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EGS4 contains a number of non-physical parameters introduced to allow the modelling

of various physical processes; the most usually discussed are ESTEPE, the parameter that

controls the maximum allowable step length, and AE, the parameter that defines the calcu-

lational boundary between discrete interactions and continuous energy loss for electrons. In

this case, a discrete interaction is one in which a secondary particle is created and placed on

the stack to be subsequently followed.
The fact that these (non-physical) parameters can produce ^tifacts^ is well documented

[1, 2]. However, this document sets out to explore a specific form of artifact; the artifacts in

the angular distribution of Cerenkov photon, which have been the subject of recent discussion.

1 The problem..,

The problem is that multiple scattering of the electron is applied at the end of any one step -

during the step, the electron is assumed to be moving in a straight line; thus all the Cerenkov
photons come out at the Cerenkov angle with respect to the electron^ initial direction. This

may be important for pattern recognition software, as this feature will presumably give more

of a pattern than should be there.
For high energy electrons, this feature is not so much of problem. Using the formulae given

in [3], an infinite volume of water and assuming a step length of 1% gives a multiple scattering

angle of - 1° per step for a 50 MeV electron, ~ 3° for a 5 MeV electron, ~ 7° for a 1 MeV
electron. It should be noted however, that the approximations made in deriving the multiple

scattering angle formula given in [3] are only valid for step lengths of larger than ~ 0.01%

of the material’s radiation length (36 cm in the case of water) and that the estimates given

above for low energy electrons are operating on the limit of the approximations. Nevertheless,

they do demonstrate that whilst a 50 MeV electron is essentially undeviated on any one step,

a low energy electron ends a step with an obviously different direction than it had at the

start of the step. Assuming that all the Cerenkov radiation is emitted at the Cerenkov angle

with respect to the direction of the electron at start of the step will unrealisticaUy clump the

photons. More importantly, the level of this clumping will be a function of how often the

direction of the electron is updated - ie a function of the step length.
The presence of the an artifact is easy to demonstrate; Table 1 shows assorted parameters

describing the Cerenkov angular distribution for different values of AE and ESTEPE. The

simulation assumes 5 MeV electrons stopping in an infinite volume of heavy water. The

^n this case, an artifact is defined as a feature of the calculation that varies with the non-physical

parameters.



AE = 10 KeV
ESTEPE
0.1%
1.0%
3.0%
5.0%
0.01%
Default

AE = 100 keV

ESTEPE
0.1%
1.0%
3.0%
5.0%
0.01%
Default

Frac-l
0.025
0.034
0.049
0.059
0.029
0.193

Frac-l
0.025
0.034
0.057
0.079
0.032
0.188

Frac-2

0.112
0.117
0.130
0.141
0.134
0.256

Frac-2
0.113
0.118
0.135
0.153
0.149
0.253

0-30
0.155
0.152
0.150
0.148
0.183
0.142

0-30
0.156
0.153
0.152
0.151
0.183
0.143

30-60
0.504
0.506
0.513
0.517
0.598
0.603

30-60
0.507
0.507
0.521
0.531
0.640
0.592

60-90
0.223
0.218
0.218
0.215
0.186
0.181

60-90
0.222
0.222
0.213
0.211
0.159
0.188

90-120
0.082
0.084
0.083
0.082
0.029
0.055

90-120
0.080
0.081
0.079
0.075
0.015
0.057

120-150
0.030
0.031
0.030
0.029
0.003
0.016

120-150
0.028
0.029
0.028
0.026
0.002
0.017

150-180
0.007
0.008
0.007
0.007
0.000
0.003

150-180
0.007
0.007
0.007
0.006
0.000
0.003

Q

55.2
55.6
55.2
55.1
�47.0
53.4

Q

55.0
54.9
55.1
55.0
45.0
50.8

Table I: Parameters describing the angular distribution of Cerenkov light from 5 MeV elec-

trons in heavy water. Frac-l is the fraction of light within –0.5° of the Cerenkov angle. Frac-2

is the fraction of light within –2°. 0 is the average angle of emission. The remaining columns

show the fraction of light in certain angular ranges. Expected statistical errors are of the

order of –1% of any value. The default is the EGS4 default, not the SNOMAN default.

