
i; m. - oz6^\

SNO Source Manipulator Control Code

T. J. Radcliffe
Department of Physics,

Queen’s University at Kingston,
K7L 3N6, Canada

1 Introduction:

This document describes a set of Hardware-derived classes for control of

the SNO calibration source manipulator. It is intended as a guide to the code,
which is heavily documented internally, rather than an exhaustive descrip-
tion. Please see A HARDWARE CONTROL CLASS HIERARCHY for details

on the Hardware classes. The calibration source manipulator is an over-

constrained physical system: when moving in a single plane it has three ropes
attached to it, and when moving out of plane it has five ropes attached to

it. The primary task of the control code is to deal with possibly conflict-

ing constraints as- intelligently as possible. Note that the way dealing with

this. problem naturally incorporated the possibility of out-of-plane motion:

nothing has been added to the code to support this capability.
A secondary task of the code described in this document is to commu-

nicate with the Data Acquisition computer (DAQ.) This is done via a TCP
connection over an Ethernet line. The connection must be able to carry com-

mands from the DAQ to the calibration computer and return status informa-

tion from the calibration computer to the DAQ. The DAQ is a Macintosh,
the calibration computer is an IBM PC clone.

The Hardware class hierarchy does not support multiple inheritance,
so the class hierarchy described here, which is a set of Hardware-derived

classes, consists of classes that contain each other rather than inherit from

each other. For the most part this is appropriate: an Axis contains a Motor,
an Encoder and a Loadcell, rather than IS a Motor, an Encoder and a

Loadcell . The term "class hierarchy" is used throughout to include both

"has a" and "is a" relationships.
Section 2 describes the philosophy behind the classes developed for ma-

nipulator control. Section 3 describes the sort of thing the system is intended

to do, including some of the things it can’t yet do, but should. Following this

is a section which gives an overview of the code structure. After this comes

series of sections dealing with the Hardware-derived classes in descending
order of abstraction, starting with the PolyAxis class and winding up with

the low-level classes that deal directly with boards and chips. Section IS
discusses the main program that puts all this stuff together at the moment.

Section 15 describes the Server class and the work that still needs to be

done on it. Section 19 describes the Borland C++ IDE settings required
to compile the code. Section 16 describes various utility functions for doing
things like dealing with object databases. Section 20 deals with the oft ne-

glected but ever important subject of co-ordinate systems. The final section

discusses changes and improvements that are still required before the code

goes underground.
Note on capitalization etc.: there is a widespread practice in object-

oriented programming circles for the first letter of class names to be upper

case, and the first letter of object names to be lower case. This is a practice

that is slowly being built into the existing Hardware-derived code, and I
heartily encourage everyone to follow it. It may be mindless conformance to

arbitrary, socially defined conventions, but then again, so is speaking English.
In this document, class names will be mostly bold face and function names

will be mostly italic. Code examples and variable names will be typewriter.
I tend to use "class" and "object" interchangeably, although one is collective

and the other is singular.
Note on standards: C++ is not very standardized just yet, and all of

this code was meant to run on IBM PC compatibles when. compiled with the

Borland C++ compiler. Parts of it have also been complied with the GNU
g-(�j- compiler version 2.6.8 under LINUX, and I found that a few minor

changes had to be made to do this. When I refer to "ordinary C++" I mean
whatever the people at Borland think of as ordinary. If you try to port this

code to another platform or even another compiler on the same platform,
you may find a number of errors due to small differences in standards.

2 Code Organization and Philosophy

The code is organized in a fairly liierarchal way on the basis of how ab-

stractly each class interprets the raw bits passed to it from the hardware or

from classes that access the hardware. Looked at from a reductionist point

of view, everything a computer deals with is "really" a stream of bits, in the

same way everything around us is ’"really" a collection of atoms, uh, nucle-

ons and electrons, uh, quarks and leptons, uh, supersymmetric technicolour

monads.... I put, "really’’ in quotes because I think this is a stupid idea: stuiT

exists, and how we analyze it into concepts is up to us (in technical terms,
I am a non-eliminative reductionist.) No particular level of abstraction or

reduction is privileged. A stone is neither more nor less real than the atoms

it is made of, as anyone who has stubbed a toe knows. The point of all this

is that we are free, within certain constraints, to choose how we interpret
the bits in a register or memory location. Different levels of abstraction are

the result of interpreting the bits in different ways: low levels treat them as

bits (possibly related to some chip or board-level function,) and higher levels

treat them as being meaningfully related to some physical quantity like the

pressure being measured by a transducer. Because no level of abstraction is

privileged, there is no "one right choice" for dividing the code into abstract

levels, and so some kind of objective design principles are needed to guide our

decisions about where to put what kind of object in an abstract hierarchy.
The principles used in designing classes for controlling the manipulator

result in roughly four levels of abstraction:

Level 1 classes that deal directly with hardware registers and .treat register
values simply as collections of bits

Level 2 classes that deal with hardware registers, but which impose an ab-

stract meaning on the register values

Level 3 classes that deal with hardware registers only through Level.1 or 2

classes, and typically convert register values to physically meaningful
numbers

Level 4+ classes that deal with hardware only through Level 3 or higher
classes, and whose main function is to co-ordinate the actions of several
Level 3 or higher objects.

Level 1 classes are those that represent a single chip or board, such as the

AM9513 timing controller chip or the TIOlO board. These classes don’t care

what the values they write out to the boards mean apart from board-level

or chip-level functionality. They contain no information that is in any way

dependent upon the USE to which the board or chip may be put.
Level 2 classes also deal with boards and chips directly, but they have

an awareness of the meaning of various inputs and outputs. Thus, a Level 1

class might read a register and put the value into a variable called registeri
but a Level 2 class would put it into a variable called counter if it was a

counter value. Level 2 classes impose a meaning on the bits themselves

without applying any transformation to them. Thus, a read from a particular

memory location may be recognized as an ADC output, but no commitment

is made as to what might be going into the ADC input.
Level 3 classes typically describe single pieces of external hardware, such

as a motor or a position encoder or other instrument. They contain Level

1 and 2 objects to access the hardware, as well as higher level information

about the meaning of bits sent and received from those objects- Thus, the

output of a counter may be interpreted as a shaft position, for instance, which

allows other objects to ask the encoder sensible things like "What position are

you reading now?" rather than "What are the bytes in register base+offset,
uh, how do I convert those to a floating point value that represents position
relative to, uh, what was the zeropoint again...-?" Level 3 classes implement
TRANSFORMATIONS - via some calibration constants - of raw input data into

physically meaningful terms.

