus time to rupture data points have been fitted with a straight line on an equiscalar log-log plot. In fact, data have been obtained for test periods over 120,000 hours (13.7 years).² Thus, it gives one confidence that the short-term data can be extrapolated to determine long-term failure.

²ASTM D2837-90, pg 324

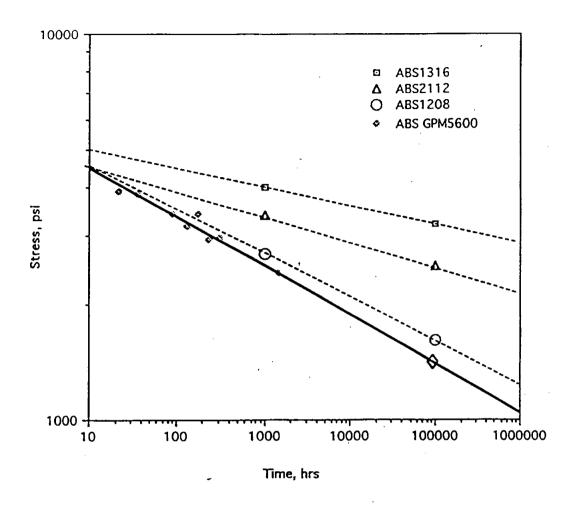


Figure 3 - The straight line plots for ABS plastic in the piping industry compared with the ABS plastic that will be used for the SNO experiment.

Standard specifications for ABS plastic pipes are shown in Figure 3, The hoop stress with respect to the rupture time was plotted for three types of piping: ABS1316, ABS2112, and ABS1208. In addition, the solid line represents the data obtained from the tests being performed on the GE GPM5600 ABS plastic. The completed tests have remained consistent with the straight-line characteristics of the ABS piping material.

To study the creep strain for each tensile stress, the Percent Creep Strain versus time for each specimen was plotted on a log-log scale, and a second order polynomial was best fit to the data points. The polynomial is in the form given by Equation 1.

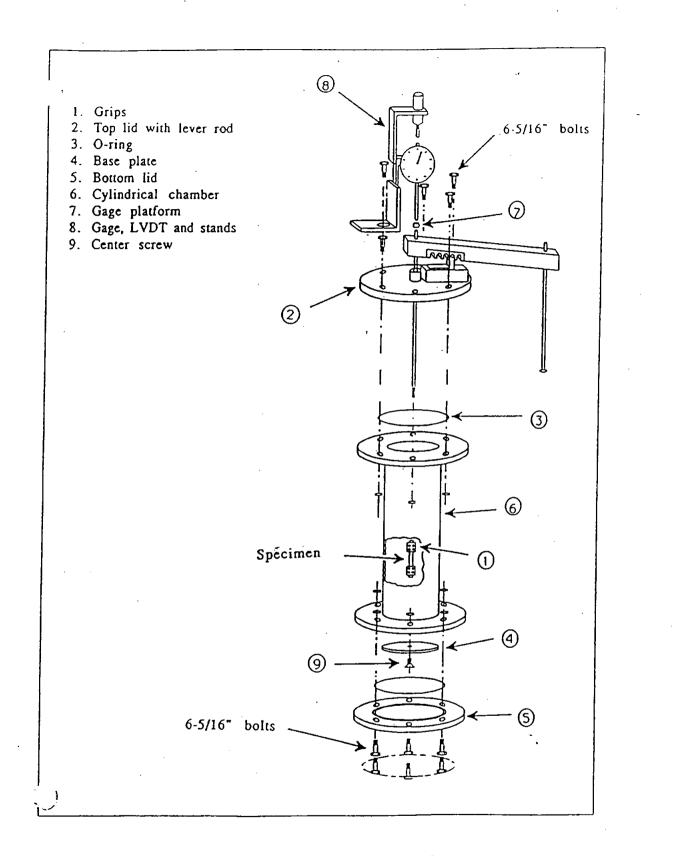
$A(\log t)^2 + B(\log t) + C = \log \epsilon$

(1)

where A, B, and C are constants determined by the fit, t is time, and ε is strain.

2.0 EXPERIMENTAL SYSTEM

2.1 Procedure


For the SNO experiment, the ABS plastic chosen was Cycolac GPM5600 manufactured by GE Plastics. Some typical properties of this general purpose resin are specified in Appendix A.

The stainless steel test apparatus is shown in Figure 4. All of the tests conformed with standard ASTM methods of testing. Applicable documents are referenced.

In a sealed <u>glass</u> jar, each specimen (Type V) was preconditioned by immersion in deionized water for approximately 48 hours prior to testing. Also, since the deionized water loses its resistivity due to reionization, the water was changed daily.

After the specimen was properly conditioned, the cross-sectional area within the gage length was measured. Without crushing the specimen, the grips were tightened to prevent slippage. Next, the lever rod with the top lid was screwed into one of the grip ends and then, the lid was bolted down onto the stainless steel chamber. The center screw connecting the base plate to the other grip was attached, but not tightened because the screw acted as pivot for multiaxial movement. With the remaining components being attached, the test apparatus was filled with the deionized water, and the flow was adjusted accordingly. The deionized water was maintained at 22 ± 1 degree C. Also, the displacement gages were adjusted to operate within their range limits. Once the computer program was ready to record data, a known amount of weight was applied rapidly and smoothly (< 5 seconds).

While the specimens were subjected to this constant stress, the flow of deionized water (resistivity of 18 M Ω -cm) entered the top of the cylindrical chamber and exited at the bottom, which kept the deionized water at a high resistivity throughout the experiment. Also, the flow was slow enough such that pressure effects were negligible.

Figure 4 - Schematic of the Stainless Steel Chamber for Tensile Creep Testing.

2.2 Data Acquisition

Two of the major components for data recording are the Linear Variable Differential Transducer (LVDT) and a Hewlett-Packard computer with a HP-IB interface program. Figure 5 is a schematic of the data recording system. The LVDT is an electromagnetic device that produces an electrical voltage proportional to the displacement. When placed in the null position, the LVDT will output a proportional positive voltage in either direction of movement. The specifications for the LVDT used for the recording system is shown in Appendix B.

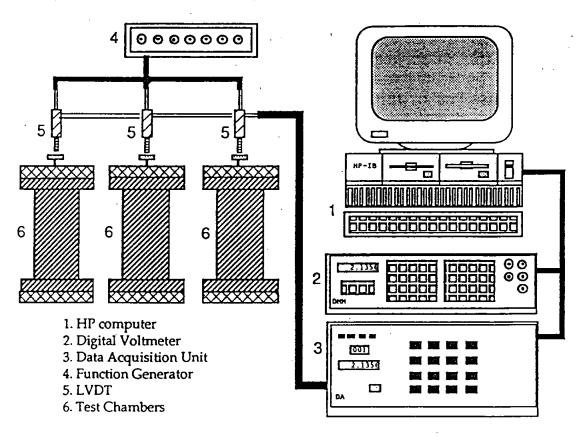


Figure 5 - A detailed schematic of the data recording system.

Providing the ease in automatic data recording, the HP-IB computer interface will sample data from the LVDT's. Not only will data be recorded according to ASTM standards (1, 6, 12, 30 min.; 1, 2, 5, 10, 20, 50, 100, 200, 500, and 1000 hrs.), but also in intervals of two hours where discontinuities in creep strain versus time are encountered. This will reduce the rupture time uncertainties to ± 1 hour. Furthermore, the HP-IB has the capabilities to record three tests simultaneously and

independently. In fact, if one of the tests completes, a new test can be started without disturbing the other two.

For the tests performed in this experiment, the linear extension was hand-recorded for the ASTM intervals using the dial gages.

3.0 **RESULTS AND DISCUSSION**

3.1 Creep Strain and Rupture

The observed extension for each test had to be adjusted due to the "gaps" or slack in the test apparatus and specimen. In order to determine this adjustment factor, the known stress and elastic modulus were used to calculate the theoretical extension. To obtain the extension in the specimen alone, the difference between the observed and theoretical extension had to be subtracted from each observed displacement. Equation 2 was used as an approximation to the actual strain.

$$\varepsilon_{ot} - (\varepsilon_{o1} - \frac{\sigma}{E}) \approx \varepsilon_{at}$$
 (2)

where ε_{ot} is the observed strain at time t, ε_{o1} is the observed strain at 1 minute, σ is the tensile stress, E is the modulus of elasticity, and ε_{at} is the actual strain at time t. See Appendix C for a sample calculation. Since there was no significant dimensional change due to the environment alone, no additional corrections were made to the creep strain.

The first tests performed were to study the differences in creep strain and rupture between specimens in air and water. The preliminary tests revealed significant changes in the time to rupture. In fact, the tests done in air lasted over ten times longer than those performed in water. Thus, future tests in air will not aid in characterizing the creep properties in water.