axis of coordinates is taken to be the electron^ initial direction. The number of photons

at the Cerenkov angle is clearly a function of both parameters, as is the overall shape of

the distribution. The number of photons at the Cerenkov angle doubles as the step size is

increased from 1% to 5% and is dearly an artifact. The default step length is included aa a

cautionary reminder of what happens when the EGS4 default is used at low energies.

It is interesting to note that whilst the angular distribution varies considerably as a

function of the step length, the average angle of emission, 6, does not. This implies that

fitters which use this parameter, or other associated parameters, will not be effected by the

artifact. Conversely, fitters looking for correlations (pattern recognition fitters looking for

rings for example) will be strongly effected.
The step length dependance is expected, the dependance on the energy cutoff may be

understood by remembering that lowering the cutoff makes a discrete interaction more likely,

and so a full length step is far less likely. This then is a different way of shortening the

average step. The ESTEPE of 0.01% is included to demonstrate the ’switching ofT of multiple

scattering at small step lengths (q.v.).

2 The Solution....

The first thing to define is what solution to look for. For the purposes of this work, an effective

solution is one that removes the ESTEPE and AE dependance from the problem. This is not

the same as having the correct solution, which would be the one that actually matches the

experimental Cerenkov distribution.

Several ideas were tried and immediately discarded. The obvious solution of reducing the



AE = 10 keV
ESTEPE
0.1%
1.0%
3.0%
5.0%

AE = 100 keV

ESTEPE
0.1%
1.0%
3.0%
5.0%

Frac-1
0.024
0.026
0.027
0.028

Frac-1

0.024
0.027
0.028
0.030

Frac-2
0.112
0.114
0.118
0.118

Frac-2

0.110
0.116
0.118
0.123

0-30
0.153
0.155
0.154
0.154

0-30
0.153
0.154
0.154
0.152

30-60
0.503
0.505
0.509
0.509

30-60
0.502
0.512
0.508
0.515

60-90
0.220
0.221
0.222
0.220

60-90
0.221
0.218
0.221
0.217

90-120
0.084
0.083
0.080
0.081

90-120
0.086
0.080
0.082
0.081

120-150
0.032
0.030
0.028
0.029

120-150
0.030
0.029
0.029
0.029

150-180
0.009
0.007
0.007
0.007

150-180
0.008
0.007
0.007
0.007

Table 2: Parameters describing the angular distribution of Cerenkov light from 5 MeV elec-

trons in heavy water. The photons are emitted with respect to an interpolated direction.

Frac-1 is the fraction of light within –0.5° of the Cerenkov angle. Frac-2 is the fraction of

light within –2°. The remaining columns show the fraction of light in certain angular ranges.
The expected statistical error is -^ 1% of any value.

step length is a non starter for several reasons. Neglecting the problem of which step length
to select (which angular distribution would you like?), there are two main problems. Firstly,

as the step length is reduced below a certain point, multiple scattering becomes ’switched off’

which exacerbates the problem. This can be seen in the change between a step length of 0.1%
and 0.01% in Table 1. Secondly, other work [2] has shown that how well EGS4 can simulate

the results of multiple scattering and back scattering experiments depends on the step length
chosen. Arbitrarily choosing the step length will ensure that EGS4 does not agree with the

experiments, and if we have not got the electron transport correct, then whether there is an

artifact in the Cerenkov angular distribution becomes a moot point!
Applying a Gaussian ’fuzz’ to the direction of the photons, with a width equal to the

multiple scattering angle for that step, had little effect. The artifact was somewhat broadened

by the procedure, but still present.
The most successful solution was, in retrospect, the most obvious; for each photon gener-