Level 4+ classes describe systems of Level 3 objects or above. Two
examples from the manipulator control classes are the Axis class and the

PolyAxis class. Each Axis consists of a Motor an Encoder and a Load-

cell as well as various state information. A PolyAxis consists of an array

of Axis objects and related state information. The Encoder and Loadcell

classes themselves are Level 3 classes.
The notation "Level 4+" is refers to all classes of Level 4 or higher;’at

this point in the hierarchy a class’s level is one higher that of the highest-
level class it contains. It is a very bad idea to create classes that cannot

be assigned an unambiguous level. If two classes contain references to each

other it is impossible to assign them to a level within this scheme because

they can’t both be one level higher than the other. This means you have

created two structures that describe a single concept, and you should think

about re-writing them so the dependencies sort themselves out at lower levels.

Level 4+ classes are where the interesting parts of the control algorithm
is typically implemented. Level 3 classes can do things like set a single
motor moving, and perhaps tell it to stop after a predetermined time or

number of steps, but they cannot implement feedback control because they
onlv describe a single bit of hardware: one can’t describe both a motor and

a position encoder, for instance, or it would be a Level 4 class.

One could break this scheme, and write a single class that accessed both

a motor and a position’encoder simultaneously, but this would radically

reduce the modularity of the code. It would become impossible to use the

code to control a motor in the absence of an encoder (which is useful at least

for debugging purposes) and impossible to use an encoder without a motor.

Low coupling, or high modularity, is one of the most powerful aspects of

object-oriented programming, and tlie levels described here can serve as a

set of design principles that should ensure that the highest possible degree
of modularity is retained.

Note that some low-level classes were written before the level scheme de-
scribed here was imposed on the code, and so there may be minor deviations
from this scheme in those classes.

3 Desired Functionality

The purpose of the manipulator control classes is to allow a source to moved
around inside the SNO detector at the request of the DAQ system, to report

. the status of the source back to the DAQ system upon request,-and to ensure

that the chance of damage to the detector or loss of a source inside the vessel
is the minimum possible. The two basic disasters that can happen are the
tension becoming too large on a rope and a rope going slack. The first of
these is of relatively minor concern from the point of view of software: the
mechanical design of the system is intended to prevent excessive forces from
acting on the acrylic vessel; the motors are supposed to stall well before the
tension is in the danger zone. This has not been tested.

A rope going slack is the major danger, as it can lead to tangling, which
may prevent a source from being lifted out of the vessel. This would be very
bad. A set of air-cylinder tensioners has been added to the mechanical system
to help prevent this, but I am still not convinced that it is adequate to do the
job. The mechanics of the system must undergo many weeks of reliability
testing prior to going underground. The control algorithm, described in detail
in Section 6 is intended to be a backup to the mechanical systems that prevent
slack ropes. Ideally, one would like a tensioning system that only came

into play when the tensions were near the allowed bounds. The air-cylinder
system does not do this: it looks like a spring with a discontinuously variable

spring constant. When a source is stationary the air-cylinder system is in

equilibrium. When the manipulator starts to move a source it increases the
tension on some ropes, decreases it on others. This causes the air-cylinders
to move. In their simplest mode, the air cylinders look like constant force
devices within the bounds of the limit switches, although the finite reservoir
size gives them some spring-like characteristics as well. In a typical move the
rope tensions change until the air-cylinder limit switches are reached, and
then the fresh flow of air brings the cylinders back into the middle equilibrium
position again. This looks to the control algorithm like a mysterious source

of movement, as the air-cylinders are between the motors and the position
encoders; and this may cause the system to generate a warning about the
possibility of motor stall or a slipping encoder shaft.

The communications aspects of the manipulator control classes break

into two parts; command processing and communications. The command

processing part is handled by the Hardware framework as described in

A HARDWARE CONTROL CLASS HIERARCHY. The communications part

is supposed to be handled by the Server class, but this is not yet fully

implemented.

4 Overview of the Manipulator Classes

A schematic of the manipulator control classes is shown in Figure 1. At the

highest level is the PolyAxis class. As its name suggests it is for dealing

with multiple Axis objects and co-ordinating their movement. An Axis

object consists of a Motor, an Encoder and a Loadcell object and thus

constitutes the primary object for feedback control of a single rope. The

job of the PolyAxis object is to determine the position of the source and

set the error inputs to the feedback algorithm in each Axis object. The

Axis objects that constitute a PolyAxis are stored in an array which

will typically have three or five elements for in-plane or out-of-plane motion

respectively.
PolyAxis also contains an AV object, which supplies it with the cur-

rent state of the acrylic vessel as measured by the AVPsense system. The

hardware interface classes for this system are shown, in a vapour cloud be-

cause they have riot been written yet, as the DataConcentrator system for

interfacing these boards into the PC is not yet complete. Note that when

this hardware becomes available the DigitalChannel and AnalogChannel
classes will have to be substantially re-written as well. It may be worthwhile

to substantially increase the degree of modularity in these classes at that

time. In particular, the card that fits into the PC backplane, the DafcaCon-

centrator backplane card and the DataConcentrator cards themselves should

all have their own classes. This was not done in the current Incarnation

because it would just have to be redone completely in the next incarnation.

As mentioned above, the Axis class contains the Level 3 classes Motor,
Encoder and Loadcell. Because the Hardware class hierarchy does not

support multiple inheritance these subclasses are contained in - rather than

superclasses of - the Axis class. They themselves communicate with the

hardware via Level 2 classes like AnalogChannel and Level 1 classes like

TI010. There is at the moment only one TI010 card in the system. This

is a general purpose National Instruments timing control card. It supplies

both a globally accessible realtime clock and eight clock outputs for driv-

ing motors. The TI010 board includes, a pair of Advanced Micro Devices

AM9513 timer/counter chips and a pair of Motorola MC6821 Peripheral In-
terface Adapter (PIA) chips. The TIOlO class contains objects to describe
these chips, and the AM9513 class includes a set of five AM9513Chanenl
objects that correspond the the five channels available on each chip. These
chips and channels are referenced by other objects in the class hierarchy.

The purpose of the Axis class is to provide feedback control to a motor

based on either error signals set by a PolyAxis object that contains that
Axis or based on a simple feedback algorithm internal to the Axis class.
The latter allows standalone operation. One of the basic constraints on Axis

design was that no Axis object should have to know what any other Axis

object is doing, thus maintaining hierarchy as described in Section 2. The
Axis class implements different control algorithms depending on the control
mode (i.e. PolyAxis or standalone). In standalone mode the algorithm is a

simple position feedback algorithm that updates the number of steps it wants
the motor to take until it gets close to the end, and then it just lets the motor

complete the travel itself. The Motor object in this case is in step control

mode, in which it tries to match the actual number of steps taken with the
desired number, which is set by the Axis object. When the actual number
matches the desired number the Motor stops itself.