The second set of tests were performed in 18 M Ω -cm, 22 degree C deionized water in order to obtain the creep strain and rupture times of the GPM5600 plastic. For each test, the instantaneous creep at the interval times was plotted, and the second order polynomial was fitted to the data (equation 1). The plots for three tests are found in Figure 6.

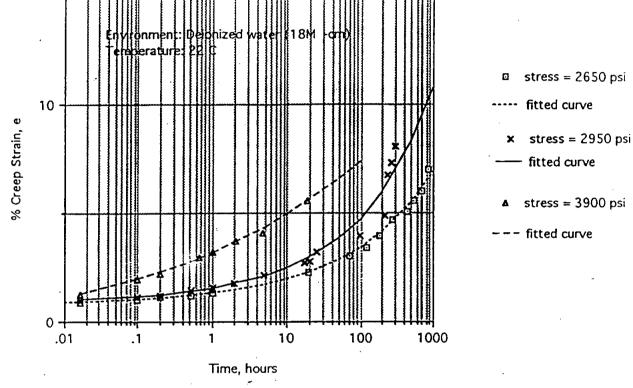
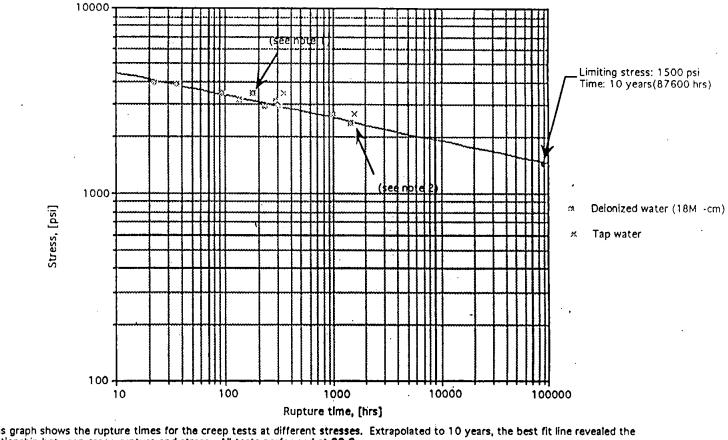



Figure 6 - The percent creep strain for three different tensile stresses.

The creep strain for all stress levels followed the same pattern. Initially, each specimen had gradual creep, and then increased as the specimens approached rupture. As expected for the higher stresses, the creep strain advanced much faster. The plots also revealed that the ABS plastic would rupture within the first 10% of creep strain. However, predicting an exact percentage would depend on the microstructure characteristics of each individual specimen. Creep strain plots for other tests are in Appendix D.

Additional tests were performed in a tap water environment. Appendix E is an evaluation of the water used. For the tests completed, the specimen in tap water lasted longer than the tests in DI water as shown in Figure 7. This suggests that the DI water promotes creep in ABS plastic. However, additional tests need to be performed to confirm this result.

Figure 7 - The Creep Rupture for ABS Plastic Under Various Tensile Stresses.

This graph shows the rupture times for the creep tests at different stresses. Extrapolated to 10 years, the best fit line revealed the relationship between creep-rupture and stress. All tests performed at 22 C.

Note 1: Due to deionized water shutdown, the specimen was exposed to air (less than 18 hours).

Note 2: The 2450 & 2400 psi creep tests were only valid up to 1435 hours due to a delonized water shutdown. Most importantly, these tests did not rupture in 1435 hours, and if the water had not been shutdown, the specimens would have continued to creep.

10

Figure

 $\overline{}$

.

The creep rupture for ABS plastic under various tensile

stresses.

Tables 1 & 2 in Appendix F summarize the stresses and rupture times for all of the tests that have been completed. The tensile stress of each specimen was calculated from the known load, cross-sectional area and apparatus dimensions. Sample calculations are shown in the Lab-Log book.

Most of the experimental uncertainty observed in the time variable was due to either overnight or weekend ruptures, when personnel were not available to document the ruptures. Unfortunately, the tests with large uncertainties were completed before the HP-IB implementation. For the tests with the HP-IB, the uncertainties in rupture times were due to the limitations in the program.

By plotting Table 1 on a log stress as a function of log rupture time, a best fit line was extrapolated in determining long term creep-rupture as shown in figure 7. As seen from the Table 1 and figure 7, the 2920 psi test specimen broke before the 2950 psi test. The discrepancies were in comparing specimens at relatively close stresses because the experimental ruptures were expected to be scattered within a time interval. Although the scatter was large for low stresses, the rupture time remained near or above the extrapolated line.

By extrapolating the best fit line to the 10 year (87600 hour) life of the SNO experiment, Figure 7 revealed the limiting stress to be 1500 psi. The stresses on the plastic components for the SNO experiment have been calculated to be less than 500 psi. Since the expected limiting stress is 1500 psi, using an allowable design stress of 500 psi will give a safety factor of three to the plastic components. Since the calculated stress is less than the allowable design stress, it gives one confidence that the ABS plastic is designed not to creep-rupture in the SNO experiment.

3.2 Water Absorption

The back baffle of the hex cell was submerged in a slow flow of deionized water. To investigate the water absorption, the weight and dimensional changes were monitored until saturation was reached. Appendix H shows the raw data and the locations of these measurements. After immersing the ABS plastic in deionized water for thirty-one days (saturation), the amount of weight gain experienced in the plastic component was 0.57 %. This verifies the estimates in the Modern Plastics Encyclopedia, which had given an absorption range between 0.2 and 0.6 %. While the dimensional changes in the height, thickness, and inside diameter were negligible, the outside diameter changed between 0.1 and 0.2 %.

4.0 SUMMARY AND CONCLUSIONS

4.1 Summary

In this experiment, the GE Cycolac (GPM5600) ABS plastic was tested for time dependant deformation, or creep, in an $18M\Omega$ -cm deionized water environment. At a water temperature of 22 degree C, plastic specimens were subjected to tensile stresses ranging between 2400 and 3900 psi. This range of stresses also resulted in a range of rupture times varying from 20 to 1600 hours.

From the data obtained from the various tests, the creep strain data was used to study the characteristics of ABS plastic in deionized water over time. To determine the life of the ABS plastic components, the rupture times for various stresses was plotted. Similar to the methods used in the Plastic Pipes Industry, a straight line was extrapolated to 10 years on an equiscalar log-log plot of the stress versus rupture time data. As a result, the extrapolation revealed the limiting stress, which, in turn, gave the design stress of the plastic components.

4.2 Conclusions

From the results of these experiments, we conclude that the ABS plastic components are designed not to creep rupture during the 10 year life of the SNO experiment. The allowable design stress was selected to give a safety factor of three against failure.

REFERENCES

- 1. Smith, W. F., <u>Principles of Materials Science and Engineering</u>, McGraw Hill Book, Inc., 1986, pp 336-337
- 2. Annual Book of ASTM Standards:
 - D618-61 Methods of Conditioning Plastics and Electrical Insulating Materials for Testing
 - D638-84 Test Method for Tensile Properties of Plastics
 - D1598-86 Test Method for Time-to-Failure of Plastic Pipe Under Constant Internal Pressure
 - D2282-89 Standard Specifications for Acrylonitrile-Butadiene-Styrene (ABS) Plastic Pipe (SDR-PR)
 - D2837-90 Standard Test Method for Obtaining Hydrostatic Design Basis for Thermoplastic Pipe Materials
 - D2990-77 Tensile, Compressive, and Flexural Creep and Creep-Rupture of Plastics

LIST OF APPENDICES

Appendix A	Typical Properties of ABS Plastic
Appendix B	Specifications for the LVDT
Appendix C	Sample Calculation of Strain
Appendix D	Creep Strain and Rupture Plots
Appendix E	Tap Water Evaluation
Appendix F	Table Summary of Tests
Appendix G	Raw Data for Creep Tests
Appendix H	Absorption Schematic and Raw Data

Appendix A

Typical Properties of ABS Plastic

CYCOLAC[®] General Purpose Grades

The main line of the CYCOLAC® ABS resin family is the general purpose class. Each general purpose grade offers a unique combination of properties designed to meet almost any need. Led by the new G-Series technology, CYCOLAC resins are available with enhanced flow for easier and more economical processing. The world leader in ABS polymers, CYOOLAC general purpose materials provide a cost-effective product representing the industry standard for quality and performance.