ate a random number and use this to linearly interpolate between the initial and final direction

of the electron. The photon is then emitted at the Cerenkov angle with respect to this inter-

polated direction. When this is done, the angular distribution is far less sensitive to either

step length or cutoff energy - see Table 2. The variation in the peak at the Cerenkov angle has

been reduced to ~ 0.1% of the total number of photons, which, although outside the expected
statistical fluctuations, is a significant improvement over the original case. The other parts of

the distribution are also in far better agreement, and mostly appear to fluctuate within the

expected bounds. Reducing the value of AE has the effect, as noted before, of further reducing

the significance of any artifacts. Although not a perfect solution, the method described above

has reduced any artifacts down to the level where it is unlikely to be a problem; the difference

between 2.4% and 2.8% of the light going into the Cerenkov angle is a difference of 0.2 of a

photon for a 5 MeV electron.



3 Possible Effects on Fitters

The effect of the artifacts and the proposed solution can be tested on two simple hit pattern

characteristics: the so called mean cosO and spread in cosQ. These are calculated by taking

a hit pattern and moving the coordinate origin to the true vertex position. The mean hit

direction is then calculated as a simple unit vector sum of each hit direction. The scalar

products between this unit mean direction and each unit hit direction are then calculated.

The mean cos 6 statistic is the mean of these scalar products and the spread in cos0 is their

standard deviation. These statistics will be familiar to people trying to distinguish neutral

and charged current hit patterns.
Neglecting the clearly unphysical values of ESTEPE (the default and 0.01%) then runs

of 104 5 MeV electrons with each of the parameter settings of Tables 1 and 2 produce two

sets of histograms; one set of mean cos0 and one of the spread in cos0. Despite varying

ESTEPE and AE, and regardless of whether the solution described above was implemented,

no mean cos 6 histogram can be distinguished from any other and likewise for the spread in

cosC. These results can be inferred from the last column of Table 1, which implies that the

average angle of emission is not a function of ESTEPE or AE. However, no such tests have

been made with fitters that actually look for patterns, and would presumably be vulnerable

to this artifact.

4 Conclusions

The artifacts in the angular distribution of Cerenkov light associated with the EGS4 parame-

ters can be removed by continuously altering the electron’s effective direction throughout any

step. This will be implemented in SNOMAN as of version 2-08. However, this only solves the

problem of a computational artifact; whilst the results of the calculation can be made artifact

free this does not necessarily mean that our calculation is correct! Further work might be

useful here.
Another point that cannot currently be addressed is what the effect of these artifacts

might have had on a pattern recognition fitter. There are no pattern recognition algorithms

currently installed in SNOMAN (as of version 2-07), and it may be that there is something

to be learned by seeing what effect a known artifact has on such a fitter. Fitters relying

on average parameters such as Q or similar quantities would appear to be unaffected by the

artifact.
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1. 15 litres of 0.1M NaOH is mixed in the recirculation reservoir.

2. The solution is recirculated at high flow (up to 100 1/min) in the flow pattern

shown in Figure C, with Permtop open to begin with. This should produce
about 10 psi backpressure and will cause the outer casing of the cartridges to

nil with alkali (hence the need for 15 litres of alkali). When the casing is full,
Permtop is closed and the solution is recirculated for about one hour.

3. The recirculation pump is stopped and the rig is drained. This is done by

opening valves Permbot, Drain, Gasperm and Gasconc.

4. The procedure is repeated so that the membrane is washed again with fresh

alkali flowing in the downward direction (Figure D).

5. Steps 2-4 are repeated twice with water to wash out the alkali from the mem-

brane in order to bring the pH back down to 10-11 (it will further reduce

during HTiO priming and deuteration and will approach pH 7 by the time the

membrane is ready for DaO filtration).