When an Axis is in PolyAxis control mode it uses a fuzzy logic algo-
rithm to control the speed of its motor. In this case the motor is in velocity
control mode. The fuzzy logic algorithm, discussed in detail in Section 6 is a

nonlinear PID controller; the fuzzy logic aspect is more of a design tool than
an implementation tool in this case.

The Encoder and Loadcell objects deal with calibration constants as

well as hardware registers. They access hardware via the DigitalChannel
and AnalogChannel objects respectively. These Level 2 objects currently
mix up different hierarchal levels fairly badly, and need to be re-written when
new hardware is put in place in any case. A strong case can be made for
breaking them up into separate PCcard, DCca’id and DCinterface classes.

The Server class is shown at Level 3, as it accesses hardware via lower-
level entities from the PCTCP socket library. It is part of the Hardware
class hierarchy because it needs to be polled periodically to ensure commu-

nication with the DAQ system is maintained. At the moment the Server
class is in an incomplete state: it appears to work in a standalone test setup,
but does not behave properly in the manipulator control program.

The Clock class has global scope and is designed to return the time

in seconds since the program started running. This time is a double preci-
sion real number. As time is a continuous global quantity the principle of

verisimilitude argues that the object that supplies knowledge of it should also

be global and represent that quantity as continuously as possible. Once the

Server class is made to work properly it may be worth adding the capability
of referencing the Clock time to the GPS clock as seen by the DAQ. The
Clock class uses two channels on the TI010 board to count ticks of the

tiolO’s 5 MHz clock. The TI010 object itself has to have global scope so

that it can be defined prior to the Clock object.
There is also a global Display class that is not part of the Hardware

class hierarchy as it is effectively polled at the system level- It serves as

a standard output interface for all the Hardware-derived objects using
various DOS screen-control functions. There are a number of helper objects,
such as the Keyboard class, that deal with I/O and other management
problems. Many of these are implemented in ordinary C subroutines.

The main program defines an AV ’object, a TI010 object and a Clock

object as well as a PolyAxis object. The PolyAxis constructor takes

care of calling constructors for all the lower level objects, as discussed below,
but takes pointers to the AV object and the TI010 object as arguments.
The main program loop consists of an inquiry to the Keyboard object

to see if a complete command string is available, where "complete" means

it ends in a carriage return. If one is, then the command string is passed
to the Hardware::doCommand() routine for parsing and, if possible, execu-

tion. On every pass through the main loop the Hardware::doPoll() routine is

also called, which runs the poll() member function of all Hardware-derived

objects. At the moment the main program also displays various status-infor-

mation about the PolyAxis object, such as the estimated position of the

source and the residual force on it.

5 The PolyAxis Class

The PolyAxis class consists of an array of Axis objects, .ind AV object

and collection of information about the source. Each PolyAxis object has

its own entry in the database file POLYAXIS.dat. This entry is read by

the "constructor based on the PolyAxis name. The constructor also takes

as arguments pointers to the AV object and the TI010 object that are

created at the top level. The format for the database entries is shown in

Table 1.

The first line in the database file is the version identifier, which is the

string VERSION followed by 1.00 with no spaces. This is matched with a

version number supplied by the code lo ensure the format matches what is

expected. The version number is local to each object type, so tliat one may

be updated without affecting the others. A PolyAxis entry is identified

VERSIONI.00

POLYAXIS: PROTOTYPE
AXIS: AXISOP // prototype axis objects
AXIS: AXIS1P

AXIS; AXIS2P

POSITION: -0.199943 0.000000 95.569618419 // last known position
SOURCE.MASS: 5.3357 kg // true mass of source, units required

SOURCE.VOLUME: 0.0 cnr3 // volume 01 source, units required

END;

Table 1: PolyAxis database entry

by the string POLYAXIS: followed by a name. The name comparison is case

in-sensitive. Following the PolyAxis name is a list of Axis object names.

These names are used to find Axis objects in their database file (see Sec-
tion 6.) The POSITION: line gives the most recently known source position
in centimetres from the centre of the detector co-ordinate system. This entry
is updated once per second by the PolyAxis poll() routine when the source

is moving, and once every ten seconds when the source is stationary, so the

PolyAxis object will know where the source should be when it starts up.
If for some reason you move the source by hand you will have to change
this entry of the source-finding routine of PolyAxis will probably fail. The

last two lines give physical parameters of the source: its mass and volume.
These are needed to estimate the forces acting on the source. For sources in

air, just set the volume to zero to eliminate the buoyancy correction. The

density of DsO is taken to be 1.10 g/cm3. The mass and volume of the source

should have their units specified (the mass can be in g or kg, the volume in

cnT3, cm**3, cc, 1, m"3 or m**3.) Masses are converted internally to

kg, volumes to cm3-
The PolyAxis object has the responsibility of figuring out where the

source is and how to change the lengths of the various ropes to get it some-

where else. The Axis objects have the responsibility of changing the rope

lengths while maintaining rope tensions within their upper and lower bounds.

The basic tool the PolyAxis object uses to track the source is the func-

tion findPositionL() which finds the position of the source by looking at the

lengths of the Axis ropes. For the best estimate of the source position the

sum-squared length error is a minimum. The minimization is done by iterat-

ing on a linearized version of Llie problem, which increases speed a reliability

over doing the full non-linear minimization. Various approaches to non-linear

minimization were taken prior to settling on the iterated linear algorithm.
The Marquardt-Levenberg algorithm was tried, but the surface is funnel-

shaped with very small parabolic bottom. The M-L algorithm wandered

badly: a bad parabolic step was followed by a good steepest-descents step

that failed to get close enough to the parabolic region for the next parabolic

step to be any good. The downhill simplex algorithm was also tried [amoeba()
from NUMERICAL RECIPES IN C) but was too slow for reliable control- A

simple steepest-descents algorithm was used with some success, but it was

neither as robust nor as fast as the iterated linear algorithm.
The iterated linear algorithm begins with the equations:

axisNumber
_^

_ _
" i

^ = E (z* - (xt^ -xs ~ Al)x utt ~ ^xbl ~xs ~ ^ x ubi) ^i=i

where L^ is the squared length residual, xt, is the position of the top

pulley of axis z, z6, is the position of the bottom attachment point of axis i,

A; is the offset of the source-carriage pulley from the source-carriage centre

point, and uti and ub, are the directions of the top and bottom segments

of the rope. For the central rope, which does^not have an attachment point

in the vessel, xb is equal to xs, and A and ub are zero, so the second term

drops out. L, is the measured length of the 1th rope. The second and third

terms in the equation will be readily recognized as the lengths of the rope

above and below the source. The sum of these terms for a given axis is just

the total length of rope expected for the source at position xs. A schematic

representation of these quantities is shown in Figure 2.