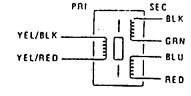
Typical Property Values

English Units (SI Units)

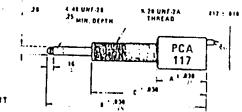
PROPERTY	EXG(SI) UKITS	TEST METHOD	CYCOLAC GPM(700 resin	CYCOLAC GPMS500 resin	CYCOLAC GPMS600 resta	CYCOLAC GPM6300 resin	CYCOLAC DSK resin
PHYSICAL Specific Gravity, sold Model Strinkage, Row, 0.125° (3.2 mm)	ir/n E-J	ASTN 0 792 ASTN 0 955	1.04 7-9	1.05 6-8	1.05 7-9	1.05 6-8	1.05 6-8
MECHANICAL Tensik Suranzii, yieki, Type L, 0.125° (3.2 mm) Tensik Hodukus, Type L, 0.125° (3.2 mm) Recursi Suranzii, yieki, 0.125° (3.2 mm) Recursi Modukus, 0.125° (3.2 mm) Hurahess, Rochwell R	po(NP2) po(NP2) po(NP3) po(NP3) 	ASTN 0 638 ASTN 0 638 ASTN 0 638 ASTN 0 790 ASTN 0 790 ASTN 0 785	6,400(45) 1201000(2,200) 10,700(75) 340,000(2,300) 105	6,500(50) 360,000(2,500) 12,300(85) 380,000(2,600) 110	6,300(45) 310,000(2,100) 10,500(70) 330,000(2,300) 105	6,900(50) 360,000(2,500) 17,300(75) 380,000(2,600) 110	6,700(45) 350,000(2,400) 12,000(85) 370,000(2,500) 111
LMPACT bood Impact, notated, 0.125° (3.2 mm), 73F (230) bood Impact, notated, -40F (-400)	ft-b/m(J/m) ft-b/m(J/m)	ASTIN 0 256 ASTIN 0 256	7.5(400) —	5.0(270) —	6.5(350) —	3.5(190) —	3.1(170) —
THERMAL DTUL, 66 psi (0.45 Kpz), 0.500° (12.7 mm), zmeziod DTUL, 66 psi (0.45 Kpz), 0.500° (12.7 mm), unaneziod DTUL, 264 psi (1.82 KPz), 0.500° (12.7 mm), zmeziod DTUL, 264 psi (1.82 KPz), 0.500° (12.7 mm),	රංගු F(රංගු C) රංගු F(රංගු C) රංගු F(රංගු C) රංගු F(රංගු C)	ASTN 0 648 ASTN 0 648 ASTN 0 648 ASTN 0 648 ASTN 0 648		- 200(93) 195(91)	- 212(100) 196(92)		 210(39) 135(91)
unamezied Thermal index, Bec Prop Thermal index, Kech Prop with impact Thermal index, Kech Prop without impact	ବର୍ପ C ବର୍ସ C ବର୍ସ C	UL7468 UL7468 UL7468	ସ ସ ସ	ର ର ସ	ରେ ସେ ସେ	ରେ ସେ ସେ	- - -
ELECTRICAL Arc Resistance, Lungsten Hot Wire Iprition High Voltage Arc Track Rate High Ampore Arc Ignition, surface Comparative Track Index UL	ASTIND 495 PLC Code PLC Code PLC Code PLC Code PLC Code	UL746A UL746A UL746A UL746A UL746A UL746A	5 4 3 0 0	6 3 2 0 0	6 3 3 0 0	6 3 2 0 0	- - - -
FLAME CLASS RATING* 94/18 Parre Ozss Rating	in(mm)	แษ	_	0.0620(1.58)	0.0620(1.58)	0.0520(1.55)	0.0630(1.60)

* This rating is not intended to reflect hazards presented by this or any other material under actual fire conditions

Appendix B


Specifications for the LVDT

GENERAL SPECIFICATIONS For Performance Specifications, See Chart Below


Input Voltage 3 V rms (nominal) Frequency Range 50 Hz to 10 kHz Temperature Range65°F to +300°F	Housing Material AISI 400 series stainless steel Lead Wires 28 AWG stranded copper,
(-55°C to +150°C) Null Voltage Less than 0.5% full scale output	Teflon-insulated, 12 inches (300 mm) long (nominal) Repeatability 0.000050 inch

PERFORMANCE SPECIFICATIONS AND DIMENSIONS (2.5 kHz) METRIC DIMENSIONS IN BLUE

MODEL NUMBER	NOMI LINE RAN	AR	LINEARITY ±PERCENT FULL RANGE		FIVITY er Volt t Per		DANCE	PHASE Shift	WE1GHT Grams	A		ť		IMENSI C	2אס	Pretra	vel	0 ve rtravel
	Inches	~~		.001 In		Pri,	Sec.	Degrees		Inches	0101	Inches	m m	Inches	A	Inches		Inches mm
PCA-116-100	±0,10	\$25	0.5	2.4	91	650	920	+1	43			2.54		0,44				
PCA-116-200	±0.20	:5	0.5	2.1	-3	1100	120	-3	50	2.25		3.30			111			0.03 UE
PCA-116-300	±0.30	17.5	0,5	1.2	4.8	1350	1460	-8	.57			4.10					23	0.11 7.6
PCA-117-050	± 0.050	11.25	0.25	6,3	29	430	4000	-1	64	1.19	31-2	3.84	. , .	2.76	6110	0.06		-,
PCA-117-100	±0,100	125	0.25	4.5	425	1070	5000	-5	85			4.53		3.43				0.60 15 2
PCA-117-200	±0.200	:5	0.25	2.5	4,0	1150	4000	-4	100			5.23		4,12	-			0.40 30.2
PCA-117-300	± 0.300	175	0.25	1.4	5e.	1100	2700	-11	114		× 1	5.94				••		0.28
PCA-117-500	±0.500	1125	0.25	07	1.	460	375	-1	177	5 56		3.34		4,84		0.09		0,18 4.0
PCA-117-1000	1.000	: 35	0.25	04	4,	460	320	- 3	190	G 69		12.28		8 75 9.88		0.29 0.03	С. С. А.	0.83 211

CONNECT GRN TO BLU FOR DIFFERENTIAL OUTPUT

ι

Appendix C

ŕ

Sample Calculation of Strain

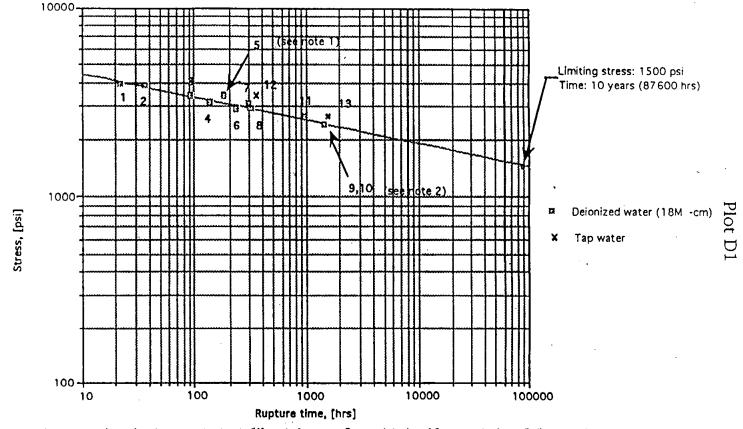
C1-A2670-GPM5600-Tap Gage length = 0.30 in. Tensile Stress = 2670 psi, E = 310000 psi

time, hours	Observed Extension, in	Actual Extension, in	% Creep Strain			
0.016666667	0.1128	0.0026	0.86			
0.1	0.1131	0.0029	0.96			
0.2	0.1132	0.0030	0.99			
0.58333	0.1136	0.0034	1.13			
1.15	0.1141	0.0039	1.29			
18.75	0.1167	0.0065	2.16			
70.48333	0.1188	0.0086	2.86			
119.95	0.1202	0.0100	3.33			
184.45	0.1222	0.0120	3.99			
279.45	0.1249	0.0147	4.89			
430.58333	0.1265	0.0163	5.43			
533.86667	0.1276	0.0174	5.79			
689.95	0.1297	0.0195	6.49			
857.7	0.1322	0.0220	7.33			
1102.95	0.1369	0.0267	8.89			
1530.95	0.1473	0.0371	12.36			