HTiO Priming:

This operation is very similar to the standard acid elution method:

1. An HTiO solution is introduced into the recirculation reservoir. It is expected
that 0.5 g Ti/m2 will be required on the membrane so that 5g of Ti (in HTiO
form) are required for the H53P30-20 cartridges (10 m2 total) and 2.5g for the

.H26MP01-43 (5 m2 total).

2. The solution is recirculated through the rig, as shown in Figure B (Drawing
N2-93-98), with the pump and throttle valve adjusted so that Flowconc =

Flowperm = 20-40 l/min and the transmembrane pressure is in the range 5-10

psi. Recirculate for one hour.

3. The pump is then switched off, and the valves Gasconc, Gasperm and Drain

are opened.

4. Gasperm, Gasconc and the drain are then closed.

Deuteration:

After the above HTiO priming operation there will be about 800 ml of HsO in the

walls of the membrane. This amount has to be reduced to 10 ml, the acceptable

downgrade per SUF run. The simplest method of deuteration, from an operational

point of view, is repeated rinsing of the membrane with pure DzO. In theory only two

16 litre rinses (using the standard acid elution recirculation method) are required

before the 10 ml target is reached, however it seems prudent to have three such

rinses. Also to reduce the cost of this process it is best to use already downgraded

D20 for the first rinse, e.g. 95-99% DaO would be adequate. The question arises as

to how many different grades of DaO one is willing to keep track of? An alternative
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deuteration technique has been proposed, using warm gas to dry off the 800 ml of

H20However no tests have been performed so far, and there is a risk that some of

the HTiO could be converted to TiOz (which is totally insoluble in mild acidsj in

this drying step. A more feasible method is to perform the drying stage before HTiO

priming, which would then be replaced by DTiO priming. Clearly these different

deuteration techniques require careful study from which a decision choice must be

made which will largely be based on cost, and security of the DaO.

Membrane Maintenance:

It is important that the integrity of the UF membranes are periodically checked,

perhaps monthly, to assure that the fibres are undamaged. The results of a fibre

breaking are that the efficiency of the SUF system will drop slightly but much more

importantly there is a chance that a small quantity (mg) of HTiO will escape into

the permeate. Integrity testing may be performed as follows:

1. Water is introduced into the reservoir and used to slightly over half fill the

permeate side of the membrane, with Permbot closed and Permtop open.

2. With the upper concentrate side of the membrane shut, 2psi N2 gas pressure

is applied through Gasconc. Steady bubbling on the permeate side of the

membrane indicates a broken fibre.

3. Reverse membrane and repeat the procedure.

The principle governing the success of this technique is surface tension. If the

membrane fibres are intact then, at the applied low pressure, Nzcannot percolate

through the membrane walls because the surface tension of the water contained in

the pores (0.1^) is too great. The surface tension of breaks in the fibre are, of course,

much lower and N3 can bubble through.
Additionally, it is well documented and has been found in lab-scale tests that the

filtration rate of ultrafiltration membranes drops with use. This may be partially

restored by backflushing the membrane with 0.1M NaOH or HC1 through the fibre

walls via a filtrate port (Figure E). Backflushing should not be confused with the

alkali washing (forward and reverse) detailed earlier. Only backflushing can signif-

icantly improve the flow rate of a membrane. It should be done cautiously as the

internal structure of the membrane is principally designed to withstand high inlet

pressure. High pressure from the outlet side may collapse the fibres. So, whilst

this procedure may be done automatically, it might be prudent if this operation is

overseen. Backflushing may be done as follows:

1. 15 litres of cleaning solution is introduced into the reservoir.

2. The solution is pumped at 5-lOpsi through Permbot, with Permtop initially

open and the concentrate side open to the covergas (Figure E). When the

permeate side of the membrane is full Permtop is shut.

3. When the reservoir is empty the pump is switched off. The rig is then drained

by opening valves Gasperm, Permbot and Drain.
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4. Repeat the procedure twice with 15 litres of water.

5. When finished, rinse the membranes three times with 15 litres of water.
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