The minimization is carried out by taking the derivative of the squared

length residual with respect to the each direction with the assumption that

the directions of the upper and lower sections of rope remains constant while

the source position changes. This results in the set of linear equations for

the source position:

-2{ut + ub)(ut + ub)
-2(vt + vb)(ut + ub) x’s ^2{ut^ub)(L-(xt-^)ut-(xb-!\)ub) (2)

-2(wt +wb)(ut +ub)

where for each term a sum over z is implicit.

Solving these linear equations is handled by the ThreeVector class. The

solution has one problem: for motion in a single plane there is a tendency

10

tor the solution to wander out-of-plane to make up for any errors in the

rope lengths. This is dealt with by the relatively harsh expedient of zeroing
any components of the equations that are out-of-plane. This is done by the
PolyAxis constructor creating a vector called freeze during startup that is

used to mask off any out-of-plane components, freeze has a zero component
for any direction that has a sum of absolute values of the bottom attachments
of less than 1 cm. If the acrylic vessel moves significantly it may be necessary
to relax this standard somewhat.

The linearized equations are iterated until the change in source position
between iterations is less than 0.1 cm. Ideally one would like to minimize the.
tension error at the same time as the length error (in particular, this would

eliminate the problem of wandering out-of-plane.) Unfortunately, I haven^t
been able to figure out how to cast the tension equations in a similarly lin-

earized form, so there is no set of grand linear equations to do this particular
job.

As well as knowing what the source position is, the PolyAxis object has

the responsibility of changing it. This is done using the to() member function,
which takes a string argument containing the position in three-space of the
desired position. A few simple tests are applied to this position to ensure it is

inside the vessel and can at be reached, at least in theory, without violating
any tension constraints. If the point meets the constraints a path is generated
from the current position to the final position. This path consists of at most

two straight line segments. If the start and end positions are either .both in

the vessel or both in the neck only one segment is generated. If the source

is to move from the vessel into the neck or vise versa then two segments are

generated: one to a point just below the neck, the other away from this point
to the end position. There is a member function called necklntersection()
that determines if and where a rope intersects the neck ring. It is based on

the assumption that there is no friction between the neck ring and the rope,
so that the rope will always lie in a plane that contains a radius of the neck

ring.
Prior to returning control the main loop, to() calls the polyActivate ()

member function of each of the Axis objects that make up the PolyAxis
This puts the Motor object in each Axis into velocity control mode,

and places them in standby mode. It also sets the expected length for each

rope, turns off command acceptance for the Axis and its sub-objects, and

initializes some arrays used to store past values of length and tension for rate-

of-change calculations needed for damping rules (see Section 6 for details.)
The program is then returned to the main loop, and the rest of the PolyAxis
control sequence is carried out by the poil() function.

The basic tasks of the PolyAxis poll() function arc to move a point

along the line segments calculated by to() and to set up error values for each

Axis object based on the difference between the position of that point and

the estimated position of the source. The point is the "hare’’ of a hare-

and-hound controller, with the source itself playing the role of hound. The

point is moved according to a hardcoded velocity profile such that the point

velocity increases linearly for the first 20 cm of path to a maximum of 2-0

cm/s, and decreases similarly at the end of the path. For paths that turn at

the neck, the source is brought to a stop at just below the neck, and then a

similar velocity profile is followed for the second part of the path.
The Axis object errors are set by the function error-Signal’(). There

is a related function errorSignalAll() that will be discussed in more detail

below. errorSignal() sets both error tensions and length. The error lengths
are simply the difference between the actual length and the desired length
of any given rope for the current point position. The error tensions are

set differently depending on the status of the rope: if a rope has a bottom

attachment that is on the far side of the central axis relative to the current

source position, the error tension is set in such a way as to move the rope

toward a tension of 10 N. The error tensions of the other ropes are set to

zero, which is a signal for the code to let them take on whatever values they
like. This mechanism of setting the off-side rope tensions to 10 N effectively
makes them idlers, or nearly so, and brings the control algorithm back into

the realm of constrained rather than over-constrained systems.
The function errorSignalAll() is used to set errors for all ropes, and is

useful for attempts at full over-constrained control. It was found that the

loadcells are not generally accurate enough to do this effectively. Note that

there are two rather similar terms in the code that are really quite different:

and error-Length is the difference between the actual length and the desired

length, and a lengthResidual is the amount a rope contributes to the RMS
residual that was minimized to find the source position. All errors are de-

fined to be (actual - desired) but the residual length is defined with the

opposite sign to make the derivatives work out properly.
There a number of sloppy usages in the code: the terms distance,

position and length are used interchangeably in some cases and with dis-

tinct meanings in others. Force and tension are also used interchangeably
sometimes and not others. There may be some idle functionality left over

from earlier versions of the code, although I’ve tried to eliminate this where

it seemed likely it would never be needed again.
The list of commands the PolyAxis object will accept from the keyboard

is shown in Table 2. Required arguments are given following the command

to [x y z]
tensionFind
tensions

netForce <x y z>

pattern [fileName]
stop
tensionStop

move to (x,y,z)
find and display position based on tensions

find and display desired tensions

find and display net force magnitude at (x,y,z) or

current position if none given
run through a pattern of endpoints
stop all motors

toggle stop-on-fcension condition

Table 2: PolyAxts commands

name in square brackets, optional arguments in pointed brackets.
The tensionStop command toggles a flag whose state determines how

the code reacts to tension-out-of-bounds conditions. If the tension goes out

of bounds this flag can be unset to allow individual Axis objects to be
controlled without the PolyAxis object stopping the whole show on every

poll. This flag is set automatically whenever the to() function is called, to

provide some protection against forgetting reset it.

The pattern command allows the source to run through a pre-defined
pattern of points listed in the me given. The first line of the file is the name

of the pattern log file to be used, which records where the source stopped
for each endpoint and why. The rest of the lines are endpoints. The pattern
following code moves to an endpoint, pauses for about 10 seconds, then moves
on until the pattern is complete.

One of the more problematic aspects of the control algorithm is knowing
when to quit. There are five stop conditions:

ENDPOINT-STOP source is within the lesser of END-ERROR and distErr

of the endpoint, but in no case is the endpoint condition tighter than

0.1 cm. distErr is the RMS length residual from all Axis objects-

STUCK_STOP source is more than 1/2 way to the endpoint and hasn’t

gotten any closer in the last 10 seconds.

NETJFORCE_STOP NET-FORCE-LIMIT has been exceeded

LOW-TENSION-STOP tension is below LOW_TENSION on an Axis

HIGH-TENSION-STOP tension is above MAX_TENSION on an Axis

13

Depending on the frictional forces and hydrodynamic damping in tlie
final system some of these conditions may need to be changed. The numer-

ical values for the various quantities like END-ERROR are denned in the file

PolyAxis.h.