۰.,

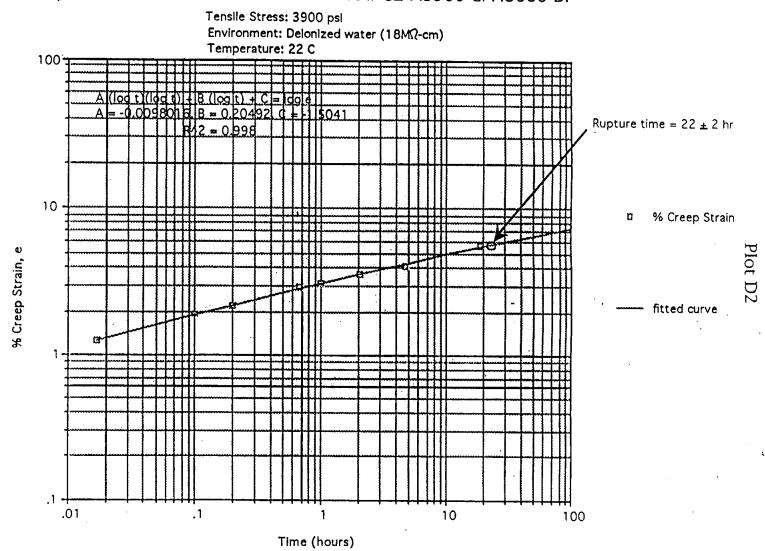
$$\varepsilon_{at} = \varepsilon_{ot} - \left(\varepsilon_{o1} - \frac{\sigma}{E}\right)$$

$$\varepsilon_{o1} = \frac{0.1128}{0.30} = 0.3760$$

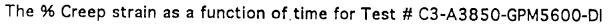

$$\varepsilon_{at} = \frac{0.1131}{0.30} - \left(0.3760 - \frac{2670}{310000}\right)$$

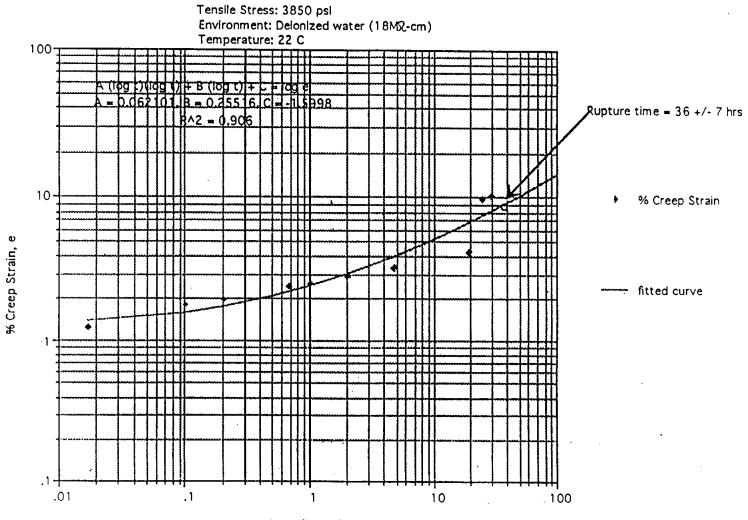
$$\varepsilon_{at} = 0.961$$

Appendix D

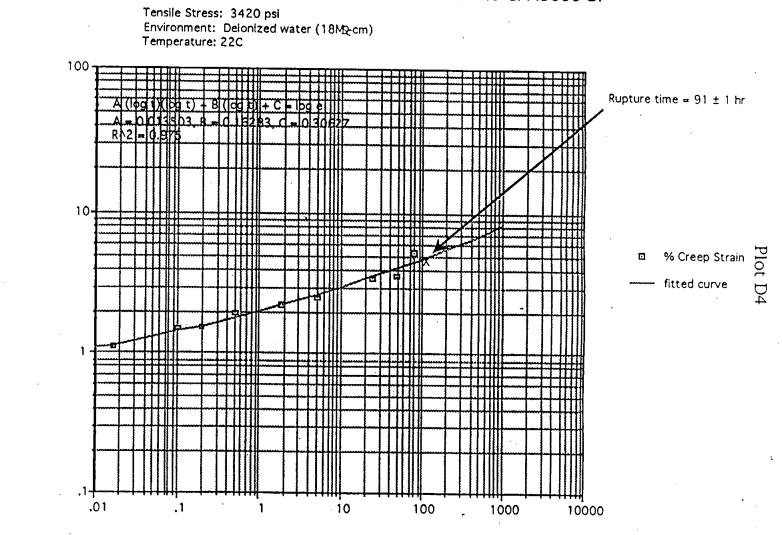

Creep Strain and Rupture Plots

The Creep Rupture for ABS Plastic Under Various Tensile Stresses.


This graph shows the rupture times for the creep tests at different stresses. Extrapolated to 10 years, the best fit line revealed the relationship between creep-rupture and stress. All tests performed at 22 C.

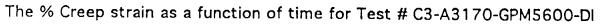

Note 1: Due to deionized water shutdown, the specimen was exposed to air (less than 18 hours). Note 2: The 2450 & 2400 psi creep tests were only valid up to 1435 hours due to a deionized water shutdown. Most importantly, these tests did not rupture in 1435 hours, and if the water had not been shutdown, the specimens would have continued to creep.

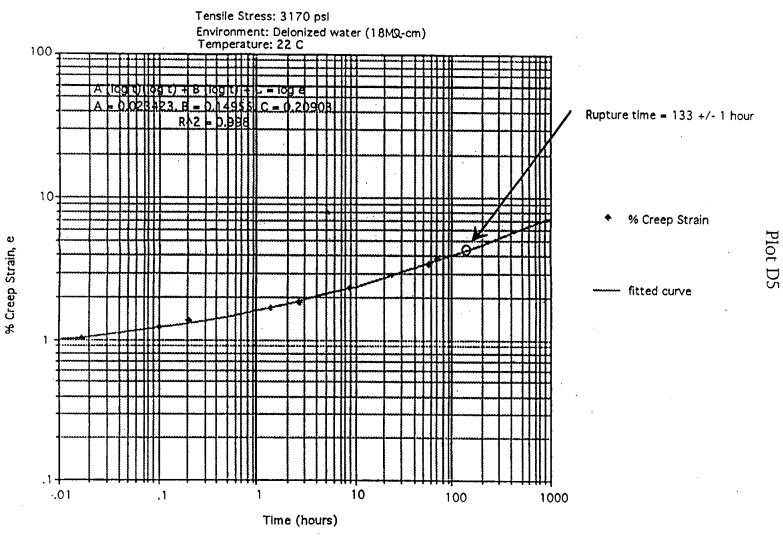
The % Creep strain as a function of time for Test # C2-A3900-GPM5600-DI



Plot D3

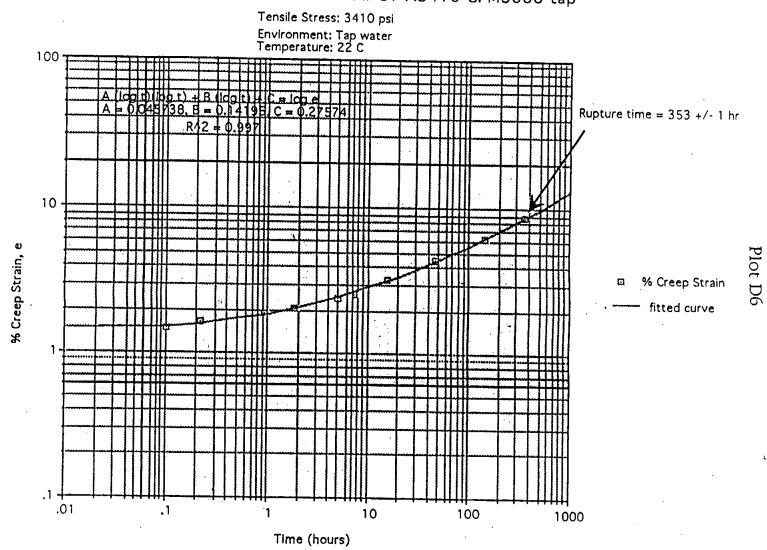
Time (hours)

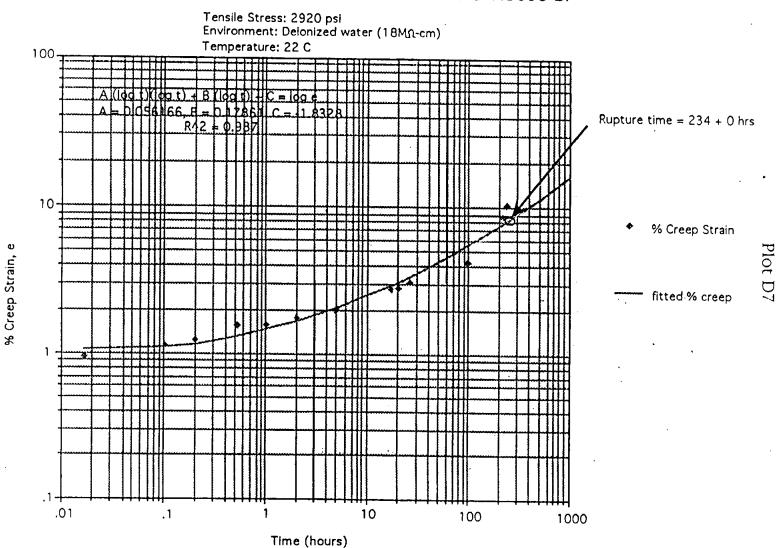



The % Creep strain as a function of time for Test # "Data-C2-A3420-GPM5600-DI"

