A piece of dark grey Torlon rod (13 cm long, 3 cm OD) was put inside a clean polypropylene 1 liter column (normally used for MnO2-coated acrylic pebbles). The column was put on Guelph electrostatic chamber 4 and counted for two days. Then the Torlon piece was taken out and the empty PP column was counted.

With the Torlon in the column, the numbers of counts after 150.348 seconds of counting were 125 in the uranium 210Po peak and 1 in the thorium chain 216Po peak.

For the empty column there were 68 counts in the 210Po peak and 60 counts in the 216Po peak after 103.60 sec of counting.

Hence the inferred emanation rate from the 13 cm2 area of Torlon is

$$62 \pm 10 \text{ Bq m}^{-2} \text{ per m}^2 \text{ per hour}$$

and $$91 \text{ Bq m}^{-2} \text{ per m}^2 \text{ per hour}$$

(These results can be compared to some off-the-shelf polypropylene that has 1 to 13 222Rn per m3 per hour.)