6 The Axis Class

The Axis class is home of the fuzzy logic system that tries to maintain

the Axis conditions such that the error terms set by the Poly-Axis code
are kept small. It also handles the tension constraints and includes damping
terms in both length and tension to improve the stability of the system. The

Axis constructor is typically called by the PolyAxis object. It is passed
the name of the Axis, a pointer to the AV object that exists at the top
level scope and a reference to the TIOlO object that also exists at the top
level-

The database utilities search the file AXIS.dat for the named Axis , and

then read the fields shown in Table 3. The MOTOR: LOADCELL: and ENCODER:

fields name the Motor, Loadcell and Encoder objects that are part of

this Axis . The LENGTH: is the length of the rope from the upper pulley to

the bottom end. The DEADLENGTH: is the length of rope between the spindle
and the top pulley. This length should be small in the final installation, but

is large in the prototype. It is used by the code that corrects the length
of the rope for the effects of elasticity. Note that the Axis object should

always use the length returned by Axis::getLength(void), which includes a

correction for rope stretch, and not Encoder::length(void) which returns the
unstretched length. The OFFSET: is the offset in centimetres from the central

point of the source carriage to the centre of the pulley on the source carriage

through which the rope passes. At the moment the rope length calculation

does not account for the varying amount of- rope passed around the source

carriage pulley as a function of distance from the central axis of the detector.

The TOP: and BOTTOM: positions are the locations of the point where the

rope comes off the top pulley and where it meets the bottom attachment

point. For a central rope there is no BOTTOM: attachment point given, and

the OFFSET: is zero. The LENGTH: field of the Axis object database entry is

updated every second when the Axi& is moving and every ten seconds when

it is stationary.
The sub-object names passed to the Axis object are used to search the

appropriate database files for the named objects, but the names these objects

arc given in the code are not the names used in the files; instead they are

given names that are a compound of their class name with the name of the

VERSION1.00

AXIS: AXISO
MOTOR: motorO
LOADCELL: loadcellO

ENCODER: encoderO

LENGTH: 293.4052730000000 // re-written length
DEADLENGTH: 453.0 // unchanging length
OFFSET: 0. 0. 0. // Delta in Equation 1

TOP: 0. 5.0 389.0 // top pulley position
END;

AXIS: AXIS1

MOTOR: motorl

LOADCELL: loadcelli

ENCODER: encoderi

LENGTH: 614.24914660000000 // re-written length
DEADLENGTH: 453.0 //unchanging length
OFFSET: 0. 0. 0. // Delta in Equation 1

TOP: 50.0 0. 391.0

BOTTOM: 317.0 0. 89.53 // bottom attachment position
END;

Table 3: Axis database entries for central and side ropes

15

Axis that they are part of. Thus, the Motor object for axisO is given the

name axisOMotor and so on-

There are two Axis control modes, corresponding to the control modes

of the Motor object: STEP-MODE and VELOCITY-MODE. The first of these is

used for controlling a single axis: the number of steps the motor should take,
and the direction to take them in, is calculated on each poll, and the Motor
object is left free to work out how to take them. When the Axis gets to

within 1 cm of the desired endpoint it stops recalculating the number of steps

and lets the Motor finish the move.

VELOCITY-MODE is used for PolyAxis control. In this case the Axis

object employs a fuzzy logic algorithm to estimate the change in velocity

a motor should have, and then sets the desired motor velocity accordingly.
The Motor object will change its velocity to match the desired velocity the

next time it is polled. There are ten fuzzy rules in operation in the current

controller:

� If tension is low then increase tension

� If tension is high then decrease tension

� If corrected length is short then increase length

� If corrected length is long then decrease length

� If not near end and relative tension is low then increase relative tension

� If not near end and relative tension is high then decrease relative tension

� If velocity is high then decrease velocity

� If errorLengthVelocity is high then decrease errorLengthVelocity

� If errorTensionVelocity is high then decrease errorTensionVeIocity

� If dv is high then decrease dv

Some of the rules may look a little obscure, so some justification for using

them is given toward the end of this section. The meanings of the various

terms is given by reference to Figure 3. The "corrected length" is the mea-

sured length with a correction for the amount of the length residual. The

reason for putting this in is so that inaccuracies in the source position that

arise from imprecise measurements of rope length or the positions of the bot-

tom attachment points don’t appear as error terms in the control algorithm.

The rules themselves are coded in a set of Axis member functions that

16

have names like isLowT(float tension), which returns Lhc membership of
tension in the set LowT.

A fuzzy set is defined along an axis (not an Axis!) that represents a

physical quantity like tension. The "membership" of a tension value in a

fuzzy set is the magnitude of the set at that value. In Boolean logic member-
ship values are always zero, one or undefined (at the transition between zero

and one.) Fuzzy sets, unlike Boolean sets, obey the law of noncontradiction
everywhere: they vary smoothly between one and zero over some boundary
region.

Each rule has a premise (the bit before the "then") and a conclusion.
The truth value of the premise is calculated using various fuzzy operations.
The truth value of a simple premise is just the membership of the input
value in the set it is associated with (for example, the truth value of the
premise tension is low is just the membership of tension in LowT.) For
compound premises the individual assertions like tension is low are con-

nected by fuzzy operators such as AND, OR and NOT. There are various

ways of defining fuzzy operations, and I’ve chosen ones here that are easy to

code and computationally fast. The fuzzy AND operation I’ve represented
using multiplication, whereas the usual way is to take the smaller of the two
membership values. The fuzzy OR is the larger of the two membership values
(which is not used in the rules at the moment) and the fuzzy NOT is just
one minus the membership value.

The truth value of the conclusion of a fuzzy rule is usually calculated
by truncating the output set at the truth value "of the premise. One then
does some kind of averaging to "defuzzify" the output and produce the de-
sired control value. In this case, efficiency considerations have led me to

put the dufuzzification step into the output directly. The conclusion of each
rule (the bit after the "then") in each case is translated into a change in
the motor velocity. To decrease the tension, for instance, the motor velocity
is increased (positive velocity means the rope is getting longer) and to de-
crease the length the motor velocity is decreased. The velocity change values
are supplied by the functions deltaV(int indicator) and deltaDV(float

dv, int indicator) where the flag indicator selects what kind of velocity
change you want. Both the magnitude and direction of the velocity change
depends on the value of indicator; for instance, to increase tension a veloc-
ity change is -0.4 cm/s is returned, and this value is multiplied by the truth

value of the premise, then added into the total velocity change. The output
of all the rules is just the premise-weighted sum of the velocity changes; this
is a very simple defuzzification method that more than makes up in efficiency
for what it loses in generality.