time, hrs

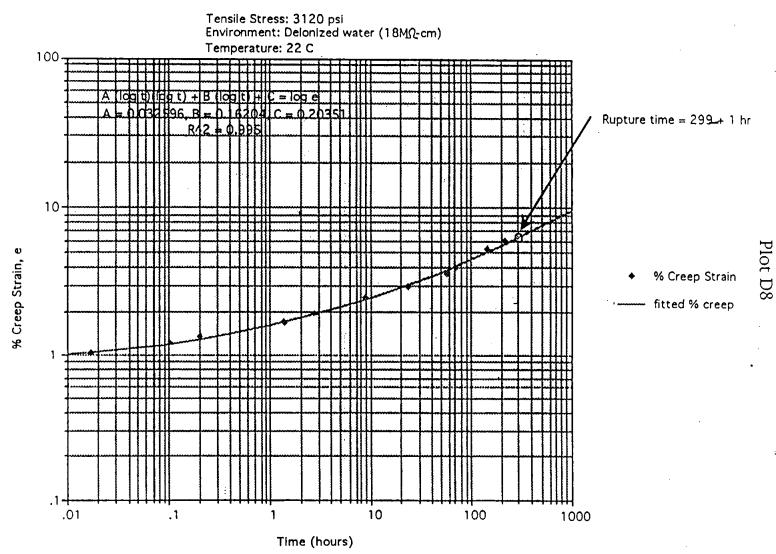
% Creep Strain



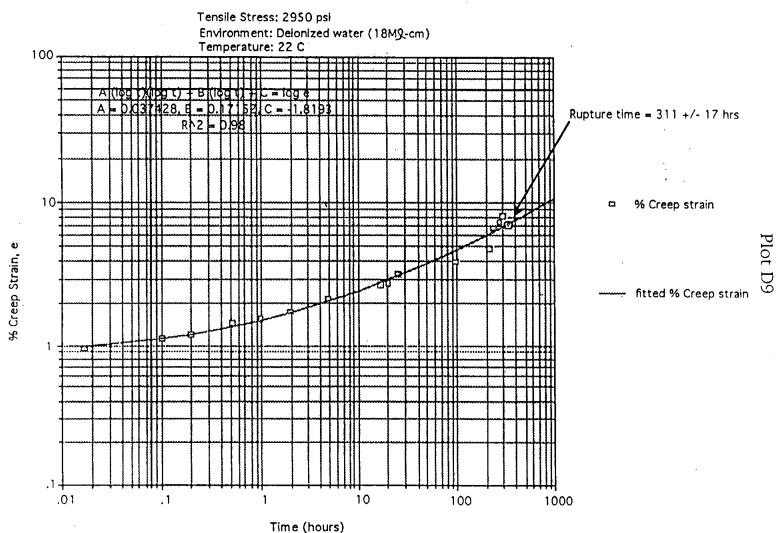


. . ..

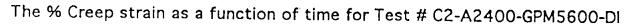
The % Creep strain as a function of time for Test # C1-A3410-GPM5600-tap

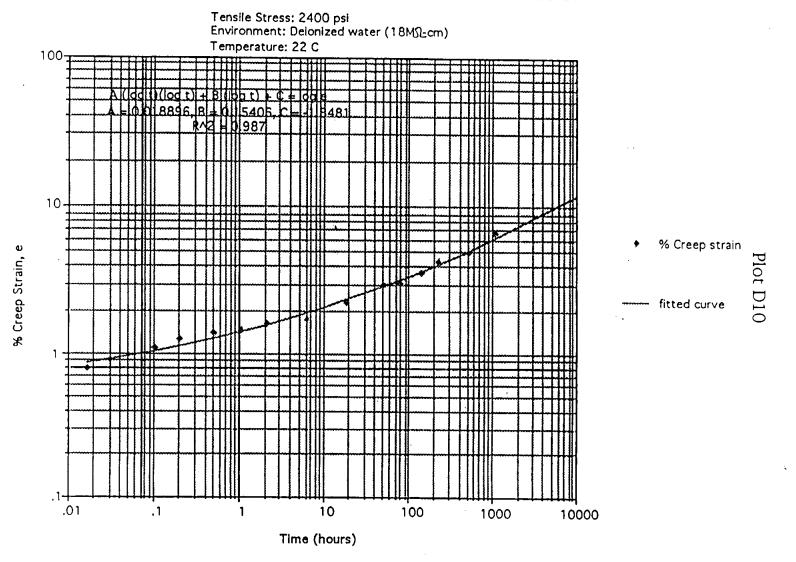


The % Creep strain as a function of time for Test # C2-A2920-GPM5600-DI

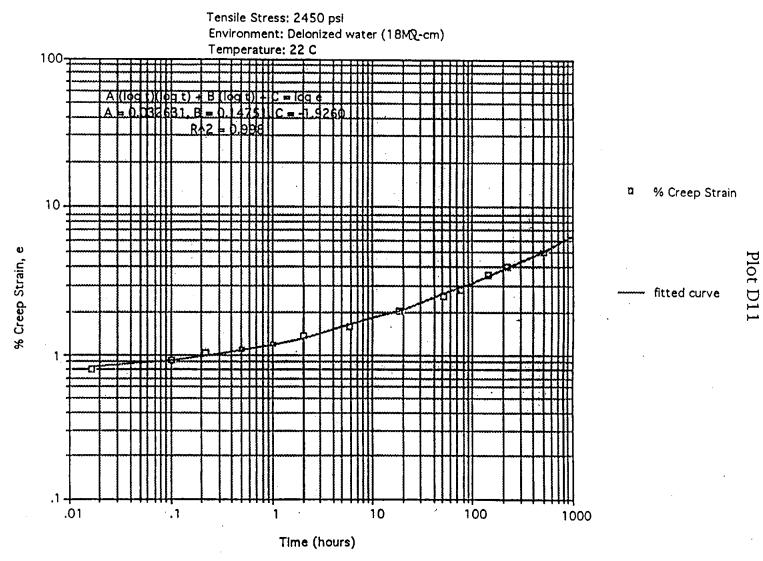

4

с С



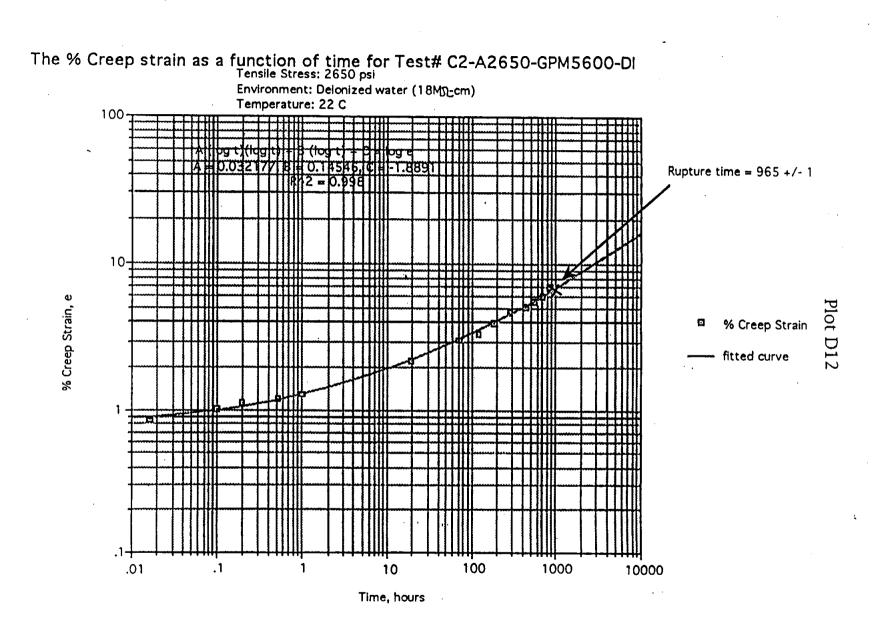

The % Creep strain as a function of time for Test # C2-A3120-GPM5600-DI

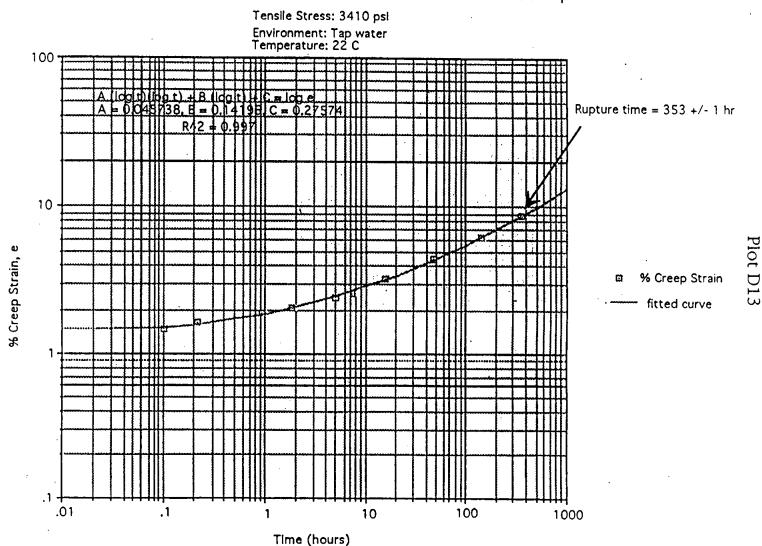
The % Creep strain as a function of time for Test # C3-A2950-GPM5600-DI