17

up [dist]
down [dist]
to [len]
calibrate

point [load]
maxspeed [speed]
zero

stop

move up dist cm
move down dist cm

change length to len cm

toggle loadcell calibration mode

enter a loadcell calibration point

set maximum motor speed in cm/s
reset encoder counter

stop the rnotor

Table 4: Axis commands

The fuzzy rules currently in use are suitable for the prototype manipulator

in air with the old source carriage. They may have to be modified for the

new source carriage, the full detector geometry and the effects of water.

The high and low tension and length rules should be self-explanatory, but

some of the other rules warrant comment. The relative tension rules (that
is, the rules that deal with the tension relative to the desired tension set by

the code) are relaxed toward the end of the path. This relaxation was added

because it was found that errors in the tension measurements resulted in

these rules preventing the source from reaching the endpoint in some cases.

The rules are only partially relaxed, however; otherwise the side rope tensions

tend to get very high for endpoints in the neck (why this is "so is not clear.)
There are two damping rules, one based on the rate of change of the length

error and one on the rate of change of the tension error. Both sets of rules are

necessary, especially to prevent interactions between ropes from driving each

other into oscillation. A common scenario is that a side rope finds itself with

too much tension and slacks off and the opposite side rope finds itself with too

little and tightens up. While the ropes are stable individually, the interaction

between them leads to more rapid changes in tension than the rules are

designed to compensate for, and so the system oscillates. Adding damping

based on the rate of change of tension has eliminated this phenomenon. The

damping constant for the length error velocity was calculated by observing

the period of the oscillations and treating the system like a free oscillator. The

damping constant for the tension error velocity was determined empirically.

The Axis object takes the commands shown in Table 4. When running

an Axis from the command line the motor is in STEP-MODE and its accel-

eration profile is determined by simply decreasing the count-down time of

the associated clock channel by a fixed amount every step. This amount is

set to ten at the moment, but may be as little as one. Once the maximum

speed is reached the motor runs at constant velocity. During the .icceleration

18

VERSION1.00

AV: PROTOVESSEL
NECK-RING_STATIC_POSITION: 5.7 0. 364.0

NECK_RING_RADIUS: 42.0 cm

NECK.RADIUS: 42.0 cm

NECK.LENGTH: 27.0 cm

VESSEL.RADIUS: 3.20 m

END;

Table 5: Acrylic vessel database entry

phase the number of steps is counted, and when the motor gets to within

this number of steps of the endpoint it goes into deceleration, increasing the

count-down time by the same increment on every poll. The calibration com-

mands for the loadcell will be described in Section 10: they are just calls to

the Loadcell calibration commands in any case.

7 The AV Class

The AV class is still only partially implemented. It is intended to supply
the rest of the code with information about the state of the acrylic vessel.

To do this is must know the geometry of the vessel and know its position
and orientation in the global co-ordinate system. The vessel geometry is

described by entries in the database file AV.dat, as shown in Table 5. The

AV constructor just takes the name of the vessel to be used as an argument,
and searches the AV.dat file until it finds an entry for an AV object with

this name.

The NECK-RING-STATIC-POSITION: entry gives the position of the centre

of the neck ring when the centre of the vessel is at the origin of the global co-

ordinate system and the neck is pointed straight up. The NECKJUNGJUDIUS :

is the interior radius of the neck ring- The radius of the allowed region of the

neck is given by the NECK-RADIUS: entry: this is the radius within the neck

that the source is not allowed to move outside of. The VESSEL_RADIUS: is

just the radius of the vessel (and here we set x equal to five....)
At the moment the AV object is almost entirely non-functional. The

functions-it needs are prototyped but don’t do anything, mostly because the

19

VERSION1.00

MOTOR: motorO

CHANNEL: 7

START.SPEED: 0.5

CRUISE.SPEED: 7.0

END;

Table 6: Motor database entry

hardware to measure the vessel position has not yet been integrated into the

prototype system. The AV object does not take any commands, although
a dummy command has been built into it to satisfy the constraints of the

Hardware hierarchy, which expect at least on command per class.

Calls to the AV member functions vtog(ThreeVector x) and gtov(ThreeVector

x) have been put in the Axis object and the PolyAxis object at the appro-

priate places. These functions are supposed to take a position vector x and

transform it from the vessel to the global co-ordinate system (vtog()) or vice

versa (gtov()). Their return value is the transformed vector. The functional-

ity exists in the ThreeVector class to do this transformation, but I’ve not

got around to implementing it here.

8 The Motor Class

Motor objects control stepping motors by setting the period of the clock on

an output channel of the TI010 card. The motor takes a half-step for every

clock pulse. Several types of motor may be used in the current system: one

type for manipulator control, another for the laser system and a third for the

stearable source. Some motor parameters are read in from the MOTOR-dat

database file entries to facilitate the use of different motor types. A typical

database entry is shown in Table 6.
The database name of a Motor object is not the same as the name it is

referred to in the code. The Motor constructor takes two names as inputs:

one is the database name and one is the name used in the code. The latter

is generally constructed by’the object that the Motor object is part of. In

the current set up, the Motor for axisO would be named axisOMotor.

The CHANNEL: is the TI010 channel for this motor, which is determined by

20

the wiring of the external hardware. The STARTJSPEED and CRUISE_SPEED:

are precisely what you would think they are, given in cm/s. 7.0 cm/s is the

maximum allowed cruise speed and 0,07 cm/s is about the minimum allowed

start speed. These limits are enforced by the code.
The Motor object has a number of features that are hardcoded to reflect

the current configuration. The PIA chip on the TI010 card is used to set bits

that control the direction of a motor and turn all the windings off when the

motor is idle. Two arrays, dirBit[] and awoBit[] contain the bit positions
associated with each output channel. If the outputs are rewired for any

reason these arrays will have to be changed- Note that channels 4 and 5

are reserved for the realtime clock, and this condition is also imposed by the

Motor code. The final hardcoded constant is STEPS-PER-CM which reflects

the mechanical connection between the motor and the rope spool.
As mentioned above, the Motor object has two control modes: STEP_MODE

and VELOCITY-MODE. In STEPJ10DE the motor’s acceleration profile is deter-

mined by simply decreasing the count-down time of the associated clock

channel by a fixed amount every step. This amount is set to ten at the mo-

ment, but may be as little as one. Once the maximum speed is reached the

motor runs at constant velocity. During the acceleration phase the number

of steps is counted, and when the motor gets to within this number of steps
of the endpoint it goes into deceleration, increasing the count-down time by
the same increment on every poll.