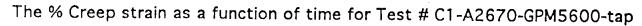
))

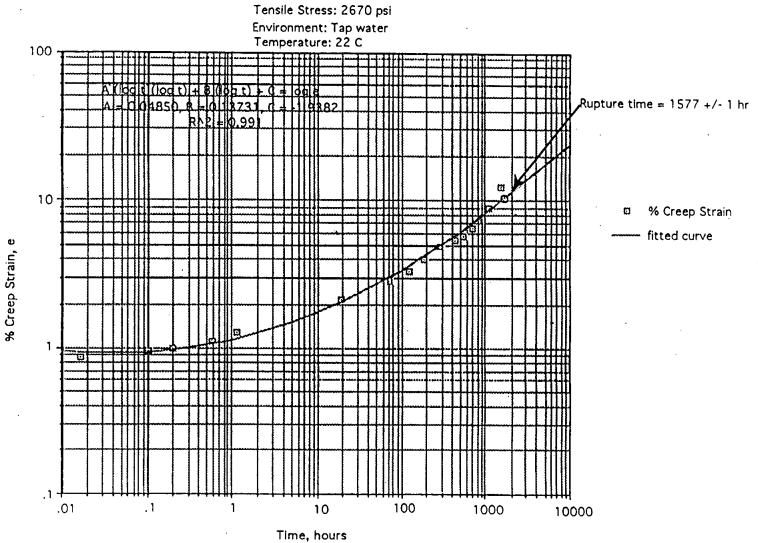
Note: Due to deionized water shutdown, this test was discontinued.




The % Creep strain as a function of time for Test # C3-A2450-GPM5600-DI

Note: Due to deionized water shutdown, this test was discontinued.


32


.

The % Creep strain as a function of time for Test # C1-A3410-GPM5600-tap

Plot D14

Appendix E

Tap Water Evaluation

EST RESULTS Barnstead Water Analysis Service

Feedwater sample submitted was. Raw DPretreated

If your sample was taken from a pretreated water source (distilled, deionized or reverse osmosis quality) we tested for: Specific Resistance—This measurement relates directly to the total ionized solids content of the intended leedwater supply. It enables us to determine if pretreatment of feedwater is indicated based on your daily volume and purity level requirements. Specific resistance is measured using a Barnstead Model E3300 PC4 Plus. Total tonized Solids—This parameter is an expression of the total concentration of ionizable materials in the intended feedwater supply. Since deionization performance depends upon the level of ionized impurities in the feedwater, this parameter is used to estimate cantridge life and operating cost.

It is calculated from specific resistance and is expressed in concentration units as NaCl.

Total Organic Carbon—This measurement indicates the level of organic contamination in the feedwater supply and is used to determine it organic removal should be used as part of the purification process. Total organic carbon is measured using a Dohrmann Total Organic Carbon Analyzer.

I your sample was taken from a raw water source (city supplied or a well), the following additional tests were performed to determine suitability of your feedwater for the specified pretreatment method:

H—This test is used to determine feedwater suitability-for reverse ismosis pretreatment. Highly acidic water (below 3) and highly basic water (above 8) may require pH adjustment to prevent membrane damage. pH measurements are per APHA Standard vethods for the Examination of Water and Wastewater.

Alkalinity—The alkalinity test provides an indication of the level of arbonates, bicarbonates and hydroxides in the leedwater supply. Jsed to determine the scale-forming characteristics of the eedwater, the measurement is per APHA Standard Methods for he Examination of Water and Wastewater.

Calcium—Calcium impurities contribute to the hardness of water. I high level of calcium indicates the need for additional pretreatnent since feedwater may cause scaling on a reverse osmosis nembrane or in a still evaporator. Calcium measurement is by ISTM procedure D2576.

202-Since CO2 ionizes in water it is easily removed by an ion xchance cartridge and will therefore use up ion exchange apacity. CO2 calculations are made to determine the increased ad on the mixed-bed ion exchange cartridges.

iomments:

Barnstead | Thermolyne Corp.

Der Blud, • Dubuque, Iowa 52001
 Derman (RCA) • FAX: 319-556-0695
 Yone: 315-556-2241 • 1-600-553-0039

Sample Number 209732 September 9, 1991

Tap

Test Results

Reference

(1) Deionized Water (Mized Bed---1,000,000 ohm-cm)

Deionized Water (Two Bed-175,000 ohm-cm)

Reverse Osmosis Water (25,000 ohm-cm)

Reverse Osmosis Water (50,000 ohm-cm)

31

Specific Resistance

1

Total lonized Solids 52.89

-

Total Organic Carbon

1.50

pН

Ċ

 co_2

7.3	_
Alkalinity	
35.00	
alcium 27.75	

arr in 6002

4.06

(1) High purity water readily absorbs CO₂ when exposed to the atmosphere. Readings taken at Barnstead are likely to be considerably less due to this exposure during transport and sampling-procedures. The most accurate method for determining the quality of high purity water is an in-fine measurement.

*BOL = Below detection limit

"NES - Not enough sample

Raw water (Good) \$1.3 ppm as NaCl Raw water (Average) 171 ppm as NaCl Raw water (Poor) 342 ppm as NaCl

Distilled Water (500,000 ohm-om)

Appendix F

Table Summary of Tests

APPENDIX F

Tensile Stress (± 20), psi Rupture time, hours 22 + 2 3900 3850 36 <u>+</u> 7 3420 91 ± 1 3410 179 + 1 * 133 ± 1 3170 299 <u>+</u> 1 3120 2950 311 ± 17 2920 234 ± 0 2700 In progress 2650 965 + 12400 & 2450 **

Table 1 - The Creep Tests Performed in Deionized Water.

Table 2 - The Creep Tests Performed in Tap Water.

Tensile Stress (± 20), psi	Rupture time, hours
3410	353 <u>+</u> 1
2670	In progress

* Due to deionized water shutdown, the specimen was exposed to air (< 18 hours)

** The 2450 & 2400 psi creep tests were only valid up to 1435 hours due to a deionized water shutdown. Most importantly, these tests did not rupture in 1435 hours, and if the water had not been turned off, the specimens would have continued to creep.

Appendix G

1

Raw Data for Creep Tests

<u> </u>			<u>_ Table (</u>	<u>51</u>					
C2-A3900-GPM5600-DI									
Comments	Time, hours	Observed ext, inch	Real ext, inch	% Creep Strain	Creep Modulus, psi	fitted time, hrs	fitted curve		
C2-A3900-	0.017	0.047	0.004	1.258	310000	0.017	1.260		
GPM5600-DI	0.100	0.049	0.006	1.925	202626	0.100	1.911		
	0.200	0.049	0.007	2.191	177969	0.200	2.228		
	0.667	0.052	0.009	2.925	133346	0.500	2.712		
	1.000	0.052	0.009	3.158	123493	1.000	3.133		
	2.017	0.054	0.011	3.658	106614	2.000	3.603		
	4.700	0.055	0.012	4.091	95322	5.000	4.309		
	18.883	0.060	0.017	5.591	69750	10.000	4.909		
Rupture = 22 ± 2	hrs			* .		50.000	6.543		
						100.000	7.354		

			Table (<u>5</u> 2					
C3-A3850-GPM5600-DI									
Comments	Time,	Observed	Real ext,	% Creep	Creep	fitted	fitted		
	hours	ext, inch	inch	Strain	Modulus, psi	time, hrs	curve		
C3-A3850-	0.017	0.053	0.004	1.242	310000	0.017	1.389		
GPM5600-DI	0.100	0.055	0.005	1.809	212872	0.100	1.611		
	0.200	0.056	0.006	1.975	194910	0.200	1.787		
	0.667	0.057	Ò.007	2.442	157662	0.500	2.133		
	1.000	0.057	0.008	2.542	151459	1.000	2.513		
	2.000	0.058	0.009	2.875	133901	2.000	3.038		
	4.683	0.060	0.010	3.309	116363	5.000	4.063		
	18.867	0.063	0.013	4.309	89356	10.000	5.217		
	23.917	0.079	0.029	9.642	39930	20.000	6.875		
	28.783	0.080	0.030	10.142	37961	50.000	10.303		
Rupture = 36 ± 7	hrs					100.000	14.419		

.

Table G1

.

.,

			Table (
			C2-A3420	-GPM5600-	-Dl		
Comments	Time,	Observed	Real ext,	% Creep	Creep	fitted	fitted
	hours	ext, inch	inch	Strain	Modulus, psi	time, hrs	curve
C2-A3420-	0.017	0.099	0.003	1.103	310000	0.010	1.083
GPM5600-DI	0.100	0.100	0.005	1.503	227511	0.017	1.147
	0.200	0.100	0.005	1.537	222575	0.100	1.435
	0.500	0.101	0.006	. 1.970	173614	0.200	1.581
	1.900	0.102	0.007	2.270	150668	0.500	1.813
	5.083	0.103	0.008	2.537	134828	1.000	2.024
	23.933	0.106	0.010	3.470	98562	2.000	2.273
	47.433	0.106	0.011	3.670	93191	5.000	2.671
	79.933	0.111	0.016	, 5.337	64086	10.000	3.038
Rupture = 91 ± 1 k	hr					20.000	3.475
					,	50.000	4.187
						100.000	4.852
						200.000	5.655
						500.000	6.984
			· ·			1000.000	8.247

٠.

Table G4

			Table C							
	C3-A3170-GPM5600-DI									
Comments	Time,	Observed	Real ext,	% Creep	Creep	fitted	fitted			
	hours	ext, inch	inch	Strain	Modulus, psi	time, hrs	curve			
C3-A3170-	0.017	0.162 -	0.003	1.023	310000	0.010	1.008			
GPM5600-DI	0.100	0.163	0.004	1.223	259288	0.017	1.040			
	0.200	0.163	0.004	1.356	233791	0.100	1.210			
	1.333	0.164	0.005	1.656	191435	0.200	1.306			
	2.683	0.165	0.006	1.856	170805	0.500	1.466			
	8.600	0.166	0.007	2.356	134555	1.000	1.618			
	23.433	0.168	0.009	2.856	110998	2.000	1.804			
	56.017	0.170	0.010	3.456	91727	5.000	2.114			
	69.100	0.170	0.011	3.723	85156	10.000	2.410			
Rupture = 133 ± 1	hr					20.000	2.775			
						50.000	3.394			
						100.000	3.998			
						200.000	4.755			
						500.000	6.071			
•						1000.000	7.387			

			Table C	12 .						
	C3-A3410-GPM5600-DI									
Comments	Time,	Observed	Real ext,	% Creep	Сгеер	fitted	fitted			
	hours	ext, inch	inch	Strain	Modulus, psi	time, hrs	curve			
C3-A3410-	0.017	0.055	0.003	1.100	310000	0.010	1.158			
GPM5600-DI	0.100	0.055	0.004	1.300	262308	0.017	1.155			
	0.200	0.055	0.004	1.267	269211	0.100	1.233			
	0.517	0.056	0.005	1.600	213125	0.200	1.306			
	1.867	0.057	0.006	1.833	186000	0.500	1.447			
	5.050	0.057	0.006	1.967	173390	1.000	1.596			
	22.883	0.060	0.009	2.967	114944	2.000	1.791			
	47.400	0.062	0.011	3.567	95607	5.000	2.145			
	79.883	0.064	0.013	' 4.300	79302	10.000	2.509			
	101.133	0.067	0.016	5.200	65577	20.000	2.987			
	145.967	0.068	0.017	5.700	59825	50.000	3.864			
Rupture = 179 ± 1	hr				• •	100.000	4.792			
DI water shutdown	for 18 hrs					200.000	6.050			
						500.000	8.458			
						1000.000	11.123			

Table G5

Table G6

			Table	10	-				
C2-A2920-GPM5600-DI									
Comments	Time,	Observed	Real ext,	% Creep	Creep	fitted	fitted		
	hours	ext, inch	inch	Strain	Modulus, psi	time, hrs	curve		
C2-A2920-	0.017	0.043	0.003	0.942	310000	0.017	1.065		
GPM5600-DI	0.100	0.044	0.003	1.142	255706	0.100	1.109		
	0.200	· 0.044	0.004	1.242	235117	0.200	1.174		
	0.517	0.045	0.005	1.542	189372	0.500	1.314		
•. •	1.000	0.045	0.005	1.575	185365	1.000	1.470		
	1.967	0.046	0.005	1.742	167630	2.000	1.683		
	4.800	0.046	0.006	2.009	145375	5.000	2.087		
	16.783	0.049	0.008	2.775	105215	10.000	2.523		
	19.967	0.049	0.008	2.809	103966	20.000	3.124		
	24.967	0.050	0.009	3.075	94951	50.000	4.293		
	96.850	0.053	0.013	4.209	69382	100.000	5.612		
	214.917	0.066	0.026	8.509	34318	200.000	7.509		
	234.617	0.071	0.031	10.242	28510	500.000	11.439		
Rupture = $234 \pm$	1 hrs					1000.000	16.163		
						1000.000	11.123		

			Table (<u>37</u> '			
			C2-A3120)-GPM5600-	·DI		
Comments	Time,	Observed	Real ext,	% Creep	Creep	fitted	fitted
	hours	ext, inch	inch _	<u>Strain</u>	Modulus, psi	time, hrs	curve
C2-A3120-	0.017	0.052	0.003	1.006	310000	0.010	1.023
GPM5600-DI	0.100	0.053	0.004	1.206	258610	0.017	1.043
	0.200	0.053	0.004	1.340	232873	0.100	1.186
	1.333	0.054	0.005	1.673	186478	0.200	1.277
	2.683	0.055	0.006	1.906	163655	0.500	1.438
	8.600	0.057	0.007	2.473	126157	1.000	1.598
	23.433	0.058	0.009	2.940	106130	2.000	1.800
	56.017	0.060	0.011	3.606	86512	5.000	2.151
	69.100	0.061	0.012	3.940	79192	10.000	2.501
	139.517	0.065	0.016	, 5.306	58796	20.000	2.948
	211.600	0.067	0.018	5.940	52527	50.000	3.740
Rupture = $299 \pm$	1 hr					100.000	4.550
						200.000	5.610
						500.0 00	7.556
						1000.000	9.616

`ał	ole	G7	
aı		07	

			Table (38			
			C3-A2950	-GPM5600-	-DI		
Comments	Time,	Observed	Real ext,	% Creep	Сгеер	fitted	fitted
	hours	ext, inch	inch	Strain	Modulus, psi	time, hrs	curve
C3-A2950-	0.017	0.040	0.003	0.952	310000	0.017	0.986
GPM5600-DI	0.100	0.040 -	0.003	1.118	263798	0.100	1.113
	0.200	0.040	0.004	1.185	248956	0.200	1.200
	0.517	0.041	0.004	1.452	203222	0.500	1.357
	1.000	0.041	0.005	1.552	190125	1.000	1.516
	1.967	0.042	0.005	1.752	168416	2.000	1.721
	4.800	0.043	0.006	2.152	137106	5.000	2.084
	16.767	0.045	0.008	2.718	108525	10.000	2.453
	19.967	0.045	0.008	2.752	107210	20.000	2.932
	24.967	0.046	0.010	3.218	91664	50.000	3.803
	96.850	0.049	0.012	3.952	74653	100.000	4.715
	214.917	0.051	0.015	4.852	60805	200.000	5.937
	234.683	0.057	0.020	6.752	43693	500.000	8.246
	269.717	0.059	0.022	7.285	40494	1000.000	10.767
	294.617	0.061	0.024	8.085	36488		
Rupture = $311 \pm$			0.021	0.000	00.00		

ľ

44

			Table C	<u>19</u>						
	C2-A2400-GPM5600-DI									
Comments	Time,	Observed	Real ext,	% Creep	Creep	fitted	fitted			
	hours	ext, inch	inch	Strain	Modulus, psi	time, hrs	curve			
C2-A2400-	0.017	0.034	0.002	0.774	309997	0.017	0.866			
GPM5600-DI	0.100	0.035	0.003	1.074	223422	0.100	1.039			
	0.200	0.036	0.004	1.274	188353	0.200	1.131			
	0.500	0.036	0.004	1.408	170511	0.500	1.280			
	1.017	0.036	0.004	. 1.441	166566	1.000	1.419			
	2.100	0.037	0.005	1.608	149297	2.000	1.585			
	6.033	0.037	0.005	1.708	140554	5.000	1.857			
	18.417	0.039	0.007	2.274	105532	10.000	2.113			
	51.333	0.041	0.009	[•] 2.974	80694	20.000	2.423			
	75.433	0.041	0.009	3.041	78925	50.000	2.939			
	139.533	0.043	0.011	3.608	66527	100.000	3.432			
	220.200	0.045	0.013	4.308	55716	200.000	4.041			
	500.283	0.047	0.015	4.941	48574	500.00	5.074			
	1027.78	0.052	0.020	6.608	36322	1000.00	6.083			
No rupture time						10000.00	11.762			
DI water										
shutdown										