In VELOCITY.MODE the variable desiredPeriod is assumed to have been

set by a preceding call to setDesiredVelocity() or changeDesiredVelocity (),
both of which set the desired period as well as the desired velocity. The

desired direction is also set by these functions; note that the velocities are

signed quantities, but the the period is always positive. In STEP-MODE the

motor’s direction is never allowed to reverse; in VELOCITY-MODE it is. To
facilitate reversal the Motor object has three possible states: on. off and

standby. The variable onFlag is used to store this state information, with a

value of 0 meaning off, 1 meaning on and 2 meaning standby. This allows

a motor to be slowed to a halt and then restarted (possibly in the opposite

direction) if the Axis control algorithm is not done with it. Note that when

the motor has been turned off by setting onFlag to zero it can’t be restarted

without initiating a new command sequence from the keyboard or Server

object.
As well as onFlag there is a variable called stopFlag which in the past

was used to communicate with the Axis object to allow the Axis object

to stop a motor when the Motor object thought it was done with it. 1

don’t think this flag is used anywhere in the code any more, but have kept

21

VERSION1.00 . ,.
-

ENCODER: encoderO

SLOPE: 0.2392 // conversion from ADC value to cm

ADDRESS: 168 // encoder board address

ZEROLENGTH: 747.045410 // rope length when encoder reads zero

DATE: 00-00-0000 // last calibration date (not used)

END;

Table 7: Encoder database entry

it around as it may be useful again in the future.

The rate at which the motors are polled has an effect on the control

algorithm. At the moment they are still being polled a little faster than need

be: the interval between polls must be at least LOOP-TIME, which is 1Q~4

seconds at the moment. It could probably be increased by a factor of ten

without significant loss of performance, and because the current fuzzy rules

were developed for a longer polling time (because of the use of non-linear

minimization algorithm in PolyAxis to find the source position) they may
not work quite so well under the current circumstances. But as they will

have to be changed when we go to full scale it -is probably worth waiting

until then to change them. A related quantity is DVJJMIT, the maximum

change in motor velocity allowed per polling cycle. If this is too large the

motors may stall. It is currently set at 0.5 cm/s.
The only command the Motor object accepts from the keyboard is

maxspeed [speed] , which sets the maximum speed in cm/s.

9 The Encoder Class

The Encoder class reads the output of a shaft encoder via custom SNO
electronics. The Encoder class itself is a Level 3 object, and it uses a rather

messy Level 2 object, the DigitalChannel class, to do actual hardware

access. Encoder objects know about the calibration of their encoder, and

a hardware address they teli their DigitalChannel object to read values

from. A typical entry from the ENCODER.dat database file is shown in

Table 7.
The ADDRESS: is the address of the encoder board on the dataConcen-

�Y)

reset
read
readloop
stoploop
setZeroLength [len]

reset counter to zero

read and display value
enter read/display loop
quit read/display loop
set zero length to len cm

Table 8: Encoder commands

trator chain. The whole addressing scheme will have to be revised when the
dataConcentrator hardware is ready in its final form, so not a lot of attention

will be paid to it here. The ZEROLENGTH: of the rope is the total length in-

cluding the dead length specified in the associated Axis object. Because the
Encoder class is at Level 3, it does not know anything about the Loadcell

class, which is also at Level 3, or the Axis class, which is above it at Level
4. Therefore all it can know about it the total length of its rope, without

any correction for stretch. The ZEROLENGTH: database field is updated once

per second when the length is changing and not at all otherwise. The value
used to update ZEROLENGTH: is the CURRENT LENGTH. This is because the
Encoder constructor resets the counter to zero at startup, and so the old
current length becomes the new zero length.

The list of commands the Encoder object will accept from the keyboard
is shown in Table 8. The readloop command causes the Encoder to .print
its value to the screen every time it is polled.

10 The Loadcell Class

The Loadcell object is much like the Encoder object: it is a Level 3 object
that accesses hardware via the AnalogChannel object. The and entry in
the Loadcell database file LOADCELL.dat is shown in Table 9. Like the
Encoder , some of the hardware-access data will have to be modified when
the final dataConcentrator hardware becomes available.

The most important feature of the Loadcell object is its calibration

facility. Calibration mode is turned on by entering running the "calibrate"
command from the keyboard. Subsequent "calibrationPoint" commands are

given with various masses hung on the rope. The value of each mass is given
on the command line as well. When two or more calibration points have been

given, the user enters the "calibrate" command again and the new calibration

constants are written to the database file.
Tests have shown the loadcells to be quite linear over most of their range.

23

VERSION1.00

LOADCELL: loadcellO

MAXLOAD; 50 Ib // maximum load in pounds
SLOPE: 0.6777730537 // conversion from ADC value to newtons

OFFSET: -482.535980 // according to N = slope+adc + offset

CHANNEL: 3 // ADC channel setting
DATE: 00-00-000 // unused calibration data

END;

Table 9: Loadcell database entry

However, for very small loads the electronics they are connected to is quite
non-linear. For this reason it is necessary to add a 75 k resistor between the

red and green leads of each loadcell to provide a small bias that will prevent
the amplifiers from being driven into the non-linear regime. The addition

of this resistor adds about 0.7 % non-linearity to the overall response of
the system, which is an acceptable loss to avoid the region of much higher
non-linearity.

There are still some bits of old code hanging about from an earlier in-

carnation of the code: the setTenswnLimits() function is no longer used and

may be discarded. Its role has been taken over by the net force limits in the

PolyAxis object.

11 Low Level Classes

There are a whole bunch of Level 1 and 2 classes for dealing directly with

hardware. I didn’t write most of them, and those I did are going to have to

be re-written in fairly short order. Here are a few comments about some of

them.

11.1 The DigitalChannel Class

The DigitalChannel class accesses the counters on the dataConcentrator

board via a simple PC interface card that will be replaced by tlie real data-

Concentrator interface card soon. It does not deal with the encoder boards

out on the’axis hardware at all, but just calls in the value from one of the

24

counter channels on the dataConcentrator card itself. No facility for handling
multiple dafcaConcentrator cards exists at the moment, but one will have to

be written when the new hardware arrives.

11.2 The AnalogChannel Class

The AnalogChannel class handles the A/D converter on a dataConcen-
trator card. Like the DigitalChannel class it has no way of dealing with

multiple dafcaConcentrator boards. When the new hardware arrives these

two objects should, at best, be made subobject of a new dataConcentra-

torBoard class which itself would be a subobject of a dataConcentra-

torChasis class. At worst, these classes should be scrapped altogether and

something more sensible put in their place.

11.3 The TI010 Class and Its Components

The TI010 class handles the National Instruments TI010 card. It im-

plements essentially all of the functionality described in the TI010 manual.
It was written almost entirely by Aksel Hallin. The TI010 class has sub-

classes that describe the main chips: the AM9513 timer and its channels,
AM9513Chanenl objects, and the pia class to handle the MC6821 pe-

ripheral interface adapter. These Level 1 classes access the card registers
directly. The only way they need to be extended is to add come more func-

tions for checking the status registers so that one can tell that the card is

actually there an functioning.
Note that the TI010 class and its subclasses are not part of the Hard-

ware hierarchy. They are not polled and do not accept commands.

12 The Display Class

Display is a simple screen-handling class that is globally accessible to allow

all Hardware-derived objects to print stuff to the screen in a semi-organized

way. The top level code sets up the Display class to put the cursor on line

19 of the screen, and 1 try to restrict error messages and other outputs from

Hardware-derived classes to the five or six’lines below this. The Hardware

class hierarchy itself uses the middle part of the screen for error messages,

and. the very top of of the screen is used by the top level code to display the

source position and various error terms, as well as the time.

Messages are sent to the Display object, which is called display, by first

printing the string you want to output to the public member display . outStnng

25

and then calling the {unction display .message(int x, int y) where x and

y give the location on the screen to start the message- An alternative com-

mand is display .messageBdnt x, int y) which blanks the line first, to

eliminate overlap with the tag end of old messages-

13 The Keyboard Class

The Keyboard class takes input from the command line, including handling
backspaces and the like. It does not care for arrow keys much. A useful bit

of added functionality would be a command history.

14 The Clock Class

The Clock class is a realtime clock that uses channels 4 and 5 of the TIOlO
card. A Clock object called RTC for Real Time Clock is defined with global
scope at the top level. The time in seconds from program startup is returned
as a double precision number by RTC.time().

15 The Server Class

The Server class needs some work. It is supposed to connect the calibration

PC with the outside world, and allow a privileged client to send commands
to the manipulator control code and make them look like they came from the

keyboard. The Keyboard class should probably be called by the Server ,

rather than the Hardware::doCommand() function as is now the case. The

real problem with Server is that the communications function are still not

working, for reasons that are obscure. A standalone test code in C:motors
comm seems to work fine, but the behaviour is not the same when integrated
into the main code.

Note that there are bunch of special libraries that have to be set in the

makefile to handle the Server class. Some of the definitions in these libraries

or their associated header files conflict with similar Borland C++ definitions.

For this reason the actual Server object in the main code is defined as a

static variable in separate file: servprot.cpp.
Note also tliat conflicting definitions from the PCTPC stuff produces

three link-time warnings during compile.

26

16 Helper Classes and Functions

There are a whole bunch of helper functions that are part of this system. The
most important are the ThreeVector class, which handles all the geometric
transformations, and the various database utilities in ioutilit.cpp. All I have
time to say is that you should look at the way these helpers are used in the
existing code to deal with geometric and I/O problems and see if you can

use their functionality rather than rolling your own.

17 Mechanical Considerations

There are whole bunch of features of the mechanics that have not been dis-

cussed here. A short list is:

� air cylinders or alternative tensioning devices

� DaO inventory and control

� role of umbilical in control problem

� the role of the neck in control problem

� lots of others that have slipped my mind just now

We need to keep these problems in mind and worry about them whenever

possible. In particular, we need to know how the system behaves in the neck
and in the lower half of the vessel. The fuzzy rules may need to be modified

to ensure stable control in these regions.

18 Top Level Functionality

The top level code at the moment traps a few comma.nds before they ca.n be

passed to the Hardware parser. They are:

quit stop all motors and exit program

log toggle logging state

debug toggle debugging state

27

Turning on logging opens a file where objects like PolyAxis and Axis
can dump state information while they arc moving- This is particularly
useful in adjusting the fuzzy rules in Axis

. There is a standalone routine

called logsort.cpp that breaks the log Hie into axis-specific parts that contain

state information and rule outputs. The files have names like aOrules.dat
and aOstate.dat. There are Origin spreadsheet files called aO.org and the like

that allow these data files to be read in and automatically plotted, so that

you can see what rules are active when, and what state information is really
causing that interesting oscillation.

The debugging toggle just sets or unsets a global variable called debugging
that can be used by object in polling functions to decide if they want do dump
some data to the screen.

There is also one command line argument that the main code accepts:
"-forceMap" This generates three files that contain the force vector from each
rope on the source for a range of positions. The files are named "axisO-map"
and so on. The current force map code is set up for the prototype: hardcoded
limits must be changed to map the real detector.

The code sometimes generates floating point expections. I think all the

sources of this have been found, but just in case a floating point exception
handler has been written, and is loaded by a call to signal() in the top level

code. When an FPE occurs the exception handler stops all the moters before

exiting. Although hardware protection for the motors is planned, one may

as well have as many levels of protection as possible.

19 Compiling

There are several settings that have to be changed to compile this code. The
file builtins.mak has to be updated according to the specifications in the

PCTCP manual. The stack length has to be changed by setting the variable

�stklen in the top level code (this generates a compiler warning) and the

correct PCTCP libraries have to be linked in the correct order (these libraries

and their associated header files generate three compiler warnings.) The large
memory model should be used, with Borland C++ source set in the compiler

options. I use the default optimization, and turn on all warnings except the

one about "functions containing tor-loops arc not compiled inline." The code

itself should generate no warnings. At the moment there is an "unreachable

code" warning generated from the Server poll() function because the first

line is a return statement, as the code itself does not work.

28

20 Co-ordinate Systems

There are two co-ordinate systems used in the code: the global system and
tlie acrylic vessel system. The lower attachment points of the side ropes
are fixed with respect to the AV, but the AV can move with respect to the
global co-ordinate system. The global co-ordinate system is officially defined
somewhere, but I don’t know what it is precisely. The centre of the PSUP
is approximately the origin, and the X-axis is along the electronics corridor,
so the Y-axis is approximately north, I think- The Z-axis is local vertical,
postive up. All the calculations are done in the global co-ordinate system: the
positions of the lower attachement points are transformed before anything is
done with them.

21 Things To Be Done

I’ve tried to indicate things that need to be done as Fve gone along. There
are a lot of them. The most important things at the moment are as follows:

� get the Server object working and discuss communications with John
Wilkerson

� get the air cylinders working

� install and support full dataConcentrator hardware

� get the AVPsense boards integrated into the system, supported in soft-
ware and tested.

� modify the new source carriage to let the weight swing free

� recompile the cc*de with Borland 5-0 and run CodeGuard on it to ensure

no memory leaks and other nasties.

� test/modify the fuzzy rules for the neck region and the lower half.

There are probably a lot of other things I’ve forgotten here as well, but
that list appears sufficient to keep a few people busy for a v.’hile.

29

(x2b.y2b)

1.0

lowRelativeThighReIativeT

Figure 3: Fuzzy Sets for Axis Control

96-03-27 Thomas J. Radcliffe

1Length Error (cm)

-5-2 Tension Error (N)

highDV

0.0DV LIMIT/2DV_LIMIT dv (cm/s)

highErrorLengthVelocity

0.01.0errorLengthVelocity (cm/s)

1

0.01
highErrorTensionVelocity

0.01.02.03.04.05.0 errorTensionVelocity (N/s)