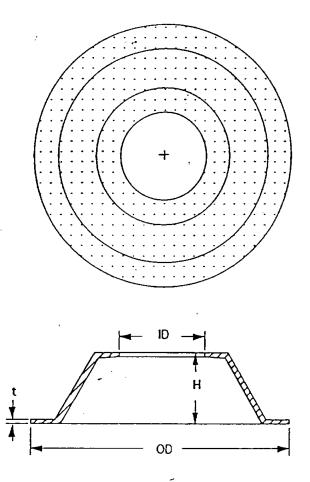
·			Table G		<u> </u>	<u> </u>		
· ·	C3-A2450-GPM5600-DI							
Comments	Time,	Observed	•	% Creep	Creep	fitted	fitted	
	hours	ext, inch	inch	Strain	Modulus, psi	time, hrs	curve	
C3-A2450-	0.017	0.018	0.002	0.790	310000	0.017	0.822	
GPM5600-DI	0.100	0.019	0.003	0.924	265250	0.100	0.910	
	0.217	0.019	0.003	1.024	239338	0.200	0.970	
	0.500	0.019	0.003	1.090	224704	0.500	1.078	
	1.017	0.019	0.004	1.190	205827	1.000	1.186	
	2.033	0.020	0.004	1.357	180547	2.000	1.322	
	5.967	0.021	0.005	1.557	157355	5.000	1.560	
	18.350	0.022	0.006	2.057	119106	10.000	1.795	
	51.267	0.024	0.008	2.557	95816	20.000	2.095	
	75.367	0.024	0.008	2.790	87803	50.000	2.623	
	139.467	0.027	0.011	3.557	68878	100.000	3.159	
	220.133	0.028	0.012	4.057	60390	200.000	3.857	
	500.217	0.031	0.015	4.990	49095	500.00	5.127	
	1027.72	0.036	0.020	6.757	36259	1000.00	6.460	
No rupture time						2000.00	8.251	
DI water						5000.00	11.644	
shutdown						10000.00	15.351	

Table G9

...

			Table G					
C2-A2650-GPM5600-DI								
Comments	Time,	Observed	Real ext,	% Creep	Creep	fitted	fitted	
	hours	ext, inch	inch	<u>Strain</u>	Modulus, psi	time, hrs	curve	
C2-A2650-	0.017	0.095	0.003	0.855	310000	0.010	0.889	
GPM5600-DI	0.100	0.095	0.003	1.022	259421	0.017	0.899	
	0.200	0.095	0.003	1.122	236290	0.100	0.995	
	0.517	0.096	0.004	1.188	223032	0.200	1.059	
	1.000	0.096	0.004	1.288	205718	0.500	1.175	
	18.967	0.099	0.007	2.222	119288	1.000	1.291	
	70.733	0.101	0.009	3.022	87705	2.000	1.437	
	119.167	0.102	0.010	3.388	78213	5.000	1.692	
	184.667	0.104	0.012	3.955	67007	10.000	1.943	
	279.667	0.106	0.014	4.688	56525	20.000	2.263	
	430.750	0.107	0.015	' 5.088	52082	50.000	2.824	
	534.083	0.109	0.017	5.555	47706	100.00	3.393	
Submerged but no	690.17	0.110	0.018	6.022	44009	200.00	4.130	
flow:								
4/24/92 11:00am	to 4/27/9	2				500.00	5.469	
	857.917	0.113	0.021	7.022	37741	1000.00	6.869	
Rupture = 965 ± 1	Rupture = 965 ± 1 hours 10000.00 16.128							

Table G12


			Table G				•
			C1-A3410)-GPM5600-	-TAP	•	
Comments	Time,	Observed	Real ext,	% Creep	Creep	fitted	fitted
	hours	ext, inch	inch	Strain	Modulus, psi	time, hrs	curve
C1-A3410-	0.100	0.141	0.004	1.467	232500	0.010	1.495
GPM5600-TAP	0.217	0.142	0.005	1.633	208776	0.017	1.472
	0.950	0.143	0.006	1.933	176379	0.100	1.512
	1.833	0.143	0.006	2.100	162381	0.200	1.581
	4.933	0.144	0.007	2.433	140137	0.500	1.726
	7.200	0.145	0.008	2.600	131154	1.000	1.887
	15.933	0.147	0.010	3.267	104388	2.000	2.102
•	47.433	0.150	0.013	4.433	76917	5.000	2.496
	143.850	0.156	0.019	6.267	54415	10.000	2.907
						20.000	3.450
Rupture = $353 \pm$	1 hr					50.000	4.456
						100.00	5.529
						200.00	6.991
						500.00	9.819
						1000.00	12.980

<u> </u>			Table G	13				
C1-A2670-GPM5600-Tap								
Comments 1	Time,	Observed	Real ext,	% Creep	Creep	fitted	fitted	
	hours	ext, inch	inch	Strain	Modulus, psi	time, hrs	curve	
C1-A2670-	0.017	0.113	0.003	0.861	310000	0.010	0.958	
GPM5600-Tap	0.100	0.113	0.003	0.961	277752	0.017	0.935	
	0.200	0.113	0.003	0.995	268443	0.100	0.940	
	0.583	0.114	0.003	1.128	236711	0.200	0.976	
	1.150	0.114	0.004	1.295	206238	0.500		
	18.750	0.117	0.006	2.161	123537	1.000	1.153	
	70.483	0.119	0.009	2.861	93315	2.000	1.281	
	119.950	0.120	0.010	3.328	80229	5.000	1.519	
	184.450	0.122	0.012	3.995	66840	10.000	1.769	
	279.450	0.125	0.015	4.895	54550	20.000	2.102	
	430.583	0.127	0.016	5.428	49190	50.000	2.723	
	533.867	0.128	0.017	5.795	46077	100.00	3.392	
	689.95	0.130	0.019	6.495	41111	200.00	4.311	
	857.700	0.132	0.022	7.328	36436	500.00	6.105	
	1102.95	0.137	0.027	8.895	30018	1000.00	8.133	
	1530.95	0.147	0.037	12.361	21600	10000.00	2.44E+01	
Rupture at 1577 h	Rupture at 1577 hours							

Appendix H

Absorption Test Schematic and Raw Data

Absorption Measurement Schematic

t = thickness, in H = height, in ID = inside diameter, in OD = outside diameter, in

Initial Measurements - 4/10/1992							
Weight = 262.1 ± 0.1 g							
Marked Position #	H ± 0.001	t ± 0.002	ID ± 0.002	OD ± 0.002			
1	2.938	0.163	4.005	10.857			
2	2.938	0.161	4.003	10.863			
3	2.938	0.166	4.006	10.855			
4	2.938	0.163	т. С				
5	2.938	0.160					
6	2.938	0.162	•				
Measurement #1 -	1						
Weight = 263.2 ± 0							
Marked Position #	H± 0.001	t ± 0.002	ID ± 0.002	OD ± 0.002			
. 1	2.939	0.164	4.006	10.864			
2	2.939	0.166	4.005	10.870			
3	2.939	0.164	4.005	10.864			
. 4	2.939	0.162					
5	2.940	0.160					
6	2.940	0.162					
Measurement #2 -		••••					
Weight = $263.5 \pm ($							
Marked Position #	H ± 0.001	t ± 0.002	ID ± 0.002	OD ± 0.002			
1	2.939	0.164	4.005	10.871			
•	2.939	0.166	4.003	10.875			
2 3	2.939	0.164	4.005	10.874			
4	2.939	-0.162					
5	2.940	0.160					
6	2.939	0.162					
Measurement #3 -		00					
Weight = $263.5 \pm ($							
Marked Position #	H ± 0.001	t ± 0.002	ID ± 0.002	OD ± 0.002			
1	2.939	0.162	4.005	10.871			
2	2.939	0.165	4.005	10.876			
3	2.939	0.165	4.005	10.875			
4	2.939	0.163	7.000	10.075			
5	2.939	0.160					
6	2.940	0.160					
Measurement #4 -		Weight =	263.6 ± 0.1 g				
Marked Position #	$H \pm 0.001$	t ± 0.002	$1D \pm 0.002$	OD ± 0.002			
1 2	2.939	0.163	4.005	10.868			
2 3	2.939	0.165	4.005	10.876			
	2.939	0.164	4.006	10.872			
. 4 r	2.940	0.163					
5	2.940	0.160					
6	2.940	0.162					

Last Page